llvm-project/mlir/lib/Dialect/Linalg/TransformOps/LinalgTransformOps.cpp
jinchen62 d439f3640b
Add support of param type for transform.structured.tile_using_forall (#72097)
Make transform.structured.tile_using_forall be able to take param type
tile sizes.

Examples:
```
%tile_sizes = transform.param.constant 16 : i64 -> !transform.param<i64>
transform.structured.tile_using_forall %matmul tile_sizes [%tile_sizes : !transform.param<i64>, 32] ( mapping = [#gpu.block<x>, #gpu.block<y>] ) : (!transform.any_op) -> (!transform.any_op, !transform.any_op)
```
```
%c10 = transform.param.constant 10 : i64 -> !transform.any_param
%c20 = transform.param.constant 20 : i64 -> !transform.any_param
%tile_sizes = transform.merge_handles %c10, %c20 : !transform.any_param
transform.structured.tile_using_forall %matmul tile_sizes *(%tile_sizes : !transform.any_param) ( mapping = [#gpu.block<x>, #gpu.block<y>] ) : (!transform.any_op) -> (!transform.any_op, !transform.any_op)
```
2024-01-31 10:02:39 +01:00

3408 lines
138 KiB
C++

//===- LinalgTransformOps.cpp - Implementation of Linalg transform ops ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Linalg/TransformOps/LinalgTransformOps.h"
#include "mlir/AsmParser/AsmParser.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
#include "mlir/Dialect/Bufferization/Transforms/OneShotAnalysis.h"
#include "mlir/Dialect/GPU/IR/GPUDialect.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Linalg/TransformOps/GPUHeuristics.h"
#include "mlir/Dialect/Linalg/TransformOps/Syntax.h"
#include "mlir/Dialect/Linalg/Transforms/Hoisting.h"
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/SCF/Transforms/TileUsingInterface.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Tensor/Utils/Utils.h"
#include "mlir/Dialect/Transform/IR/TransformDialect.h"
#include "mlir/Dialect/Transform/IR/TransformInterfaces.h"
#include "mlir/Dialect/Transform/IR/TransformOps.h"
#include "mlir/Dialect/Transform/IR/TransformTypes.h"
#include "mlir/Dialect/Transform/Utils/Utils.h"
#include "mlir/Dialect/Utils/IndexingUtils.h"
#include "mlir/Dialect/Utils/StaticValueUtils.h"
#include "mlir/Dialect/Vector/Transforms/LoweringPatterns.h"
#include "mlir/Dialect/Vector/Transforms/VectorRewritePatterns.h"
#include "mlir/IR/BuiltinTypeInterfaces.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/Interfaces/TilingInterface.h"
#include "mlir/Support/LLVM.h"
#include "mlir/Support/TypeID.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/Support/Debug.h"
#include <type_traits>
using namespace mlir;
using namespace mlir::linalg;
using namespace mlir::transform;
#define DEBUG_TYPE "linalg-transforms"
#define DBGS() (llvm::dbgs() << "[" DEBUG_TYPE "]: ")
#define DBGSNL() (llvm::dbgs() << "\n")
#define LDBG(X) LLVM_DEBUG(DBGS() << (X) << "\n")
/// Attempts to apply the pattern specified as template argument to the given
/// operation. The pattern is expected to have a `returningMatchAndRewrite`
/// function that returns the "main" result or failure. Returns failure if the
/// pattern failed to apply. Extra arguments are forwarded to the pattern
/// constructor.
template <typename PatternTy, typename... Args>
static FailureOr<LinalgOp> tryApply(Operation *operation, Args &&...args) {
// Check if the given operation has the type expected by the pattern.
using OpTy = typename llvm::function_traits<
decltype(&PatternTy::returningMatchAndRewrite)>::template arg_t<0>;
auto op = dyn_cast<OpTy>(operation);
if (!op)
return failure();
// Apply the pattern directly to the op.
PatternTy pattern(operation->getContext(), std::forward<Args>(args)...);
// We want to discourage direct use of PatternRewriter in APIs but In this
// very specific case, an IRRewriter is not enough.
struct TrivialPatternRewriter : public PatternRewriter {
public:
explicit TrivialPatternRewriter(MLIRContext *context)
: PatternRewriter(context) {}
};
TrivialPatternRewriter rewriter(operation->getContext());
rewriter.setInsertionPoint(operation);
auto result = pattern.returningMatchAndRewrite(op, rewriter);
if (failed(result))
return failure();
return cast<LinalgOp>(result->getOperation());
}
/// Assuming that `ofr` is an index attr or a param of index type
/// or a transform dialect handle mapped to exactly one op
/// with one index result, return that value.
static DiagnosedSilenceableFailure unpackSingleIndexResultPayloadOperations(
transform::TransformState &state, TransformOpInterface transformOp,
SmallVector<OpFoldResult> &result, ArrayRef<OpFoldResult> ofrs) {
for (OpFoldResult ofr : ofrs) {
if (ofr.is<Attribute>()) {
if (!isa<IntegerAttr>(ofr.get<Attribute>()))
return transformOp.emitDefiniteFailure() << "expected IntegerAttr";
result.push_back(ofr);
continue;
}
Value transformValue = ofr.get<Value>();
if (isa<TransformParamTypeInterface>(transformValue.getType())) {
ArrayRef<Attribute> params = state.getParams(transformValue);
if (params.size() != 1)
return transformOp.emitDefiniteFailure()
<< "requires exactly one parameter associated";
result.push_back(params[0]);
continue;
}
auto payloadOps = state.getPayloadOps(transformValue);
if (!llvm::hasSingleElement(payloadOps)) {
DiagnosedSilenceableFailure diag =
transformOp.emitSilenceableError()
<< "handle must be mapped to exactly one payload op";
diag.attachNote(transformValue.getLoc())
<< "mapped to " << llvm::range_size(payloadOps) << " payload ops";
return diag;
}
Operation *op = *payloadOps.begin();
if (op->getNumResults() != 1 || !op->getResult(0).getType().isIndex()) {
DiagnosedSilenceableFailure diag =
transformOp.emitSilenceableError()
<< "payload op must have exactly 1 index result";
diag.attachNote(op->getLoc())
<< "has " << op->getNumResults() << " results";
return diag;
}
result.push_back(op->getResult(0));
}
return DiagnosedSilenceableFailure::success();
}
// Given a list of params that are index attrs or a list of OpFoldResults
// that are either index attrs or op handles, return a list of OpFoldResults
// of index attrs or a list of OpFoldResults where all op handles are
// replaced with the first (and only) OpResult of that payload op.
// (There must be exactly one parameter associated with the AnyParamType or
// one mapped payload op which must have exactly one index result.)
static DiagnosedSilenceableFailure unpackSingleIndexResultPayloadOperations(
transform::TransformState &state, TransformOpInterface transformOp,
SmallVector<OpFoldResult> &result, Value packedHandle) {
if (isa<TransformParamTypeInterface>(packedHandle.getType())) {
ArrayRef<Attribute> params = state.getParams(packedHandle);
for (auto param : params) {
if (!isa<IntegerAttr>(param))
return transformOp.emitDefiniteFailure()
<< "expected the parameter to be associated with an integer "
"attribute";
result.push_back(param);
}
return DiagnosedSilenceableFailure::success();
}
for (Operation *op : state.getPayloadOps(packedHandle)) {
if (op->getNumResults() != 1 || !op->getResult(0).getType().isIndex()) {
DiagnosedSilenceableFailure diag =
transformOp.emitSilenceableError()
<< "payload op must have exactly 1 index result";
diag.attachNote(op->getLoc())
<< "has " << op->getNumResults() << " results";
return diag;
}
result.push_back(op->getResult(0));
}
return DiagnosedSilenceableFailure::success();
}
//===----------------------------------------------------------------------===//
// Apply...PatternsOp
//===----------------------------------------------------------------------===//
void transform::ApplyEraseUnnecessaryInputsPatternsOp::populatePatterns(
RewritePatternSet &patterns) {
linalg::populateEraseUnnecessaryInputsPatterns(patterns);
}
void transform::ApplyFoldUnitExtentDimsViaReshapesPatternsOp::populatePatterns(
RewritePatternSet &patterns) {
linalg::ControlDropUnitDims options;
linalg::populateFoldUnitExtentDimsPatterns(patterns, options);
}
void transform::ApplyFoldUnitExtentDimsViaSlicesPatternsOp::populatePatterns(
RewritePatternSet &patterns) {
linalg::ControlDropUnitDims options;
options.rankReductionStrategy =
linalg::ControlDropUnitDims::RankReductionStrategy::ExtractInsertSlice;
linalg::populateFoldUnitExtentDimsPatterns(patterns, options);
}
void transform::ApplyTilingCanonicalizationPatternsOp::populatePatterns(
RewritePatternSet &patterns) {
linalg::populateLinalgTilingCanonicalizationPatterns(patterns);
}
//===----------------------------------------------------------------------===//
// BufferizeToAllocationOp
//===----------------------------------------------------------------------===//
void transform::BufferizeToAllocationOp::build(OpBuilder &b,
OperationState &result,
Value target,
Attribute memorySpace) {
SmallVector<Type> resultTypes;
resultTypes.push_back(b.getType<transform::AnyValueType>());
resultTypes.push_back(b.getType<transform::AnyOpType>());
return build(b, result,
/*resultTypes=*/resultTypes,
/*target=*/target,
/*memorySpace=*/memorySpace);
}
void transform::BufferizeToAllocationOp::build(OpBuilder &b,
OperationState &result,
Value target,
int64_t memorySpace) {
SmallVector<Type> resultTypes;
resultTypes.push_back(b.getType<transform::AnyValueType>());
resultTypes.push_back(b.getType<transform::AnyOpType>());
return build(b, result,
/*resultTypes=*/resultTypes,
/*target=*/target,
/*memorySpace=*/b.getI64IntegerAttr(memorySpace));
}
namespace {
class NewOpsListener : public RewriterBase::ForwardingListener {
public:
using RewriterBase::ForwardingListener::ForwardingListener;
SmallVector<Operation *> getNewOps() const {
return SmallVector<Operation *>(newOps.begin(), newOps.end());
}
private:
void notifyOperationInserted(Operation *op,
OpBuilder::InsertPoint previous) override {
ForwardingListener::notifyOperationInserted(op, previous);
// We only care about newly created ops.
if (previous.isSet())
return;
auto inserted = newOps.insert(op);
(void)inserted;
assert(inserted.second && "expected newly created op");
}
void notifyOperationRemoved(Operation *op) override {
ForwardingListener::notifyOperationRemoved(op);
op->walk([&](Operation *op) { newOps.erase(op); });
}
DenseSet<Operation *> newOps;
};
} // namespace
DiagnosedSilenceableFailure transform::BufferizeToAllocationOp::apply(
transform::TransformRewriter &rewriter,
transform::TransformResults &results, transform::TransformState &state) {
// Attach listener to keep track of newly created ops.
OpBuilder::Listener *previousListener = rewriter.getListener();
auto resetListener =
llvm::make_scope_exit([&]() { rewriter.setListener(previousListener); });
NewOpsListener newOpsListener(previousListener);
rewriter.setListener(&newOpsListener);
linalg::BufferizeToAllocationOptions options;
if (getMemcpyOp() == "bufferization.materialize_in_destination") {
options.memcpyOp = linalg::BufferizeToAllocationOptions::MemcpyOp::
MaterializeInDestination;
} else if (getMemcpyOp() == "memref.copy") {
options.memcpyOp =
linalg::BufferizeToAllocationOptions::MemcpyOp::MemrefCopy;
} else if (getMemcpyOp() == "linalg.copy") {
options.memcpyOp =
linalg::BufferizeToAllocationOptions::MemcpyOp::LinalgCopy;
} else {
llvm_unreachable("invalid memcpy op");
}
if (getAllocOp() == "memref.alloc") {
options.allocOp =
linalg::BufferizeToAllocationOptions::AllocOp::MemrefAlloc;
} else if (getAllocOp() == "memref.alloca") {
options.allocOp =
linalg::BufferizeToAllocationOptions::AllocOp::MemrefAlloca;
} else {
llvm_unreachable("invalid alloc op");
}
options.bufferizeDestinationOnly = getBufferizeDestinationOnly();
options.emitDealloc = getEmitDealloc();
// Bufferize ops.
Attribute memorySpace =
getMemorySpace().has_value() ? getMemorySpace().value() : Attribute();
SmallVector<Value> allocatedBuffers;
for (Operation *op : state.getPayloadOps(getTarget())) {
Value buffer =
linalg::bufferizeToAllocation(rewriter, options, op, memorySpace);
if (!buffer) {
DiagnosedSilenceableFailure diag = emitSilenceableError()
<< "failed to bufferize operation";
diag.attachNote(op->getLoc()) << "target payload op";
return diag;
}
allocatedBuffers.push_back(buffer);
}
// Set results.
results.setValues(cast<OpResult>(getAllocatedBuffer()), allocatedBuffers);
results.set(cast<OpResult>(getNewOps()), newOpsListener.getNewOps());
return DiagnosedSilenceableFailure::success();
}
void transform::BufferizeToAllocationOp::getEffects(
SmallVectorImpl<MemoryEffects::EffectInstance> &effects) {
if (getBufferizeDestinationOnly()) {
// The destination is replaced with a newly allocated buffer, but the op
// itself remains in place.
onlyReadsHandle(getTarget(), effects);
} else {
consumesHandle(getTarget(), effects);
}
producesHandle(getAllocatedBuffer(), effects);
producesHandle(getNewOps(), effects);
modifiesPayload(effects);
}
LogicalResult transform::BufferizeToAllocationOp::verify() {
if (getMemcpyOp() != "bufferization.materialize_in_destination" &&
getMemcpyOp() != "memref.copy" && getMemcpyOp() != "linalg.copy")
return emitOpError() << "unsupported memcpy op";
if (getAllocOp() != "memref.alloc" && getAllocOp() != "memref.alloca")
return emitOpError() << "unsupported alloc op";
return success();
}
//===----------------------------------------------------------------------===//
// DecomposeOp
//===----------------------------------------------------------------------===//
DiagnosedSilenceableFailure
transform::DecomposeOp::applyToOne(transform::TransformRewriter &rewriter,
LinalgOp target,
transform::ApplyToEachResultList &results,
transform::TransformState &state) {
#define DOWNSCALE(trans) \
{ \
FailureOr<LinalgOp> res = tryApply<trans>(target); \
if (succeeded(res)) { \
results.push_back(*res); \
return DiagnosedSilenceableFailure::success(); \
} \
}
#define DOWNSCALE_CALL(a, b) DownscaleSizeOneWindowed2DConvolution<a, b>
#define DOWNSCALE_NORMAL(a, b) DOWNSCALE(DOWNSCALE_CALL(a, b))
DOWNSCALE_NORMAL(Conv2DNhwcHwcfOp, Conv1DNwcWcfOp)
DOWNSCALE_NORMAL(Conv2DNchwFchwOp, Conv1DNcwFcwOp)
DOWNSCALE_NORMAL(PoolingNhwcSumOp, PoolingNwcSumOp)
DOWNSCALE_NORMAL(PoolingNchwSumOp, PoolingNcwSumOp)
DOWNSCALE_NORMAL(PoolingNhwcMaxOp, PoolingNwcMaxOp)
DOWNSCALE_NORMAL(PoolingNhwcMaxUnsignedOp, PoolingNwcMaxUnsignedOp)
DOWNSCALE_NORMAL(PoolingNhwcMinOp, PoolingNwcMinOp)
DOWNSCALE_NORMAL(PoolingNhwcMinUnsignedOp, PoolingNwcMinUnsignedOp)
DOWNSCALE_NORMAL(PoolingNchwMaxOp, PoolingNcwMaxOp)
DOWNSCALE(DownscaleDepthwiseConv2DNhwcHwcOp)
DOWNSCALE(DownscaleConv2DOp)
#undef DOWNSCALE_NORMAL
#undef DOWNSCALE_CALL
#undef DOWNSCALE
return emitDefaultSilenceableFailure(target);
}
//===----------------------------------------------------------------------===//
// DecomposeInterfaceOp
//===----------------------------------------------------------------------===//
// Decompose the target operation if it implements the AggregatedOpInterface.
// Push the decomposed operations (the ones that replaces the values produced by
// \p target) in the `results`.
DiagnosedSilenceableFailure transform::DecomposeInterfaceOp::applyToOne(
transform::TransformRewriter &rewriter, Operation *target,
transform::ApplyToEachResultList &results,
transform::TransformState &state) {
auto decomposableOp = dyn_cast<AggregatedOpInterface>(target);
if (!decomposableOp) {
failed(rewriter.notifyMatchFailure(target,
"payload is not a decomposable op"));
return emitDefaultSilenceableFailure(target);
}
FailureOr<SmallVector<Value>> maybeNewResults =
decomposableOp.decomposeOperation(rewriter);
if (failed(maybeNewResults))
return emitDefaultSilenceableFailure(target);
rewriter.replaceOp(decomposableOp, *maybeNewResults);
for (Value val : *maybeNewResults) {
Operation *definition = val.getDefiningOp();
if (definition)
results.push_back(definition);
}
return DiagnosedSilenceableFailure::success();
}
//===----------------------------------------------------------------------===//
// EliminateLinalgOpAnchoredEmptyTensorsOp
//===----------------------------------------------------------------------===//
void transform::EliminateLinalgOpAnchoredEmptyTensorsOp::getEffects(
SmallVectorImpl<MemoryEffects::EffectInstance> &effects) {
onlyReadsHandle(getTarget(), effects);
modifiesPayload(effects);
}
DiagnosedSilenceableFailure
transform::EliminateLinalgOpAnchoredEmptyTensorsOp::apply(
transform::TransformRewriter &rewriter, TransformResults &transformResults,
TransformState &state) {
bufferization::OneShotBufferizationOptions options;
options.allowReturnAllocsFromLoops = true;
for (Operation *target : state.getPayloadOps(getTarget())) {
bufferization::OneShotAnalysisState state(target, options);
if (failed(analyzeOp(target, state)))
return mlir::emitSilenceableFailure(target->getLoc())
<< "failed to analyze op";
if (failed(linalg::linalgOpAnchoredEmptyTensorEliminationStep(
rewriter, target, state)))
return mlir::emitSilenceableFailure(target->getLoc())
<< "failed to eliminate LinalgOp anchored tensor.empty ops";
}
return DiagnosedSilenceableFailure::success();
}
//===----------------------------------------------------------------------===//
// FuseOp
//===----------------------------------------------------------------------===//
/// Apply a tiling transformation to all payload ops and store both the
/// tiled operation as well as the created tile loops.
template <typename Range>
static LogicalResult applyTilingToAll(
RewriterBase &rewriter, Operation *transformOp, Range &&payloadOps,
unsigned numLoops, transform::TransformResults &transformResults,
function_ref<FailureOr<scf::SCFTileAndFuseResult>(TilingInterface)>
applyFn) {
SmallVector<Operation *> tiledLinalgOps;
SmallVector<SmallVector<Operation *>> loopOps(numLoops);
for (Operation *target : payloadOps) {
auto tilingInterfaceOp = dyn_cast<TilingInterface>(target);
if (!tilingInterfaceOp)
return transformOp->emitError("only TilingInterface ops are supported");
rewriter.setInsertionPoint(target);
FailureOr<scf::SCFTileAndFuseResult> tiledResults =
applyFn(tilingInterfaceOp);
if (failed(tiledResults))
return failure();
// Perform the replacement of tiled and fused values.
SmallVector<Operation *> opsToReplace{target};
llvm::append_range(opsToReplace, tiledResults->fusedProducers);
for (Operation *toReplace : opsToReplace) {
for (OpResult res : toReplace->getResults())
if (auto replacement = tiledResults->replacements.lookup(res))
rewriter.replaceAllUsesWith(res, replacement);
if (toReplace->use_empty()) {
rewriter.eraseOp(toReplace);
}
}
// Report back the relevant handles to the transform op.
tiledLinalgOps.push_back(tiledResults->tiledAndFusedOps.front());
assert(tiledResults->loops.size() == numLoops &&
"Mismatched number of loops, tile and fuse transform should have "
"failed");
for (unsigned int i = 0; i < numLoops; ++i)
loopOps[i].push_back(tiledResults->loops[i]);
}
transformResults.set(transformOp->getOpResult(0), tiledLinalgOps);
for (unsigned int i = 0; i < numLoops; ++i)
transformResults.set(transformOp->getOpResult(i + 1), loopOps[i]);
return success();
}
DiagnosedSilenceableFailure
transform::FuseOp::apply(transform::TransformRewriter &rewriter,
mlir::transform::TransformResults &transformResults,
mlir::transform::TransformState &state) {
SmallVector<int64_t> tileSizes =
extractFromIntegerArrayAttr<int64_t>(getTileSizes());
SmallVector<int64_t> tileInterchange =
extractFromIntegerArrayAttr<int64_t>(getTileInterchange());
scf::SCFTilingOptions tilingOptions;
tilingOptions.interchangeVector = tileInterchange;
SmallVector<OpFoldResult> tileSizesOfr =
getAsIndexOpFoldResult(rewriter.getContext(), tileSizes);
tilingOptions = tilingOptions.setTileSizes(tileSizesOfr);
scf::SCFTileAndFuseOptions tileAndFuseOptions;
tileAndFuseOptions.tilingOptions = tilingOptions;
LogicalResult result = applyTilingToAll(
rewriter, getOperation(), state.getPayloadOps(getTarget()),
tileSizes.size() - llvm::count(tileSizes, 0), transformResults,
[&](TilingInterface tilingInterfaceOp)
-> FailureOr<scf::SCFTileAndFuseResult> {
return tileConsumerAndFuseProducersUsingSCF(rewriter, tilingInterfaceOp,
tileAndFuseOptions);
});
return failed(result) ? DiagnosedSilenceableFailure::definiteFailure()
: DiagnosedSilenceableFailure::success();
}
LogicalResult transform::FuseOp::verify() {
SmallVector<int64_t> permutation =
extractFromIntegerArrayAttr<int64_t>(getTileInterchange());
auto sequence = llvm::to_vector(llvm::seq<int64_t>(0, permutation.size()));
if (!std::is_permutation(sequence.begin(), sequence.end(),
permutation.begin(), permutation.end())) {
return emitOpError() << "expects interchange to be a permutation, found "
<< getTileInterchange();
}
SmallVector<int64_t> sizes =
extractFromIntegerArrayAttr<int64_t>(getTileSizes());
size_t numExpectedLoops = sizes.size() - llvm::count(sizes, 0);
if (numExpectedLoops != getNumResults() - 1)
return emitOpError() << "expects " << numExpectedLoops << " loop results";
return success();
}
//===----------------------------------------------------------------------===//
// FuseIntoContainingOp
//===----------------------------------------------------------------------===//
void transform::FuseIntoContainingOp::build(OpBuilder &builder,
OperationState &result,
Value producerOp,
Value containingOp) {
result.addOperands({producerOp, containingOp});
auto resultType = transform::AnyOpType::get(builder.getContext());
result.addTypes({resultType, resultType});
}
/// Add new operands to the forall op for users of the producerOp
/// that are dominated by the containing scf.forall op.
static Operation *replaceForAllWithNewSignature(
RewriterBase &rewriter, Diagnostic &diag, Operation *producerOp,
Operation *containingOp, TilingResult &tileAndFuseResult,
int64_t resultNumber, SmallVector<OpFoldResult> &offsets,
SmallVector<OpFoldResult> &sizes) {
// Count number of users not including the containing op
SetVector<Operation *> dominatedUsers;
DominanceInfo domInfo(containingOp);
for (Operation *user : producerOp->getResult(resultNumber).getUsers()) {
if (!containingOp->isAncestor(user) &&
(domInfo.dominates(containingOp, user))) {
dominatedUsers.insert(user);
}
}
if (dominatedUsers.empty())
return nullptr;
// Create new scf.forall op
auto forallOp = cast<scf::ForallOp>(containingOp);
OpBuilder::InsertionGuard g(rewriter);
rewriter.setInsertionPoint(forallOp);
// Get new output
Location loc = forallOp.getLoc();
auto genericOp = dyn_cast<linalg::GenericOp>(producerOp);
if (!genericOp)
return nullptr;
SmallVector<Value> outputs = genericOp.getOutputs();
SmallVector<Value> newOuts(forallOp.getOutputs());
newOuts.push_back(outputs[resultNumber]);
// Create new scf.forall op
auto newforallOp = rewriter.create<scf::ForallOp>(
loc, forallOp.getMixedLowerBound(), forallOp.getMixedUpperBound(),
forallOp.getMixedStep(), newOuts, forallOp.getMapping());
rewriter.eraseBlock(newforallOp.getBody());
newforallOp.getRegion().takeBody(forallOp.getRegion());
// Add additional block argument for new value being returned
// and replaces all uses of the new output with corresponding bbArg
// inside the scf.forall to enable fusion into this new scf.forall.
newforallOp.getBody()->addArgument(newOuts.back().getType(),
newOuts.back().getLoc());
auto bbArgs = newforallOp.getBody()->getArguments();
rewriter.replaceUsesWithIf(newOuts.back(), bbArgs.back(),
[&](OpOperand &use) {
Operation *op = use.getOwner();
return newforallOp->isProperAncestor(op);
});
// Fix terminator
scf::InParallelOp terminatorOp = newforallOp.getTerminator();
SmallVector<Operation *> yieldingOps = llvm::to_vector<4>(llvm::map_range(
terminatorOp.getYieldingOps(), [](Operation &op) { return &op; }));
Operation *firstYieldOp = yieldingOps.front();
rewriter.setInsertionPoint(firstYieldOp);
Value src = tileAndFuseResult.tiledValues[0];
Value dst = newforallOp.getRegionIterArgs().back();
SmallVector<OpFoldResult> strides(offsets.size(), rewriter.getIndexAttr(1));
rewriter.create<tensor::ParallelInsertSliceOp>(firstYieldOp->getLoc(), src,
dst, offsets, sizes, strides);
for (auto result : llvm::enumerate(forallOp.getResults())) {
rewriter.replaceAllUsesWith(result.value(),
newforallOp->getResult(result.index()));
}
rewriter.replaceUsesWithIf(producerOp->getResult(resultNumber),
newforallOp->getResults().back(),
[&](OpOperand &use) {
Operation *user = use.getOwner();
return dominatedUsers.contains(user);
});
return newforallOp;
}
/// Find the first "extract" user of `producerOp` and tile it right before its
/// use. The tiled op is fused under the `containingOp`.
/// Return this fused op on success or nullptr if anything fails.
/// If tiled op has uses that are dominated by `containingOp`, return
/// a new `containingOp` with results of the fused op appended to
/// results of the `containingOp` or nullptr if there are no dominated uses.
static std::tuple<SmallVector<Operation *>, Operation *>
tileAndFuseFirstExtractUse(RewriterBase &rewriter, Diagnostic &diag,
Operation *producerOp, Operation *containingOp) {
LLVM_DEBUG(DBGS() << "Try to fuse a direct extract use\n");
auto tileableProducer = dyn_cast<TilingInterface>(producerOp);
if (!tileableProducer) {
diag.attachNote(producerOp->getLoc())
<< "producer is not a TileableInterface: " << *producerOp;
return {};
}
// Search the producer slices accessed within the containing operation.
// TODO: Generalize to more extract/insert/parallel_insert triples, maybe
// evolve into an interface.
auto it = llvm::find_if(tileableProducer->getUsers(), [&](Operation *user) {
auto sliceOp = dyn_cast<tensor::ExtractSliceOp>(user);
return sliceOp && containingOp->isProperAncestor(sliceOp);
});
// Find a fusion opportunity.
if (it == tileableProducer->getUsers().end()) {
diag.attachNote(tileableProducer->getLoc())
<< "could not find fusion opportunity for: " << *tileableProducer;
return {};
}
auto sliceOpToTile = cast<tensor::ExtractSliceOp>(*it);
// Try to fuse the producer in-place.
OpBuilder::InsertionGuard guard(rewriter);
rewriter.setInsertionPoint(sliceOpToTile);
// Tile the producer.
int64_t resultNumber =
cast<OpResult>(sliceOpToTile.getSource()).getResultNumber();
LLVM_DEBUG(DBGS() << "resultNumber: " << resultNumber << "\n");
SmallVector<OpFoldResult> offsets = sliceOpToTile.getMixedOffsets();
SmallVector<OpFoldResult> sizes = sliceOpToTile.getMixedSizes();
FailureOr<TilingResult> tileAndFuseResult =
tileableProducer.generateResultTileValue(rewriter, resultNumber, offsets,
sizes);
if (failed(tileAndFuseResult)) {
diag.attachNote(tileableProducer->getLoc())
<< "failed to tile producer op: " << *tileableProducer;
return {};
}
#ifndef NDEBUG
for (auto *tiledOp : tileAndFuseResult->tiledOps) {
LLVM_DEBUG(DBGS() << "tiledProducer: " << *tiledOp << "\n");
}
#endif
// Replace the extract op.
auto maybeRankReduced = tensor::ExtractSliceOp::rankReduceIfNeeded(
rewriter, sliceOpToTile->getLoc(), tileAndFuseResult->tiledValues[0],
cast<RankedTensorType>(sliceOpToTile->getResult(0).getType()).getShape());
if (failed(maybeRankReduced)) {
diag.attachNote(producerOp->getLoc())
<< "shape types don't match (missing canonicalization?):\nTiledOp: "
<< tileAndFuseResult->tiledValues[0]
<< "\nSliceOp: " << sliceOpToTile.getOperation() << '\n';
return {};
}
rewriter.replaceOp(sliceOpToTile, *maybeRankReduced);
// Add new outputs to containing op, if required
Operation *newContainingOp = replaceForAllWithNewSignature(
rewriter, diag, producerOp, containingOp, *tileAndFuseResult,
resultNumber, offsets, sizes);
return std::make_tuple(tileAndFuseResult->tiledOps, newContainingOp);
}
/// First, find the first "scf::ForallOp" user of `producerOp` and ensure
/// it is exactly the `containingOp`, otherwise bail.
/// Then, find the first "extract" user of the tied block argument and tile it
/// right before its "extract" use. The tiled op is fused under the
/// `containingOp`.
/// Return this fused op on success or nullptr if anything fails.
static SmallVector<Operation *>
tileAndFuseFirstExtractUseThroughContainingOpBlockArgument(
RewriterBase &rewriter, Diagnostic &diag, Operation *producerOp,
Operation *containingOp) {
LLVM_DEBUG(DBGS() << "Try to fuse an extract use through block argument\n");
auto tileableProducer = dyn_cast<TilingInterface>(producerOp);
if (!tileableProducer) {
diag.attachNote(producerOp->getLoc())
<< "producer is not a TileableInterface: " << *producerOp;
return {};
}
// Search the first use by a "scf::ForallOp" user.
scf::ForallOp forallOp;
auto itProducerUses =
llvm::find_if(tileableProducer->getUses(), [&](OpOperand &use) {
forallOp = dyn_cast<scf::ForallOp>(use.getOwner());
return forallOp;
});
// If it's not from the containing op, return.
if (!forallOp || forallOp != containingOp) {
diag.attachNote(tileableProducer->getLoc())
<< "could not find a use by the containing op: " << *tileableProducer;
return {};
}
// Search the producer slices accessed within the containing
// operation.
// TODO: Generalize to more extract/insert/parallel_insert triples.
// Maybe evolve into an interface.
OpOperand *pUse = &(*itProducerUses);
BlockArgument bbArg = forallOp.getTiedBlockArgument(pUse);
// Search the producer slices accessed within the containing operation.
// TODO: Generalize to more extract/insert/parallel_insert triples, maybe
// evolve into an interface.
auto itBBArgUsers = llvm::find_if(bbArg.getUsers(), [&](Operation *user) {
auto sliceOp = dyn_cast<tensor::ExtractSliceOp>(user);
return sliceOp && containingOp->isProperAncestor(sliceOp);
});
// Find a fusion opportunity.
if (itBBArgUsers == bbArg.getUsers().end()) {
diag.attachNote(containingOp->getLoc())
<< "could not find fusion opportunity for bbArg: " << bbArg;
return {};
}
auto sliceOpToTile = cast<tensor::ExtractSliceOp>(*itBBArgUsers);
// Try to fuse the producer in-place.
OpBuilder::InsertionGuard guard(rewriter);
rewriter.setInsertionPoint(sliceOpToTile);
// Replace the use in the tileableProducer before tiling: clone, replace and
// then tile.
int64_t resultNumber = cast<OpResult>(pUse->get()).getResultNumber();
LLVM_DEBUG(DBGS() << "resultNumber: " << resultNumber << "\n");
// Gather destination tensors.
SmallVector<Value> destinationTensors;
if (failed(tensor::getOrCreateDestinations(
rewriter, tileableProducer->getLoc(), tileableProducer,
destinationTensors))) {
diag.attachNote(tileableProducer->getLoc())
<< "failed to get destination tensors for: " << *tileableProducer;
return {};
}
IRMapping bvm;
bvm.map(destinationTensors[resultNumber], bbArg);
auto tileableProducerClone =
cast<TilingInterface>(rewriter.clone(*tileableProducer, bvm));
auto scopeGuard =
llvm::make_scope_exit([&]() { rewriter.eraseOp(tileableProducerClone); });
// Tile the producer.
FailureOr<TilingResult> tileAndFuseResult =
tileableProducerClone.generateResultTileValue(
rewriter, resultNumber, sliceOpToTile.getMixedOffsets(),
sliceOpToTile.getMixedSizes());
if (failed(tileAndFuseResult)) {
diag.attachNote(tileableProducer->getLoc())
<< "failed to tile producer op: " << *tileableProducer;
return {};
}
// Replace the extract op.
auto maybeRankReduced = tensor::ExtractSliceOp::rankReduceIfNeeded(
rewriter, sliceOpToTile->getLoc(), tileAndFuseResult->tiledValues[0],
cast<RankedTensorType>(sliceOpToTile->getResult(0).getType()).getShape());
assert(succeeded(maybeRankReduced) && "unexpected shape");
rewriter.replaceOp(sliceOpToTile, *maybeRankReduced);
// Replace the use in containingOp.
rewriter.modifyOpInPlace(containingOp, [&]() {
containingOp->setOperand(pUse->getOperandNumber(),
destinationTensors.front());
});
return tileAndFuseResult->tiledOps;
}
static Operation *cloneAndFuseFirstUse(RewriterBase &rewriter, Diagnostic &diag,
Operation *producerOp,
Operation *containingOp) {
LLVM_DEBUG(DBGS() << "Try to fuse an use by cloning\n");
// Gather all uses inside the containing op.
SmallVector<OpOperand *> uses;
for (OpResult result : producerOp->getOpResults()) {
for (OpOperand &use : result.getUses()) {
if (containingOp->isProperAncestor(use.getOwner())) {
uses.push_back(&use);
continue;
}
// Cannot clone and fuse if the use is by the containing op itself: fail
// immediately.
if (containingOp == use.getOwner()) {
diag.attachNote(producerOp->getLoc())
<< "producer op use by containing op cannot be fused by cloning";
return nullptr;
}
}
}
// Check for a non-empty list of fusion opportunities.
if (uses.empty()) {
diag.attachNote(producerOp->getLoc()) << "no fusion opportunity by cloning";
return nullptr;
}
// Clone and fuse inside the containing op.
Operation *fusedOp = nullptr;
OpOperand *use = uses.front();
// Parallel insert slice is not a valid clone destination.
// TODO: Generalize to other type of ops.
assert(!isa<tensor::ParallelInsertSliceOp>(use->getOwner()) &&
"Parallel insert slice is not a valid clone destination");
unsigned resultNumber = cast<OpResult>(use->get()).getResultNumber();
LLVM_DEBUG(DBGS() << "resultNumber: " << resultNumber << "\n");
OpBuilder::InsertionGuard guard(rewriter);
rewriter.setInsertionPoint(use->getOwner());
fusedOp = rewriter.clone(*producerOp);
rewriter.modifyOpInPlace(
use->getOwner(), [&] { use->set(fusedOp->getOpResult(resultNumber)); });
return fusedOp;
}
bool transform::FuseIntoContainingOp::allowsRepeatedHandleOperands() {
// Allow repeated handles since we are fusing everything anyway.
return true;
}
DiagnosedSilenceableFailure
transform::FuseIntoContainingOp::apply(transform::TransformRewriter &rewriter,
transform::TransformResults &results,
transform::TransformState &state) {
SmallVector<Operation *> fusedOps;
auto producerOps = state.getPayloadOps(getProducerOp());
auto containingOps = state.getPayloadOps(getContainingOp());
if (!llvm::hasSingleElement(containingOps)) {
return emitDefiniteFailure()
<< "requires exactly one containing_op handle (got "
<< llvm::range_size(containingOps) << ")";
}
Operation *containingOp = *containingOps.begin();
// If nothing to fuse, propagate success.
if (std::empty(producerOps)) {
results.set(cast<OpResult>(getFusedOp()), SmallVector<mlir::Operation *>{});
results.set(cast<OpResult>(getNewContainingOp()), {containingOp});
return DiagnosedSilenceableFailure::success();
}
// Helper function to find the next producer that should be fused. Take any
// producer that has a use inside the containing op.
SetVector<Operation *> remainingProducers(producerOps.begin(),
producerOps.end());
auto getNextProducer = [&]() -> FailureOr<Operation *> {
for (const auto &it : enumerate(remainingProducers)) {
Operation *producerOp = it.value();
// The containing op may be a user of producerOp: use isAncestor.
int64_t numUsesInContainingOp =
llvm::count_if(producerOp->getUsers(), [&](Operation *op) {
return containingOp->isAncestor(op);
});
// TODO: When resolving the TODO below (no duplicate ops), take an op
// that has no use among the remaining producers. This is a topological
// sorting.
if (numUsesInContainingOp > 0) {
if (numUsesInContainingOp == 1)
remainingProducers.erase(remainingProducers.begin() + it.index());
return producerOp;
}
}
return failure();
};
while (!remainingProducers.empty()) {
auto nextProducer = getNextProducer();
if (failed(nextProducer)) {
auto diag = mlir::emitSilenceableFailure(getLoc())
<< "could not find next producer to fuse into container";
diag.attachNote(containingOp->getLoc()) << "containing op";
return diag;
}
Operation *producerOp = *nextProducer;
// Default diagnostic, to be complemented with more failure information.
Diagnostic diag(producerOp->getLoc(), DiagnosticSeverity::Remark);
diag << "could not fuse " << *producerOp << " into " << *containingOp;
// TODO: If there are multiple uses of the producer in the containing op,
// we currently tile/clone the op multiple times (once per use). In some
// cases, we can tile/clone once and reuse the value for each use.
// Futhermore, producers should then be traversed according to a
// topological sorting.
auto [tiledOps, newContainingOp] =
tileAndFuseFirstExtractUse(rewriter, diag, producerOp, containingOp);
if (!tiledOps.empty()) {
LLVM_DEBUG(DBGS() << "\nFused a direct extract use\n" << *containingOp);
fusedOps.append(tiledOps);
if (newContainingOp) {
// Update handles associated with the containing op so we don't need to
// invalidate them. This is a hack to support better composability
// between tiling and fusion while a proper mechanism is being
// investigated.
//
// DO NOT replicate this elsewhere unless you understand what you are
// doing.
LogicalResult replacementStatus =
rewriter.notifyPayloadOperationReplaced(containingOp,
newContainingOp);
(void)replacementStatus;
assert(succeeded(replacementStatus) &&
"unable to update transform state mapping");
rewriter.eraseOp(containingOp);
containingOp = newContainingOp;
}
continue;
}
SmallVector<Operation *> tiledContainingOpOperand =
tileAndFuseFirstExtractUseThroughContainingOpBlockArgument(
rewriter, diag, producerOp, containingOp);
if (!tiledContainingOpOperand.empty()) {
LLVM_DEBUG(DBGS() << "\nFused an extract use through block argument\n"
<< *containingOp);
fusedOps.append(tiledContainingOpOperand);
continue;
}
Operation *cloned =
cloneAndFuseFirstUse(rewriter, diag, producerOp, containingOp);
if (cloned) {
LLVM_DEBUG(DBGS() << "\nFused an use by cloning\n" << *containingOp);
fusedOps.push_back(cloned);
continue;
}
return DiagnosedSilenceableFailure::silenceableFailure(std::move(diag));
}
results.set(cast<OpResult>(getFusedOp()), fusedOps);
results.set(cast<OpResult>(getNewContainingOp()), {containingOp});
return DiagnosedSilenceableFailure::success();
}
void transform::FuseIntoContainingOp::getEffects(
SmallVectorImpl<MemoryEffects::EffectInstance> &effects) {
consumesHandle(getProducerOp(), effects);
onlyReadsHandle(getContainingOp(), effects);
producesHandle(getResults(), effects);
modifiesPayload(effects);
}
//===----------------------------------------------------------------------===//
// GeneralizeOp
//===----------------------------------------------------------------------===//
DiagnosedSilenceableFailure
transform::GeneralizeOp::applyToOne(transform::TransformRewriter &rewriter,
LinalgOp target,
transform::ApplyToEachResultList &results,
transform::TransformState &state) {
// Exit early if no transformation is needed.
if (isa<GenericOp>(target)) {
results.push_back(target);
return DiagnosedSilenceableFailure::success();
}
rewriter.setInsertionPoint(target);
FailureOr<LinalgOp> generic = generalizeNamedOp(rewriter, target);
if (succeeded(generic)) {
results.push_back(generic->getOperation());
return DiagnosedSilenceableFailure::success();
}
return emitDefaultSilenceableFailure(target);
}
//===----------------------------------------------------------------------===//
// SpecializeOp
//===----------------------------------------------------------------------===/
DiagnosedSilenceableFailure
transform::SpecializeOp::applyToOne(transform::TransformRewriter &rewriter,
LinalgOp target,
transform::ApplyToEachResultList &results,
transform::TransformState &state) {
// Exit early if the operation is not a generic.
if (!isa<GenericOp>(target)) {
results.push_back(target);
return DiagnosedSilenceableFailure::success();
}
rewriter.setInsertionPoint(target);
FailureOr<LinalgOp> named =
specializeGenericOp(rewriter, cast<GenericOp>(target));
if (succeeded(named)) {
results.push_back(named->getOperation());
return DiagnosedSilenceableFailure::success();
}
return emitDefaultSilenceableFailure(target);
}
//===----------------------------------------------------------------------===//
// InterchangeOp
//===----------------------------------------------------------------------===//
DiagnosedSilenceableFailure
transform::InterchangeOp::applyToOne(transform::TransformRewriter &rewriter,
GenericOp target,
transform::ApplyToEachResultList &results,
transform::TransformState &state) {
ArrayRef<int64_t> interchangeVector = getIteratorInterchange();
// Exit early if no transformation is needed.
if (interchangeVector.empty()) {
results.push_back(target);
return DiagnosedSilenceableFailure::success();
}
unsigned numLoops = cast<LinalgOp>(target.getOperation()).getNumLoops();
if (interchangeVector.size() != numLoops) {
return emitSilenceableError()
<< getIteratorInterchangeAttrName() << " has length ("
<< interchangeVector.size()
<< ") different from the number of loops in the target operation ("
<< numLoops << ")";
}
FailureOr<GenericOp> res =
interchangeGenericOp(rewriter, target,
SmallVector<unsigned>(interchangeVector.begin(),
interchangeVector.end()));
if (failed(res))
return emitDefiniteFailure() << "failed to apply";
results.push_back(res->getOperation());
return DiagnosedSilenceableFailure::success();
}
LogicalResult transform::InterchangeOp::verify() {
ArrayRef<int64_t> permutation = getIteratorInterchange();
auto sequence = llvm::to_vector(llvm::seq<int64_t>(0, permutation.size()));
if (!std::is_permutation(sequence.begin(), sequence.end(),
permutation.begin(), permutation.end())) {
return emitOpError()
<< "expects iterator_interchange to be a permutation, found "
<< getIteratorInterchange();
}
return success();
}
//===----------------------------------------------------------------------===//
// LowerPackOp
//===----------------------------------------------------------------------===//
DiagnosedSilenceableFailure transform::LowerPackOp::applyToOne(
transform::TransformRewriter &rewriter, tensor::PackOp target,
transform::ApplyToEachResultList &transformResults,
transform::TransformState &state) {
rewriter.setInsertionPoint(target);
FailureOr<LowerPackResult> res = lowerPack(rewriter, target);
if (failed(res)) {
return mlir::emitSilenceableFailure(target->getLoc())
<< "cannot lower to pad + expand + transpose";
}
transformResults.push_back(res->padOp);
transformResults.push_back(res->expandShapeOp);
transformResults.push_back(res->transposeOp);
return DiagnosedSilenceableFailure::success();
}
//===----------------------------------------------------------------------===//
// LowerUnPackOp
//===----------------------------------------------------------------------===//
DiagnosedSilenceableFailure transform::LowerUnPackOp::applyToOne(
transform::TransformRewriter &rewriter, tensor::UnPackOp target,
transform::ApplyToEachResultList &transformResults,
transform::TransformState &state) {
rewriter.setInsertionPoint(target);
FailureOr<LowerUnPackOpResult> res = lowerUnPack(rewriter, target);
if (failed(res)) {
DiagnosedSilenceableFailure diag =
emitSilenceableError()
<< "cannot lower to transpose + collapse + extract";
diag.attachNote(target->getLoc()) << "target payload op";
return diag;
}
transformResults.push_back(res->emptyOp);
transformResults.push_back(res->transposeOp);
transformResults.push_back(res->collapseShapeOp);
transformResults.push_back(res->extractSliceOp);
return DiagnosedSilenceableFailure::success();
}
//===---------------------------------------------------------------------===//
// MatchOp
//===---------------------------------------------------------------------===//
void transform::MatchOp::build(OpBuilder &builder, OperationState &result,
Value target, ArrayRef<StringRef> opNames) {
result.addOperands(target);
result.addAttribute(MatchOp::getOpsAttrName(result.name),
builder.getStrArrayAttr(opNames));
result.addTypes(transform::AnyOpType::get(builder.getContext()));
}
void transform::MatchOp::build(OpBuilder &builder, OperationState &result,
TypeRange resultTypes, Value target,
ArrayRef<StringRef> opNames) {
result.addOperands(target);
result.addAttribute(MatchOp::getOpsAttrName(result.name),
builder.getStrArrayAttr(opNames));
result.addTypes(resultTypes);
}
DiagnosedSilenceableFailure
transform::MatchOp::apply(transform::TransformRewriter &rewriter,
transform::TransformResults &results,
transform::TransformState &state) {
llvm::StringSet<> strs;
if (getOps().has_value())
strs.insert(getOps()->getAsValueRange<StringAttr>().begin(),
getOps()->getAsValueRange<StringAttr>().end());
auto payloadOps = state.getPayloadOps(getTarget());
if (!llvm::hasSingleElement(payloadOps)) {
return emitDefiniteFailure("requires exactly one target handle");
}
SmallVector<Operation *> res;
bool incorrectNumOperandTypes = false;
auto matchFun = [&](Operation *op) {
if (getOps().has_value() && !strs.contains(op->getName().getStringRef()))
return;
// Interfaces cannot be matched by name, just by ID.
// So we specifically encode the interfaces we care about for this op.
if (getInterface().has_value()) {
auto iface = getInterface().value();
if (iface == transform::MatchInterfaceEnum::LinalgOp &&
!isa<LinalgOp>(op))
return;
if (iface == transform::MatchInterfaceEnum::TilingInterface &&
!isa<TilingInterface>(op))
return;
if (iface == transform::MatchInterfaceEnum::LoopLikeInterface &&
!isa<LoopLikeOpInterface>(op))
return;
}
// Check if all specified attributes match.
if (getOpAttrs().has_value()) {
DictionaryAttr opAttrs = getOpAttrs().value();
for (NamedAttribute attr : opAttrs) {
if (attr.getName() == getInterfaceAttrName() ||
attr.getName() == getOpsAttrName())
continue;
if (!op->hasAttr(attr.getName()))
return;
if (op->getAttr(attr.getName()) != attr.getValue())
return;
}
}
if (getFilterResultType().has_value()) {
Type t = getFilterResultType().value();
if (op->getNumResults() != 1 || op->getResultTypes().front() != t)
return;
}
if (getFilterOperandTypes().has_value()) {
mlir::ArrayAttr types = getFilterOperandTypes().value();
auto operandTypes = op->getOperandTypes();
if (types.size() == 1) {
// All the operands must must be equal to the specified type
auto typeattr =
dyn_cast<mlir::TypeAttr>(getFilterOperandTypes().value()[0]);
Type t = typeattr.getValue().cast<::mlir::Type>();
if (!llvm::all_of(op->getOperandTypes(),
[&](Type operandType) { return operandType == t; }))
return;
} else {
// The operand types must match all the types in the list (in the same
// order in with they are specified)
if (types.size() != operandTypes.size()) {
incorrectNumOperandTypes = true;
return;
}
for (auto [attr, operandType] :
llvm::zip_equal(getFilterOperandTypes().value(), operandTypes)) {
auto typeattr = cast<mlir::TypeAttr>(attr);
Type type = typeattr.getValue().cast<::mlir::Type>();
if (type != operandType)
return;
}
}
}
// All constraints are satisfied.
res.push_back(op);
return;
};
(*payloadOps.begin())->walk(matchFun);
if (incorrectNumOperandTypes)
return emitDefiniteFailure("If filter_operand_types contains more than a "
"type, then it must contain as much types as "
"the number of operands in the target ops");
results.set(cast<OpResult>(getResult()), res);
return DiagnosedSilenceableFailure::success();
}
//===---------------------------------------------------------------------===//
// MultiTileSizesOp
//===---------------------------------------------------------------------===//
static void printMultitileSizesTypes(OpAsmPrinter &printer, Operation *op,
Type targetType, Type lowSizeType, Type,
Type) {
printer.printFunctionalType(TypeRange{targetType}, TypeRange{lowSizeType});
}
static ParseResult parseMultitileSizesTypes(OpAsmParser &parser,
Type &targetType, Type &lowSizeType,
Type &highSizeType,
Type &splitPointType) {
FunctionType funcType;
llvm::SMLoc typeLoc = parser.getCurrentLocation();
if (failed(parser.parseType<FunctionType>(funcType)))
return failure();
if (funcType.getNumInputs() != 1 || funcType.getNumResults() != 1) {
parser.emitError(typeLoc) << "expects a trailing functional type with one "
"argument and one result";
}
targetType = funcType.getInput(0);
lowSizeType = highSizeType = splitPointType = funcType.getResult(0);
return success();
}
DiagnosedSilenceableFailure transform::MultiTileSizesOp::applyToOne(
transform::TransformRewriter &rewriter, LinalgOp target,
transform::ApplyToEachResultList &results, TransformState &state) {
if (isa<TransformParamTypeInterface>(getLowSize().getType())) {
if (target.hasDynamicShape()) {
auto diag = emitSilenceableError()
<< "cannot compute parametric tile sizes for dynamically "
"shaped payload op";
diag.attachNote(target->getLoc()) << "payload op";
return diag;
}
FailureOr<StaticMultiSizeSpecification> spec = computeStaticMultiTileSizes(
target, getDimension(), getTargetSize(), getDivisor());
if (failed(spec)) {
return emitSilenceableError()
<< "failed to compute multi-size tiling sizes";
}
Builder builder(target.getContext());
results.assign(llvm::map_range(
ArrayRef<int64_t>({spec->lowTileSize, spec->highTileSize,
spec->lowTileSize * spec->lowTripCount}),
[&builder, this](int64_t value) {
return builder.getIntegerAttr(
cast<ParamType>(getLowSize().getType()).getType(), value);
}));
return DiagnosedSilenceableFailure::success();
}
OpBuilder builder(target.getContext());
builder.setInsertionPoint(target);
OpFoldResult targetSize = builder.getIndexAttr(getTargetSize());
OpFoldResult divisor = builder.getIndexAttr(getDivisor());
FailureOr<MultiSizeSpecification> spec = computeMultiTileSizes(
builder, target, getDimension(), targetSize, divisor);
if (failed(spec)) {
return emitSilenceableError() << "could not generate tile size computation";
}
AffineExpr s0 = builder.getAffineSymbolExpr(0);
AffineExpr s1 = builder.getAffineSymbolExpr(1);
Operation *splitPoint =
affine::makeComposedAffineApply(builder, target.getLoc(), s0 * s1,
{spec->lowTileSize, spec->lowTripCount});
Operation *lowTileSize = spec->lowTileSize.getDefiningOp();
Operation *highTileSize = spec->highTileSize.getDefiningOp();
assert(lowTileSize && highTileSize && splitPoint &&
"tile sizes are not produced by operations");
results.reserve(results.size() + 3);
results.push_back(lowTileSize);
results.push_back(highTileSize);
results.push_back(splitPoint);
return DiagnosedSilenceableFailure::success();
}
void transform::MultiTileSizesOp::getEffects(
SmallVectorImpl<MemoryEffects::EffectInstance> &effects) {
onlyReadsHandle(getTarget(), effects);
producesHandle(getResults(), effects);
if (isa<TransformParamTypeInterface>(getLowSize().getType()))
onlyReadsPayload(effects);
else
modifiesPayload(effects);
}
LogicalResult transform::MultiTileSizesOp::verify() {
if (getLowSize().getType() != getHighSize().getType() ||
getLowSize().getType() != getSplitPoint().getType()) {
return emitOpError() << "expects all results type to be the same";
}
return success();
}
//===---------------------------------------------------------------------===//
// PackOp
//===---------------------------------------------------------------------===//
void transform::PackOp::build(OpBuilder &builder, OperationState &result,
Value target,
ArrayRef<OpFoldResult> mixedPackedSizes) {
SmallVector<int64_t> staticPackedSizes;
SmallVector<Value> dynamicPackedSizes;
dispatchIndexOpFoldResults(mixedPackedSizes, dynamicPackedSizes,
staticPackedSizes);
// Call the default builder which sets up the proper operands segment sizes
// attributes for multiple variadic operands. In the absence of this, horrible
// bugs ensue.
Type linalgOpHType = transform::OperationType::get(
builder.getContext(), GenericOp::getOperationName());
build(builder, result,
/*resultType=*/linalgOpHType,
/*target=*/target,
/*dynamic_sizes=*/dynamicPackedSizes,
/*static_sizes=*/builder.getDenseI64ArrayAttr(staticPackedSizes));
}
SmallVector<OpFoldResult> transform::PackOp::getMixedPackedSizes() {
Builder b(getContext());
return getMixedValues(getStaticPackedSizes(), getPackedSizes(), b);
}
DiagnosedSilenceableFailure
transform::PackOp::apply(transform::TransformRewriter &rewriter,
transform::TransformResults &transformResults,
transform::TransformState &state) {
auto targetOps = state.getPayloadOps(getTarget());
// If nothing to pack, propagate success.
if (std::empty(targetOps)) {
transformResults.set(cast<OpResult>(getPackedOp()),
ArrayRef<Operation *>({}));
return DiagnosedSilenceableFailure::success();
}
// Fail on multi-op handles.
auto linalgOp = dyn_cast<LinalgOp>(*targetOps.begin());
if (!llvm::hasSingleElement(targetOps) || !linalgOp) {
return emitSilenceableError()
<< "requires target to map to exactly 1 LinalgOp (got "
<< llvm::range_size(targetOps) << ")";
}
// Fail on mismatched number of pack sizes.
if (getMixedPackedSizes().size() != linalgOp.getNumLoops()) {
return emitSilenceableError()
<< "requires number of packed sizes match the number of loops ("
<< getMixedPackedSizes().size() << " vs " << linalgOp.getNumLoops()
<< ")";
}
// Unpack handles to constants or actual SSA index values.
SmallVector<OpFoldResult> packedSizes;
DiagnosedSilenceableFailure status = unpackSingleIndexResultPayloadOperations(
state, *this, packedSizes, getMixedPackedSizes());
rewriter.setInsertionPoint(linalgOp);
FailureOr<PackResult> maybeResult = pack(rewriter, linalgOp, packedSizes);
if (failed(maybeResult))
return emitDefiniteFailure("data tiling failed");
transformResults.set(cast<OpResult>(getPackedOp()),
{maybeResult->packedLinalgOp.getOperation()});
return DiagnosedSilenceableFailure::success();
}
void transform::PackOp::getEffects(
SmallVectorImpl<MemoryEffects::EffectInstance> &effects) {
transform::consumesHandle(getTarget(), effects);
transform::onlyReadsHandle(getPackedSizes(), effects);
transform::producesHandle(getPackedOp(), effects);
transform::modifiesPayload(effects);
}
//===---------------------------------------------------------------------===//
// PackGreedilyOp.
//===---------------------------------------------------------------------===//
LogicalResult transform::PackGreedilyOp::verify() {
if (!isPermutationVector(getMatmulInnerDimsOrder())) {
return emitOpError() << getMatmulInnerDimsOrderAttrName()
<< " is not a valid permutation";
}
// TODO: relax to allow empty once we have another strategy than just matmul.
if (!getMatmulPaddedSizesNextMultipleOf().empty()) {
for (auto [s, nmo] :
llvm::zip_equal(getMixedMatmulPackedSizes(),
getMatmulPaddedSizesNextMultipleOf())) {
std::optional<int64_t> maybeStaticPackedSize = getConstantIntValue(s);
if (nmo != 0 &&
(!maybeStaticPackedSize.has_value() || *maybeStaticPackedSize != 0)) {
return emitOpError() << "at most one of the packed_size and the "
"padded_sizes_next_multiple_of can be nonzero "
"for the matmul strategy";
}
}
}
return success();
}
DiagnosedSilenceableFailure
PackGreedilyOp::apply(transform::TransformRewriter &rewriter,
transform::TransformResults &transformResults,
transform::TransformState &state) {
SmallVector<Operation *> results;
for (Operation *op : state.getPayloadOps(getTarget())) {
auto linalgOp = dyn_cast<LinalgOp>(op);
if (!linalgOp)
continue;
// linalgOp will be replaced and the insertion point may be invalidated if
// we set it before -> set it after.
rewriter.setInsertionPointAfter(linalgOp);
// Failing to pack greedily is perfectly fine.
// In the future we will want to order packings according to some metric.
FailureOr<PackResult> packResult = packMatmulGreedily(
/*rewriter=*/rewriter,
/*linalgOp=*/linalgOp,
/*mnkPackedSizes=*/getMixedMatmulPackedSizes(),
/*mnkPaddedSizesNextMultipleOf=*/
getMatmulPaddedSizesNextMultipleOf(),
/*mnkOrder=*/getMatmulInnerDimsOrder());
if (succeeded(packResult)) {
results.push_back(packResult->packedLinalgOp);
continue;
}
results.push_back(linalgOp);
}
transformResults.set(cast<OpResult>(getPackedOp()), results);
return DiagnosedSilenceableFailure::success();
}
SmallVector<OpFoldResult> PackGreedilyOp::getMixedMatmulPackedSizes() {
Builder b(getContext());
return getMixedValues(getStaticMatmulPackedSizes(), getMatmulPackedSizes(),
b);
}
void transform::PackGreedilyOp::getEffects(
SmallVectorImpl<MemoryEffects::EffectInstance> &effects) {
transform::consumesHandle(getTarget(), effects);
transform::onlyReadsHandle(getMatmulPackedSizes(), effects);
transform::producesHandle(getPackedOp(), effects);
transform::modifiesPayload(effects);
}
//===---------------------------------------------------------------------===//
// PackTransposeOp
//===---------------------------------------------------------------------===//
LogicalResult transform::PackTransposeOp::verify() {
if (!isPermutationVector(getInnerPerm())) {
return emitOpError() << getInnerPermAttrName()
<< " is not a valid permutation";
}
if (!isPermutationVector(getOuterPerm())) {
return emitOpError() << getOuterPermAttrName()
<< " is not a valid permutation";
}
if (getInnerPerm().empty() && getOuterPerm().empty()) {
return emitOpError() << " at least one of " << getInnerPermAttrName()
<< " or " << getOuterPermAttrName()
<< " must be specified";
}
return success();
}
namespace {
enum class OuterOrInnerPerm { Outer = 0, Inner = 1 };
} // namespace
/// Return true if `permutation` is a valid permutation of the
/// `outer_dims_perm` (case OuterOrInnerPerm::Outer) or `inner_dims_pos`
/// (OuterOrInnerPerm::Inner) of the `tensor.pack` or `tensor.unpack` `op.
/// This is the case when the `permutation` rank matches the rank expected by
/// `op` and `permutation` is itself a permutation vector.
/// Return true if either `op` or `permutation` are empty to allow a simpler
/// polymorphic implementation.
template <typename RelayoutOpTy>
bool isValidPackingPermutation(
RelayoutOpTy op, ArrayRef<int64_t> permutation,
OuterOrInnerPerm outerOrInnerPerm = OuterOrInnerPerm::Outer) {
static_assert(
llvm::is_one_of<RelayoutOpTy, tensor::PackOp, tensor::UnPackOp>::value,
"applies to only pack or unpack operations");
if (!op || permutation.empty())
return true;
size_t innerRank = op.getInnerDimsPos().size();
if (outerOrInnerPerm == OuterOrInnerPerm::Inner)
return permutation.size() == innerRank && isPermutationVector(permutation);
// op.getOuterDimsPerm() may be empty, in which case it is identity.
// Don't rely on it.
if (std::is_same<RelayoutOpTy, tensor::PackOp>::value) {
return permutation.size() == op.getSourceRank() &&
isPermutationVector(permutation);
}
return permutation.size() == op.getDestRank() &&
isPermutationVector(permutation);
}
DiagnosedSilenceableFailure
transform::PackTransposeOp::apply(transform::TransformRewriter &rewriter,
transform::TransformResults &transformResults,
transform::TransformState &state) {
auto packOrUnpackOps = state.getPayloadOps(getTargetPackOrUnPackOp());
auto linalgOps = state.getPayloadOps(getTargetLinalgOp());
// Step 1. If nothing to pack, propagate success.
if (std::empty(packOrUnpackOps)) {
transformResults.set(cast<OpResult>(getPackedOp()), {});
transformResults.set(cast<OpResult>(getPackOp()), {});
transformResults.set(cast<OpResult>(getUnPackOp()), {});
return DiagnosedSilenceableFailure::success();
}
// Step 2. Bunch of runtime sanity check and error messages.
// Step 2.1. Fail on multi-op handles.
if (!llvm::hasSingleElement(packOrUnpackOps) ||
!llvm::hasSingleElement(linalgOps)) {
return emitSilenceableError()
<< "requires target to map to exactly 1 "
"packing op and 1 packed op ("
<< "got " << llvm::range_size(packOrUnpackOps) << " and "
<< llvm::range_size(linalgOps) << ")";
}
// Step 2.2. Fail on wrong type.
auto packOp = dyn_cast<tensor::PackOp>(*packOrUnpackOps.begin());
auto unPackOp = dyn_cast<tensor::UnPackOp>(*packOrUnpackOps.begin());
if ((!packOp && !unPackOp)) {
return emitSilenceableError() << "requires target to map to a "
"tensor.pack or tensor.unpack";
}
LinalgOp linalgOpTarget = dyn_cast<LinalgOp>(*linalgOps.begin());
if (!linalgOpTarget)
return emitSilenceableError() << "requires a LinalgOp target";
// Step 2.3. Fail if we can't get the producer / consumer Linalg op.
LinalgOp linalgOp;
if (packOp && packOp.getResult().hasOneUse())
linalgOp = dyn_cast<LinalgOp>(*(packOp.getResult().getUsers().begin()));
else if (unPackOp)
linalgOp = unPackOp.getSource().getDefiningOp<LinalgOp>();
if (linalgOp != linalgOpTarget) {
auto errorMsg =
packOp ? StringLiteral{"not a single use by the LinalgOp target"}
: StringLiteral{"not produced by the LinalgOp target"};
return emitSilenceableError() << errorMsg;
}
// Step 2.4. If we have an UnPackOp, we need to fetch the symmetrical
// PackOp.
if (unPackOp) {
assert(!packOp && "packOp must be null on entry when unPackOp is not null");
OpOperand *packUse = linalgOp.getDpsInitOperand(
cast<OpResult>(unPackOp.getSource()).getResultNumber());
packOp = dyn_cast_or_null<tensor::PackOp>(packUse->get().getDefiningOp());
if (!packOp || !packOp.getResult().hasOneUse())
return emitSilenceableError() << "could not find matching pack op";
}
// Step 2.5. Fail if any permutation does not validate.
for (auto permType : {OuterOrInnerPerm::Outer, OuterOrInnerPerm::Inner}) {
ArrayRef<int64_t> perm =
(permType == OuterOrInnerPerm::Outer) ? getOuterPerm() : getInnerPerm();
auto errorMsg = (permType == OuterOrInnerPerm::Outer)
? StringLiteral{"invalid outer_perm"}
: StringLiteral{"invalid inner_perm"};
if (!isValidPackingPermutation(packOp, perm, permType) ||
!isValidPackingPermutation(unPackOp, perm, permType)) {
Operation *packOrUnpackOp =
unPackOp ? unPackOp.getOperation() : packOp.getOperation();
return emitSilenceableError() << errorMsg << ": " << *packOrUnpackOp;
}
}
// From here on, packOp and linalgOp are always present, unPackOp may or may
// not be present.
assert(packOp && linalgOp && "unexpected null op");
// Step 3. Actually transpose the ops.
FailureOr<PackTransposeResult> res = packTranspose(
rewriter, packOp, linalgOp, unPackOp, getOuterPerm(), getInnerPerm());
// Preconditions have been checked, it is an error to fail here.
assert(succeeded(res) && "unexpected packTranspose failure");
// Step 4. Return results.
transformResults.set(cast<OpResult>(getPackOp()), {res->transposedPackOp});
transformResults.set(cast<OpResult>(getPackedOp()),
{res->transposedLinalgOp});
if (unPackOp) {
transformResults.set(cast<OpResult>(getUnPackOp()),
{res->transposedUnPackOp});
} else {
transformResults.set(cast<OpResult>(getUnPackOp()), {});
}
return DiagnosedSilenceableFailure::success();
}
//===---------------------------------------------------------------------===//
// PadOp
//===---------------------------------------------------------------------===//
void transform::PadOp::build(OpBuilder &b, OperationState &result, Value target,
ArrayRef<int64_t> paddingDimensions,
ArrayRef<int64_t> padToMultipleOf,
ArrayRef<int64_t> packPaddings,
ArrayRef<Attribute> transposePaddings,
StringRef copyBackOp) {
auto resultType = transform::AnyOpType::get(b.getContext());
return build(/*builder=*/b,
/*result=*/result,
/*types=*/TypeRange{resultType, resultType},
/*target=*/target,
/*paddingValues=*/ArrayAttr(), // let inference handle this
/*paddingDimensions=*/b.getI64ArrayAttr(paddingDimensions),
/*padToMultipleOf=*/
(padToMultipleOf.empty() ? ArrayAttr()
: b.getI64ArrayAttr(padToMultipleOf)),
/*packPaddings=*/b.getI64ArrayAttr(packPaddings),
/*transposePaddings=*/b.getArrayAttr(transposePaddings),
/*copyBackOp=*/b.getStringAttr(copyBackOp));
}
DiagnosedSilenceableFailure
transform::PadOp::apply(transform::TransformRewriter &rewriter,
transform::TransformResults &results,
transform::TransformState &state) {
SmallVector<Operation *> paddedOps, padOps, copyBackOps;
for (Operation *target : state.getPayloadOps(getTarget())) {
auto linalgTarget = dyn_cast<LinalgOp>(target);
if (!linalgTarget) {
auto diag = emitSilenceableError() << "expected LinalgOp target";
diag.attachNote(target->getLoc()) << "target op";
return diag;
}
// Convert the integer packing flags to booleans.
SmallVector<bool> packPaddings;
for (int64_t packPadding :
extractFromIntegerArrayAttr<int64_t>(getPackPaddings()))
packPaddings.push_back(static_cast<bool>(packPadding));
// Convert the padding values to attributes.
SmallVector<Attribute> paddingValues;
for (auto const &it :
llvm::zip(getPaddingValues(), linalgTarget->getOperandTypes())) {
auto attr = dyn_cast<TypedAttr>(std::get<0>(it));
if (!attr) {
emitOpError("expects padding values to be typed attributes");
return DiagnosedSilenceableFailure::definiteFailure();
}
Type elementType = getElementTypeOrSelf(std::get<1>(it));
// Try to parse string attributes to obtain an attribute of element type.
if (auto stringAttr = dyn_cast<StringAttr>(attr)) {
auto parsedAttr = dyn_cast_if_present<TypedAttr>(parseAttribute(
stringAttr, getContext(), elementType,
/*numRead=*/nullptr, /*isKnownNullTerminated=*/true));
if (!parsedAttr || parsedAttr.getType() != elementType) {
auto diag = this->emitOpError("expects a padding that parses to ")
<< elementType << ", got " << std::get<0>(it);
diag.attachNote(linalgTarget.getLoc()) << "when applied to this op";
return DiagnosedSilenceableFailure::definiteFailure();
}
paddingValues.push_back(parsedAttr);
continue;
}
// Otherwise, add the attribute directly.
if (attr.getType() != elementType) {
auto diag = this->emitOpError("expects a padding value of type ")
<< elementType << ", got " << attr;
diag.attachNote(linalgTarget.getLoc()) << "when applied to this op";
return DiagnosedSilenceableFailure::definiteFailure();
}
paddingValues.push_back(attr);
}
// Extract the transpose vectors.
SmallVector<SmallVector<int64_t>> transposePaddings;
for (Attribute transposeVector : cast<ArrayAttr>(getTransposePaddings()))
transposePaddings.push_back(extractFromIntegerArrayAttr<int64_t>(
cast<ArrayAttr>(transposeVector)));
LinalgOp paddedOp;
LinalgPaddingOptions options;
options.paddingDimensions =
extractFromIntegerArrayAttr<int64_t>(getPaddingDimensions());
SmallVector<int64_t> padToMultipleOf(options.paddingDimensions.size(), 1);
if (getPadToMultipleOf().has_value())
padToMultipleOf =
extractFromIntegerArrayAttr<int64_t>(*getPadToMultipleOf());
options.padToMultipleOf = padToMultipleOf;
options.paddingValues = paddingValues;
options.packPaddings = packPaddings;
if (getCopyBackOp() ==
bufferization::MaterializeInDestinationOp::getOperationName()) {
options.copyBackOp = LinalgPaddingOptions::CopyBackOp::
BufferizationMaterializeInDestination;
} else if (getCopyBackOp() == linalg::CopyOp::getOperationName()) {
options.copyBackOp = LinalgPaddingOptions::CopyBackOp::LinalgCopy;
} else if (getCopyBackOp() == kCopyOpNone) {
options.copyBackOp = LinalgPaddingOptions::CopyBackOp::None;
} else {
llvm_unreachable("unsupported copy_back op");
}
SmallVector<Value> replacements;
SmallVector<tensor::PadOp> newPadOps;
if (failed(rewriteAsPaddedOp(rewriter, linalgTarget, options, paddedOp,
replacements, newPadOps))) {
auto diag = emitSilenceableError() << "failed to pad op";
diag.attachNote(target->getLoc()) << "target op";
return diag;
}
// We need to perform our own replacement here because this API is still
// used in patterns that "pad and hoist", for which the replacement values
// need to be different.
// TODO: clean this up and stop "pad and hoist" behavior more globally now
// that we have more composable abstractions.
rewriter.replaceOp(linalgTarget, replacements);
paddedOps.push_back(paddedOp);
padOps.append(newPadOps.begin(), newPadOps.end());
if (options.copyBackOp != LinalgPaddingOptions::CopyBackOp::None) {
for (Value v : replacements) {
Operation *copyBackOp = v.getDefiningOp();
if (!llvm::is_contained(copyBackOps, copyBackOp))
copyBackOps.push_back(copyBackOp);
}
}
}
results.set(cast<OpResult>(getPadded()), paddedOps);
results.set(cast<OpResult>(getPad()), padOps);
results.set(cast<OpResult>(getCopy()), copyBackOps);
return DiagnosedSilenceableFailure::success();
}
LogicalResult transform::PadOp::verify() {
SmallVector<int64_t> packPaddings =
extractFromIntegerArrayAttr<int64_t>(getPackPaddings());
if (any_of(packPaddings, [](int64_t packPadding) {
return packPadding != 0 && packPadding != 1;
})) {
return emitOpError()
<< "expects pack_paddings to contain booleans (0/1), found "
<< getPackPaddings();
}
SmallVector<int64_t> paddingDimensions =
extractFromIntegerArrayAttr<int64_t>(getPaddingDimensions());
if (any_of(paddingDimensions,
[](int64_t paddingDimension) { return paddingDimension < 0; })) {
return emitOpError() << "expects padding_dimensions to contain positive "
"integers, found "
<< getPaddingDimensions();
}
if (getPadToMultipleOf().has_value()) {
if (getPadToMultipleOf()->size() != paddingDimensions.size()) {
return emitOpError() << "expects as many multiples as padding_dimensions";
}
}
ArrayAttr transposes = getTransposePaddings();
for (Attribute attr : transposes) {
SmallVector<int64_t> transpose = extractFromIntegerArrayAttr<int64_t>(attr);
auto sequence = llvm::to_vector(llvm::seq<int64_t>(0, transpose.size()));
if (!std::is_permutation(sequence.begin(), sequence.end(),
transpose.begin(), transpose.end())) {
return emitOpError()
<< "expects transpose_paddings to be a permutation, found "
<< attr;
}
}
if (getCopyBackOp() !=
bufferization::MaterializeInDestinationOp::getOperationName() &&
getCopyBackOp() != linalg::CopyOp::getOperationName() &&
getCopyBackOp() != kCopyOpNone)
return emitOpError() << "invalid copy_back_op";
return success();
}
//===---------------------------------------------------------------------===//
// HoistPadOp
//===---------------------------------------------------------------------===//
DiagnosedSilenceableFailure transform::HoistPadBuildPackingLoopNestOp::apply(
transform::TransformRewriter &rewriter,
transform::TransformResults &transformResults,
transform::TransformState &state) {
auto targetOps = state.getPayloadOps(getTarget());
auto loopOps = state.getPayloadOps(getLoop());
if (!llvm::hasSingleElement(targetOps) || !llvm::hasSingleElement(loopOps)) {
return emitDefiniteFailure()
<< "requires exactly one target and one loop handle (got "
<< llvm::range_size(targetOps) << " and "
<< llvm::range_size(loopOps) << ")";
}
auto padOp = dyn_cast_or_null<tensor::PadOp>(*targetOps.begin());
auto loopOp = dyn_cast_or_null<scf::ForOp>(*loopOps.begin());
if (!padOp || !loopOp)
return emitDefiniteFailure() << "requires exactly 2 non-null handles";
FailureOr<linalg::detail::PackingResult> result =
linalg::detail::buildPackingLoopNest(rewriter, padOp, loopOp,
getTranspose());
if (failed(result))
return emitDefiniteFailure() << "could not build packing loop nest";
if (result->clonedLoopIvs.empty()) {
transformResults.set(cast<OpResult>(getPackingLoop()),
{result->hoistedPadOp.getOperation()});
return DiagnosedSilenceableFailure::success();
}
auto outerPackedLoop =
scf::getForInductionVarOwner(result->clonedLoopIvs.front());
transformResults.set(cast<OpResult>(getPackingLoop()),
{outerPackedLoop.getOperation()});
return DiagnosedSilenceableFailure::success();
}
LogicalResult transform::HoistPadBuildPackingLoopNestOp::verify() {
ArrayRef<int64_t> transpose = getTranspose();
auto sequence = llvm::to_vector(llvm::seq<int64_t>(0, transpose.size()));
if (!std::is_permutation(sequence.begin(), sequence.end(), transpose.begin(),
transpose.end())) {
return emitOpError() << "expects transpose to be a permutation, found "
<< getTranspose();
}
return success();
}
void transform::HoistPadBuildPackingLoopNestOp::getEffects(
SmallVectorImpl<MemoryEffects::EffectInstance> &effects) {
transform::onlyReadsHandle(getTarget(), effects);
transform::onlyReadsHandle(getLoop(), effects);
transform::producesHandle(getPackingLoop(), effects);
transform::modifiesPayload(effects);
}
DiagnosedSilenceableFailure
transform::HoistPadOp::applyToOne(transform::TransformRewriter &rewriter,
tensor::PadOp target,
transform::ApplyToEachResultList &results,
transform::TransformState &state) {
tensor::PadOp hoistedPadOp;
SmallVector<GenericOp> transposeOps;
FailureOr<Value> result =
hoistPaddingOnTensors(rewriter, target, getNumLoops(), getTranspose(),
hoistedPadOp, transposeOps);
if (succeeded(result)) {
// We need to perform our own replacement here because this API is still
// used in patterns that "pad and hoist", for which the replacement values
// need to be different.
// TODO: clean this up and stop "pad and hoist" behavior more globally now
// that we have more composable abstractions.
rewriter.replaceOp(target, *result);
results.push_back(hoistedPadOp);
return DiagnosedSilenceableFailure::success();
}
return emitDefaultSilenceableFailure(target);
}
LogicalResult transform::HoistPadOp::verify() {
ArrayRef<int64_t> transpose = getTranspose();
auto sequence = llvm::to_vector(llvm::seq<int64_t>(0, transpose.size()));
if (!std::is_permutation(sequence.begin(), sequence.end(), transpose.begin(),
transpose.end())) {
return emitOpError() << "expects transpose to be a permutation, found "
<< getTranspose();
}
return success();
}
//===----------------------------------------------------------------------===//
// PromoteOp
//===----------------------------------------------------------------------===//
DiagnosedSilenceableFailure
transform::PromoteOp::applyToOne(transform::TransformRewriter &rewriter,
LinalgOp target,
transform::ApplyToEachResultList &results,
transform::TransformState &state) {
LinalgPromotionOptions promotionOptions;
if (!getOperandsToPromote().empty())
promotionOptions = promotionOptions.setOperandsToPromote(
extractFromIntegerArrayAttr<int64_t>(getOperandsToPromote()));
if (getUseFullTilesByDefault())
promotionOptions = promotionOptions.setUseFullTileBuffersByDefault(
getUseFullTilesByDefault());
if (getUseAlloca())
promotionOptions = promotionOptions.setUseAlloca(getUseAlloca());
if (!getUseFullTileBuffers().empty())
promotionOptions = promotionOptions.setUseFullTileBuffers(
llvm::to_vector(getUseFullTileBuffers().getAsValueRange<BoolAttr>()));
if (getAlignment().has_value())
promotionOptions = promotionOptions.setAlignment(*getAlignment());
if (getMemorySpace().has_value())
promotionOptions = promotionOptions.setMemorySpace(*getMemorySpace());
if (getMapping().has_value()) {
// The mapping should only contain an element
auto mapping = *getMapping();
if (mapping.size() > 1)
return emitDefaultDefiniteFailure(target);
auto addressSpace = cast<mlir::gpu::GPUMemorySpaceMappingAttr>(mapping[0]);
if (addressSpace.getAddressSpace() ==
mlir::gpu::GPUDialect::getWorkgroupAddressSpace()) {
promotionOptions =
promotionOptions
.setAllocationDeallocationFns(allocateWorkgroupMemory,
deallocateWorkgroupMemory)
.setCopyInOutFns(copyToWorkgroupMemory, copyToWorkgroupMemory)
.setUseFullTileBuffers({false, false});
} else if (addressSpace.getAddressSpace() ==
mlir::gpu::GPUDialect::getPrivateAddressSpace()) {
promotionOptions =
promotionOptions
.setAllocationDeallocationFns(allocateGPUPrivateMemory,
deallocateGPUPrivateMemory)
.setCopyInOutFns(copyToGPUPrivateMemory, copyToGPUPrivateMemory)
.setUseFullTileBuffers({false, false});
} else {
return emitDefaultDefiniteFailure(target);
}
}
if (failed(promoteSubviewsPrecondition(target, promotionOptions)))
return emitDefaultDefiniteFailure(target);
rewriter.setInsertionPoint(target);
FailureOr<LinalgOp> res = promoteSubViews(rewriter, target, promotionOptions);
if (failed(res))
return emitDefaultDefiniteFailure(target);
results.push_back(target);
return DiagnosedSilenceableFailure::success();
}
//===----------------------------------------------------------------------===//
// ReplaceOp
//===----------------------------------------------------------------------===//
DiagnosedSilenceableFailure
transform::ReplaceOp::apply(transform::TransformRewriter &rewriter,
TransformResults &transformResults,
TransformState &state) {
auto payload = state.getPayloadOps(getTarget());
// Check for invalid targets.
for (Operation *target : payload) {
if (target->getNumOperands() > 0)
return emitDefiniteFailure() << "expected target without operands";
if (!target->hasTrait<OpTrait::IsIsolatedFromAbove>() &&
target->getNumRegions() > 0)
return emitDefiniteFailure()
<< "expected target that is isolated from above";
}
// Clone and replace.
Operation *pattern = &getBodyRegion().front().front();
SmallVector<Operation *> replacements;
for (Operation *target : payload) {
if (getOperation()->isAncestor(target))
continue;
rewriter.setInsertionPoint(target);
Operation *replacement = rewriter.clone(*pattern);
rewriter.replaceOp(target, replacement->getResults());
replacements.push_back(replacement);
}
transformResults.set(cast<OpResult>(getReplacement()), replacements);
return DiagnosedSilenceableFailure::success();
}
void transform::ReplaceOp::getEffects(
SmallVectorImpl<MemoryEffects::EffectInstance> &effects) {
consumesHandle(getTarget(), effects);
producesHandle(getReplacement(), effects);
modifiesPayload(effects);
}
LogicalResult transform::ReplaceOp::verify() {
if (!getBodyRegion().hasOneBlock())
return emitOpError() << "expected one block";
if (std::distance(getBodyRegion().front().begin(),
getBodyRegion().front().end()) != 1)
return emitOpError() << "expected one operation in block";
Operation *replacement = &getBodyRegion().front().front();
if (replacement->getNumOperands() > 0)
return replacement->emitOpError()
<< "expected replacement without operands";
if (!replacement->hasTrait<OpTrait::IsIsolatedFromAbove>() &&
replacement->getNumRegions() > 0)
return replacement->emitOpError()
<< "expect op that is isolated from above";
return success();
}
//===----------------------------------------------------------------------===//
// ScalarizeOp
//===----------------------------------------------------------------------===//
DiagnosedSilenceableFailure
transform::ScalarizeOp::applyToOne(transform::TransformRewriter &rewriter,
LinalgOp target,
transform::ApplyToEachResultList &results,
transform::TransformState &state) {
scf::SCFTilingOptions tilingOptions;
tilingOptions.setTileSizeComputationFunction([&](OpBuilder &b, Operation *) {
SmallVector<OpFoldResult> tileSizes;
Location loc = target.getLoc();
SmallVector<OpFoldResult> allShapeSizes =
target.createFlatListOfOperandDims(b, loc);
AffineMap map = target.getShapesToLoopsMap();
if (!map)
return tileSizes;
SmallVector<OpFoldResult> shapeSizes =
affine::makeComposedFoldedMultiResultAffineApply(rewriter, loc, map,
allShapeSizes);
// If the shape size is dynamic, tile by 1.
// Otherwise, do not tile (i.e. tile size 0).
for (OpFoldResult shapeSize : shapeSizes) {
tileSizes.push_back(getConstantIntValue(shapeSize) ? b.getIndexAttr(0)
: b.getIndexAttr(1));
}
return tileSizes;
});
SmallVector<int64_t> emptyTileSizes;
rewriter.setInsertionPoint(target);
FailureOr<scf::SCFTilingResult> maybeTilingResult = tileUsingSCF(
rewriter, cast<TilingInterface>(target.getOperation()), tilingOptions);
if (failed(maybeTilingResult))
return emitDefaultDefiniteFailure(target);
if (target->getNumResults())
rewriter.replaceOp(target, maybeTilingResult->replacements);
else
rewriter.eraseOp(target);
results.reserve(maybeTilingResult->tiledOps.size());
for (Operation *tiled : maybeTilingResult->tiledOps)
results.push_back(tiled);
return DiagnosedSilenceableFailure::success();
}
//===----------------------------------------------------------------------===//
// ConvertToLoopsOp
//===----------------------------------------------------------------------===//
DiagnosedSilenceableFailure transform::ConvertToLoopsOp::applyToOne(
transform::TransformRewriter &rewriter, TilingInterface target,
transform::ApplyToEachResultList &results,
transform::TransformState &state) {
rewriter.setInsertionPoint(target);
FailureOr<SmallVector<scf::ForOp>> loops =
scf::lowerToLoopsUsingSCFForOp(rewriter, target);
if (failed(loops))
return emitDefaultDefiniteFailure(target);
return DiagnosedSilenceableFailure::success();
}
//===----------------------------------------------------------------------===//
// RewriteInDestinationPassingStyleOp
//===----------------------------------------------------------------------===//
DiagnosedSilenceableFailure
transform::RewriteInDestinationPassingStyleOp::applyToOne(
transform::TransformRewriter &rewriter, Operation *target,
transform::ApplyToEachResultList &results,
transform::TransformState &state) {
SmallVector<Operation *> res;
rewriter.setInsertionPoint(target);
FailureOr<Operation *> maybeResult =
TypeSwitch<Operation *, FailureOr<Operation *>>(target)
.Case<tensor::FromElementsOp, tensor::GenerateOp, tensor::PadOp>(
[&rewriter](auto op) {
return rewriteInDestinationPassingStyle(rewriter, op);
});
if (failed(maybeResult))
return emitDefaultSilenceableFailure(target);
results.push_back(*maybeResult);
return DiagnosedSilenceableFailure::success();
}
//===----------------------------------------------------------------------===//
// SplitOp
//===----------------------------------------------------------------------===//
DiagnosedSilenceableFailure
SplitOp::apply(transform::TransformRewriter &rewriter,
TransformResults &results, TransformState &state) {
// Collect the dynamic split points if provided.
SmallVector<Operation *> payload =
llvm::to_vector(state.getPayloadOps(getTarget()));
SmallVector<OpFoldResult> splitPoints;
splitPoints.reserve(payload.size());
if (getDynamicSplitPoint()) {
auto diag = DiagnosedSilenceableFailure::success();
if (isa<TransformHandleTypeInterface>(getDynamicSplitPoint().getType())) {
splitPoints = llvm::to_vector(llvm::map_range(
state.getPayloadOps(getDynamicSplitPoint()), [&](Operation *op) {
if (op->getNumResults() != 1 ||
!op->getResult(0).getType().isIndex()) {
diag = emitSilenceableError()
<< "expected dynamic split point handle to point to a "
"single-result index-typed op";
diag.attachNote(op->getLoc()) << "dynamic split point";
}
return OpFoldResult(op->getResult(0));
}));
} else {
splitPoints = llvm::to_vector(
llvm::map_range(state.getParams(getDynamicSplitPoint()),
[](Attribute attr) { return OpFoldResult(attr); }));
}
if (diag.isSilenceableFailure())
return diag;
if (splitPoints.size() != payload.size()) {
return emitDefiniteFailure()
<< "expected the dynamic split point handle to point to as "
"many operations ("
<< splitPoints.size() << ") as the target handle ("
<< payload.size() << ")";
}
} else {
splitPoints.resize(payload.size(),
rewriter.getIndexAttr(getStaticSplitPoint()));
}
// Split each target operation.
SmallVector<Operation *> first, second;
Operation *noSecondPart = nullptr;
for (const auto &pair : llvm::zip(payload, splitPoints)) {
Operation *target = std::get<0>(pair);
auto linalgOp = dyn_cast<LinalgOp>(target);
if (!linalgOp) {
auto diag = emitSilenceableError() << "only applies to structured ops";
diag.attachNote(target->getLoc()) << "target op";
return diag;
}
if (getDimension() >= linalgOp.getNumLoops()) {
auto diag = emitSilenceableError() << "dimension " << getDimension()
<< " does not exist in target op";
diag.attachNote(target->getLoc()) << "target op";
return diag;
}
rewriter.setInsertionPoint(linalgOp);
std::tie(first.emplace_back(), second.emplace_back()) = linalg::splitOp(
rewriter, cast<TilingInterface>(linalgOp.getOperation()),
getDimension(), std::get<1>(pair));
// Propagate errors.
if (!first.back() && !second.back()) {
auto diag = emitDefiniteFailure() << "internal failure in splitting";
diag.attachNote(target->getLoc()) << "target op";
return diag;
}
// Do not add null second parts.
if (!second.back()) {
noSecondPart = target;
second.pop_back();
}
}
if (second.size() != first.size() && !second.empty()) {
auto diag = emitSilenceableError()
<< "splitting does not produce the second part for a subset "
"of targets";
diag.attachNote() << "expected splitting to produce the second part of all "
"or none of the targets";
diag.attachNote(noSecondPart->getLoc())
<< "first target with no second part";
return diag;
}
results.set(cast<OpResult>(getFirst()), first);
results.set(cast<OpResult>(getSecond()), second);
return DiagnosedSilenceableFailure::success();
}
void SplitOp::getEffects(
SmallVectorImpl<MemoryEffects::EffectInstance> &effects) {
consumesHandle(getTarget(), effects);
if (getDynamicSplitPoint())
onlyReadsHandle(getDynamicSplitPoint(), effects);
producesHandle(getResults(), effects);
modifiesPayload(effects);
}
ParseResult SplitOp::parse(OpAsmParser &parser, OperationState &result) {
OpAsmParser::UnresolvedOperand target, dynamicSplitPoint;
IntegerAttr staticSplitPoint;
if (parser.parseOperand(target) || parser.parseKeyword("after"))
return failure();
OptionalParseResult dynamicPointParseResult =
parser.parseOptionalOperand(dynamicSplitPoint);
if (!dynamicPointParseResult.has_value()) {
int64_t staticSplitPointValue;
if (failed(parser.parseInteger(staticSplitPointValue)))
return failure();
staticSplitPoint =
parser.getBuilder().getI64IntegerAttr(staticSplitPointValue);
}
Type targetType;
if (parser.parseOptionalAttrDict(result.attributes) ||
parser.parseColonType(targetType) ||
parser.resolveOperand(target, targetType, result.operands)) {
return failure();
}
if (dynamicPointParseResult.has_value()) {
Type splitPointType;
if (failed(*dynamicPointParseResult) || parser.parseComma() ||
parser.parseType(splitPointType) ||
parser.resolveOperand(dynamicSplitPoint, splitPointType,
result.operands)) {
return failure();
}
staticSplitPoint =
parser.getBuilder().getI64IntegerAttr(ShapedType::kDynamic);
}
result.addAttribute(
SplitOp::getStaticSplitPointAttrName(result.name).getValue(),
staticSplitPoint);
result.addTypes({targetType, targetType});
return success();
}
void SplitOp::print(OpAsmPrinter &printer) {
printer << " " << getTarget() << " after ";
int64_t staticSplitSize = static_cast<int64_t>(getStaticSplitPoint());
if (staticSplitSize != ShapedType::kDynamic)
printer << staticSplitSize;
else
printer << getDynamicSplitPoint();
printer << " ";
printer.printOptionalAttrDict(getOperation()->getAttrs(),
{getStaticSplitPointAttrName()});
printer << " : " << getTarget().getType();
if (staticSplitSize == ShapedType::kDynamic)
printer << ", " << getDynamicSplitPoint().getType();
}
LogicalResult SplitOp::verify() {
if ((static_cast<int64_t>(getStaticSplitPoint()) != ShapedType::kDynamic) ^
(getDynamicSplitPoint() == nullptr)) {
return emitOpError() << "expects either a dynamic or a static split "
"point to be provided";
}
return success();
}
//===----------------------------------------------------------------------===//
// SplitReductionOp
//===----------------------------------------------------------------------===//
void transform::SplitReductionOp::build(
OpBuilder &builder, OperationState &result, Value target,
int64_t splitFactor, int64_t insertSplitDimension, bool innerParallel,
bool useScalingAlgorithm, bool useAlloc) {
MLIRContext *ctx = builder.getContext();
result.addOperands(target);
result.addAttribute(SplitReductionOp::getSplitFactorAttrName(result.name),
builder.getI64IntegerAttr(splitFactor));
result.addAttribute(
SplitReductionOp::getInsertSplitDimensionAttrName(result.name),
builder.getI64IntegerAttr(insertSplitDimension));
if (innerParallel) {
result.addAttribute(SplitReductionOp::getInnerParallelAttrName(result.name),
builder.getUnitAttr());
}
if (useScalingAlgorithm) {
result.addAttribute(
SplitReductionOp::getUseScalingAlgorithmAttrName(result.name),
builder.getUnitAttr());
}
if (useAlloc) {
result.addAttribute(SplitReductionOp::getUseAllocAttrName(result.name),
builder.getUnitAttr());
}
auto resultType = transform::AnyOpType::get(ctx);
result.addTypes({resultType, resultType, resultType, resultType});
}
DiagnosedSilenceableFailure transform::SplitReductionOp::applyToOne(
transform::TransformRewriter &rewriter, LinalgOp target,
transform::ApplyToEachResultList &results,
transform::TransformState &state) {
ControlSplitReductionFn splitFn = [&](LinalgOp) {
return linalg::SplitReductionOptions{int64_t(getSplitFactor()),
unsigned(getInsertSplitDimension()),
bool(getInnerParallel())};
};
rewriter.setInsertionPoint(target);
FailureOr<SplitReductionResult> splitResult =
(getUseScalingAlgorithm())
? splitReductionByScaling(rewriter, target, splitFn, getUseAlloc())
: splitReduction(rewriter, target, splitFn, getUseAlloc());
if (failed(splitResult))
return emitDefaultDefiniteFailure(target);
results.push_back(splitResult->initOrAlloc);
results.push_back(splitResult->fillOp);
results.push_back(splitResult->splitLinalgOp);
results.push_back(splitResult->resultCombiningLinalgOp);
return DiagnosedSilenceableFailure::success();
}
//===----------------------------------------------------------------------===//
// TileReductionUsingForOp
//===----------------------------------------------------------------------===//
void transform::TileReductionUsingForOp::build(
OpBuilder &builder, OperationState &result, Value target,
ArrayRef<int64_t> staticTileSizes) {
// Call the default builder.
// This is future-proof re mixed static-dynamic and setting up the proper
// operands segment sizes attributes for multiple variadic operands.
// In the absence of this, horrible bugs ensue.
// TODO: support mixed static-dynamic (see TileUsingForallOp).
MLIRContext *ctx = builder.getContext();
auto opTy = transform::AnyOpType::get(ctx);
auto staticTileSizesAttr = builder.getDenseI64ArrayAttr(staticTileSizes);
build(builder, result,
/*resultTypes=*/TypeRange{opTy, opTy, opTy, opTy},
/*target=*/target,
/*tile_sizes=*/staticTileSizesAttr);
}
DiagnosedSilenceableFailure transform::TileReductionUsingForOp::applyToOne(
transform::TransformRewriter &rewriter, LinalgOp target,
transform::ApplyToEachResultList &results,
transform::TransformState &state) {
rewriter.setInsertionPoint(target);
FailureOr<scf::SCFReductionTilingResult> result = scf::tileReductionUsingScf(
rewriter, cast<PartialReductionOpInterface>(target.getOperation()),
getAsOpFoldResult(rewriter.getI64ArrayAttr(getTileSizes())));
if (failed(result))
return emitDefaultSilenceableFailure(target);
results.push_back(result->initialOp);
results.push_back(result->parallelTiledOp);
results.push_back(result->mergeOp);
results.push_back(result->loops.front());
return DiagnosedSilenceableFailure::success();
}
//===----------------------------------------------------------------------===//
// TileReductionUsingForallOp
//===----------------------------------------------------------------------===//
void transform::TileReductionUsingForallOp::build(
OpBuilder &builder, OperationState &result, Value target,
ArrayRef<int64_t> staticNumThreads, ArrayRef<int64_t> staticTileSizes,
ArrayAttr mapping) {
// Call the default builder.
// This is future-proof re mixed static-dynamic and setting up the proper
// operands segment sizes attributes for multiple variadic operands.
// In the absence of this, horrible bugs ensue.
// TODO: support mixed static-dynamic (see TileUsingForallOp).
MLIRContext *ctx = builder.getContext();
auto opTy = transform::AnyOpType::get(ctx);
auto staticNumThreadsAttr = builder.getDenseI64ArrayAttr(staticNumThreads);
auto staticTileSizesAttr = builder.getDenseI64ArrayAttr(staticTileSizes);
build(builder, result,
/*resultTypes=*/TypeRange{opTy, opTy, opTy, opTy},
/*target=*/target,
/*num_threads=*/staticNumThreadsAttr,
/*tile_sizes=*/staticTileSizesAttr,
/*mapping=*/mapping);
}
DiagnosedSilenceableFailure transform::TileReductionUsingForallOp::applyToOne(
transform::TransformRewriter &rewriter, LinalgOp target,
transform::ApplyToEachResultList &results,
transform::TransformState &state) {
rewriter.setInsertionPoint(target);
SmallVector<OpFoldResult> numThreads =
getAsOpFoldResult(rewriter.getI64ArrayAttr(getNumThreads()));
SmallVector<OpFoldResult> tileSizes =
getAsOpFoldResult(rewriter.getI64ArrayAttr(getTileSizes()));
FailureOr<linalg::ForallReductionTilingResult> result =
linalg::tileReductionUsingForall(
rewriter, cast<PartialReductionOpInterface>(target.getOperation()),
numThreads, tileSizes, getMapping());
if (failed(result)) {
auto diag = emitSilenceableError() << "could not tile reduction";
diag.attachNote(target.getLoc()) << "target operation";
return diag;
}
results.push_back(result->initialOp);
results.push_back(result->parallelTiledOp);
results.push_back(result->mergeOp);
results.push_back(result->loops);
return DiagnosedSilenceableFailure::success();
}
//===----------------------------------------------------------------------===//
// TileUsingForOp
//===----------------------------------------------------------------------===//
void transform::TileUsingForOp::build(
OpBuilder &builder, OperationState &result, TypeRange loopTypes,
Value target, ArrayRef<int64_t> staticTileSizes,
ArrayRef<int64_t> interchange,
std::optional<ArrayRef<bool>> scalableSizes) {
return build(builder, result, loopTypes,
/*target=*/target,
/*mixedTileSizes=*/
getAsOpFoldResult(builder.getI64ArrayAttr(staticTileSizes)),
interchange, scalableSizes);
}
void transform::TileUsingForOp::build(
OpBuilder &builder, OperationState &result, Value target,
ArrayRef<int64_t> staticTileSizes, ArrayRef<int64_t> interchange,
std::optional<ArrayRef<bool>> scalableSizes) {
build(builder, result, target,
getAsOpFoldResult(builder.getI64ArrayAttr(staticTileSizes)),
interchange, scalableSizes);
}
void transform::TileUsingForOp::build(
OpBuilder &builder, OperationState &result, Value target,
ArrayRef<OpFoldResult> mixedTileSizes, ArrayRef<int64_t> interchange,
std::optional<ArrayRef<bool>> scalableSizes) {
// Loop types are automaticaly splat by the callee, setting up one is
// enough.
SmallVector<Type> loopTypes(1, builder.getType<transform::AnyOpType>());
build(builder, result, loopTypes, target, mixedTileSizes, interchange,
scalableSizes);
}
void transform::TileUsingForOp::build(
OpBuilder &builder, OperationState &result, TypeRange loopTypes,
Value target, ArrayRef<OpFoldResult> mixedTileSizes,
ArrayRef<int64_t> interchange,
std::optional<ArrayRef<bool>> scalableSizes) {
SmallVector<int64_t> staticTileSizes;
SmallVector<Value> dynamicTileSizes;
dispatchIndexOpFoldResults(mixedTileSizes, dynamicTileSizes, staticTileSizes);
// Call the default builder which sets up the proper operands segment sizes
// attributes for multiple variadic operands. In the absence of this,
// horrible bugs ensue.
auto staticTileSizesAttr = builder.getDenseI64ArrayAttr(staticTileSizes);
unsigned numExpectedLoops =
staticTileSizes.size() - llvm::count(staticTileSizes, 0);
SmallVector<Type> resultTypes;
resultTypes.reserve(numExpectedLoops);
assert((loopTypes.size() == 1 || loopTypes.size() == numExpectedLoops) &&
"expected one loop type or as many as loops");
if (loopTypes.size() == 1)
resultTypes.append(numExpectedLoops, loopTypes[0]);
else
llvm::append_range(resultTypes, loopTypes);
SmallVector<bool> expandedScalableSizes(mixedTileSizes.size(), false);
if (scalableSizes.has_value())
expandedScalableSizes.assign(scalableSizes->begin(), scalableSizes->end());
build(builder, result, /*tiled_linalg_op=*/target.getType(),
/*loops=*/resultTypes,
/*target=*/target,
/*dynamic_sizes=*/dynamicTileSizes,
/*static_sizes=*/staticTileSizesAttr,
/*interchange=*/builder.getDenseI64ArrayAttr(interchange),
/*scalable_sizes=*/expandedScalableSizes);
}
LogicalResult transform::TileUsingForOp::verify() {
if (getMixedSizes().size() != getScalableSizes().size())
return emitOpError("expected same number of sizes (")
<< getMixedSizes().size() << ") and scalable sizes ()"
<< getScalableSizes().size() << ")";
return success();
}
DiagnosedSilenceableFailure
transform::TileUsingForOp::apply(transform::TransformRewriter &rewriter,
TransformResults &transformResults,
TransformState &state) {
ArrayRef<int64_t> tileSizes = getStaticSizes();
SmallVector<Operation *> targets =
llvm::to_vector(state.getPayloadOps(getTarget()));
SmallVector<SmallVector<Operation *>> dynamicSizeProducers;
SmallVector<SmallVector<int64_t>> paramSizes;
dynamicSizeProducers.reserve(getDynamicSizes().size());
paramSizes.reserve(getDynamicSizes().size());
for (Value transformValue : getDynamicSizes()) {
if (isa<ParamType>(transformValue.getType())) {
dynamicSizeProducers.push_back({});
ArrayRef<Attribute> params = state.getParams(transformValue);
paramSizes.push_back(
llvm::to_vector(llvm::map_range(params, [](Attribute attr) {
return cast<IntegerAttr>(attr).getValue().getSExtValue();
})));
if (paramSizes.back().size() != targets.size()) {
DiagnosedSilenceableFailure diag =
emitSilenceableError()
<< "expected as many parameter values ("
<< dynamicSizeProducers.back().size() << ") as target ops ("
<< targets.size() << ")";
diag.attachNote(transformValue.getLoc()) << "for this parameter";
return diag;
}
continue;
}
paramSizes.push_back({});
dynamicSizeProducers.push_back(
llvm::to_vector(state.getPayloadOps(transformValue)));
if (dynamicSizeProducers.back().size() != targets.size()) {
DiagnosedSilenceableFailure diag =
emitSilenceableError()
<< "expected as many dynamic size-producing operations ("
<< dynamicSizeProducers.back().size() << ") as target ops ("
<< targets.size() << ")";
diag.attachNote(transformValue.getLoc()) << "for this handle";
return diag;
}
for (Operation *op : dynamicSizeProducers.back()) {
if (op->getNumResults() == 1 &&
isa<IndexType>(op->getResult(0).getType())) {
continue;
}
DiagnosedSilenceableFailure diag =
emitSilenceableError() << "expected sizes to be produced by ops "
"with a single index-type result";
diag.attachNote(op->getLoc()) << "size producer op";
diag.attachNote(transformValue.getLoc()) << "for this handle";
return diag;
}
}
SmallVector<Operation *> tiled;
SmallVector<SmallVector<Operation *, 4>, 4> loops;
loops.resize(getLoops().size());
auto scalableSizes = getScalableSizes();
for (auto [i, op] : llvm::enumerate(targets)) {
auto tilingInterface = dyn_cast<TilingInterface>(op);
if (!tilingInterface) {
DiagnosedSilenceableFailure diag =
emitSilenceableError()
<< "only ops implementing TilingInterface are supported";
diag.attachNote(op->getLoc()) << "target op";
return diag;
}
if (tileSizes.size() > tilingInterface.getLoopIteratorTypes().size()) {
DiagnosedSilenceableFailure diag =
emitSilenceableError()
<< "too many tiles provided, expected at most "
<< tilingInterface.getLoopIteratorTypes().size() << " found "
<< tileSizes.size();
diag.attachNote(op->getLoc()) << "target op";
return diag;
}
scf::SCFTilingOptions tilingOptions;
if (tileSizes.empty()) {
tilingOptions.setTileSizeComputationFunction(
[](OpBuilder &, Operation *) -> SmallVector<OpFoldResult> {
return {};
});
} else {
tilingOptions.setTileSizeComputationFunction([&, index = i](OpBuilder &b,
Operation *) {
SmallVector<OpFoldResult> sizes;
sizes.reserve(tileSizes.size());
unsigned dynamicIdx = 0;
for (auto [ofrIdx, ofr] : llvm::enumerate(getMixedSizes())) {
if (auto attr = llvm::dyn_cast_if_present<Attribute>(ofr)) {
if (scalableSizes[ofrIdx]) {
auto val = b.create<arith::ConstantIndexOp>(
getLoc(), attr.cast<IntegerAttr>().getInt());
Value vscale =
b.create<vector::VectorScaleOp>(getLoc(), b.getIndexType());
sizes.push_back(
b.create<arith::MulIOp>(getLoc(), val, vscale).getResult());
} else {
sizes.push_back(attr);
}
continue;
}
ArrayRef<Operation *> dynamicSizes = dynamicSizeProducers[dynamicIdx];
ArrayRef<int64_t> params = paramSizes[dynamicIdx];
++dynamicIdx;
assert((dynamicSizes.empty() ^ params.empty()) &&
"expected either dynamic sizes or parameters");
if (!params.empty()) {
sizes.push_back(b.getIndexAttr(params[index]));
} else {
sizes.push_back(dynamicSizes[index]->getResult(0));
}
}
return sizes;
});
}
tilingOptions.setInterchange(getInterchange());
FailureOr<scf::SCFTilingResult> maybeTilingResult =
tileUsingSCF(rewriter, tilingInterface, tilingOptions);
if (failed(maybeTilingResult))
return DiagnosedSilenceableFailure::definiteFailure();
rewriter.replaceOp(op, maybeTilingResult->replacements);
tiled.append(maybeTilingResult->tiledOps);
for (const auto &en2 : llvm::enumerate(maybeTilingResult->loops))
loops[en2.index()].push_back(en2.value());
}
transformResults.set(cast<OpResult>(getTiledLinalgOp()), tiled);
for (const auto &en : llvm::enumerate(loops))
transformResults.set(cast<OpResult>(getLoops()[en.index()]), en.value());
return DiagnosedSilenceableFailure::success();
}
SmallVector<OpFoldResult> transform::TileUsingForOp::getMixedSizes() {
ValueRange dynamic = getDynamicSizes();
ArrayRef<int64_t> tileSizes = getStaticSizes();
SmallVector<OpFoldResult> results;
results.reserve(tileSizes.size());
unsigned dynamicPos = 0;
Builder builder(getContext());
for (int64_t size : tileSizes) {
if (size == ShapedType::kDynamic) {
results.push_back(dynamic[dynamicPos++]);
} else {
results.push_back(builder.getIndexAttr(size));
}
}
return results;
}
// We want to parse `DenseI64ArrayAttr` using the short form without the
// `array` prefix to be consistent in the IR with `parseDynamicIndexList`.
ParseResult parseOptionalInterchange(OpAsmParser &parser,
OperationState &result) {
if (failed(parser.parseOptionalKeyword("interchange")))
return success();
if (failed(parser.parseEqual()))
return failure();
result.addAttribute(
transform::TileUsingForOp::getInterchangeAttrName(result.name),
DenseI64ArrayAttr::parse(parser, Type{}));
return success();
}
void printOptionalInterchange(OpAsmPrinter &p,
ArrayRef<int64_t> interchangeVals) {
if (!interchangeVals.empty()) {
p << " interchange = [";
llvm::interleaveComma(interchangeVals, p,
[&](int64_t integer) { p << integer; });
p << "]";
}
}
ParseResult transform::TileUsingForOp::parse(OpAsmParser &parser,
OperationState &result) {
OpAsmParser::UnresolvedOperand target;
SmallVector<OpAsmParser::UnresolvedOperand> dynamicSizes;
DenseI64ArrayAttr staticSizes;
FunctionType functionalType;
llvm::SMLoc operandLoc;
DenseBoolArrayAttr scalableVals;
if (parser.parseOperand(target) || parser.getCurrentLocation(&operandLoc) ||
parseDynamicIndexList(parser, dynamicSizes, staticSizes, scalableVals) ||
parseOptionalInterchange(parser, result) ||
parser.parseOptionalAttrDict(result.attributes) ||
parser.parseColonType(functionalType))
return ParseResult::failure();
size_t numExpectedLoops =
staticSizes.size() - llvm::count(staticSizes.asArrayRef(), 0);
if (functionalType.getNumResults() != numExpectedLoops + 1) {
return parser.emitError(parser.getNameLoc())
<< "expected " << (numExpectedLoops + 1) << " result type(s)";
}
if (functionalType.getNumInputs() != dynamicSizes.size() + 1) {
return parser.emitError(operandLoc)
<< "expected " << dynamicSizes.size() + 1 << " operand type(s)";
}
if (parser.resolveOperand(target, functionalType.getInputs().front(),
result.operands) ||
parser.resolveOperands(dynamicSizes,
functionalType.getInputs().drop_front(),
operandLoc, result.operands)) {
return failure();
}
result.addAttribute(getScalableSizesAttrName(result.name), scalableVals);
result.addAttribute(getStaticSizesAttrName(result.name), staticSizes);
result.addTypes(functionalType.getResults());
return success();
}
void TileUsingForOp::print(OpAsmPrinter &p) {
p << ' ' << getTarget();
printDynamicIndexList(p, getOperation(), getDynamicSizes(), getStaticSizes(),
/*valueTypes=*/{}, getScalableSizesAttr(),
OpAsmParser::Delimiter::Square);
printOptionalInterchange(p, getInterchange());
p.printOptionalAttrDict(
(*this)->getAttrs(),
/*elidedAttrs=*/{getInterchangeAttrName(getOperation()->getName()),
getScalableSizesAttrName(getOperation()->getName()),
getStaticSizesAttrName(getOperation()->getName())});
p << " : ";
p.printFunctionalType(getOperands().getTypes(), getResults().getTypes());
}
void transform::TileUsingForOp::getEffects(
SmallVectorImpl<MemoryEffects::EffectInstance> &effects) {
consumesHandle(getTarget(), effects);
onlyReadsHandle(getDynamicSizes(), effects);
producesHandle(getTiledLinalgOp(), effects);
producesHandle(getLoops(), effects);
modifiesPayload(effects);
}
//===----------------------------------------------------------------------===//
// TileUsingForallOp
//===----------------------------------------------------------------------===//
void transform::TileUsingForallOp::build(OpBuilder &builder,
OperationState &result, Value target,
ArrayRef<int64_t> staticTileSizes,
transform::TileSizesSpec,
ArrayAttr mapping) {
return build(builder, result,
/*target=*/target,
/*mixedTileSizes=*/
getAsOpFoldResult(builder.getI64ArrayAttr(staticTileSizes)),
/*_=*/TileSizesSpec(),
/*mapping=*/mapping);
}
void transform::TileUsingForallOp::build(OpBuilder &builder,
OperationState &result, Value target,
ArrayRef<OpFoldResult> mixedTileSizes,
transform::TileSizesSpec,
ArrayAttr mapping) {
SmallVector<int64_t> staticTileSizes;
SmallVector<Value> dynamicTileSizes;
dispatchIndexOpFoldResults(mixedTileSizes, dynamicTileSizes, staticTileSizes);
// Call the default builder which sets up the proper operands segment sizes
// attributes for multiple variadic operands. In the absence of this,
// horrible bugs ensue.
MLIRContext *ctx = builder.getContext();
auto operationType = transform::AnyOpType::get(ctx);
auto staticTileSizesAttr = builder.getDenseI64ArrayAttr(staticTileSizes);
build(builder, result,
/*resultTypes=*/TypeRange{operationType, operationType},
/*target=*/target,
/*num_threads=*/ValueRange{},
/*tile_sizes=*/dynamicTileSizes,
/*packed_num_threads=*/Value(),
/*packed_tile_sizes=*/Value(),
/*static_num_threads=*/builder.getDenseI64ArrayAttr({}),
/*static_tile_sizes=*/staticTileSizesAttr,
/*mapping=*/mapping);
}
void transform::TileUsingForallOp::build(OpBuilder &builder,
OperationState &result, Value target,
ArrayRef<int64_t> staticNumThreads,
transform::NumThreadsSpec,
ArrayAttr mapping) {
return build(builder, result, target,
getAsOpFoldResult(builder.getI64ArrayAttr(staticNumThreads)),
NumThreadsSpec(), mapping);
}
void transform::TileUsingForallOp::build(OpBuilder &builder,
OperationState &result, Value target,
ArrayRef<OpFoldResult> mixedNumThreads,
transform::NumThreadsSpec,
ArrayAttr mapping) {
SmallVector<int64_t> staticNumThreads;
SmallVector<Value> dynamicNumThreads;
dispatchIndexOpFoldResults(mixedNumThreads, dynamicNumThreads,
staticNumThreads);
// Call the default builder which sets up the proper operands segment sizes
// attributes for multiple variadic operands. In the absence of this,
// horrible bugs ensue.
MLIRContext *ctx = builder.getContext();
auto operationType = transform::AnyOpType::get(ctx);
auto staticNumThreadsAttr = builder.getDenseI64ArrayAttr(staticNumThreads);
build(builder, result,
/*resultTypes=*/TypeRange{operationType, operationType},
/*target=*/target,
/*num_threads=*/dynamicNumThreads,
/*tile_sizes=*/ValueRange{},
/*packed_num_threads=*/Value(),
/*packed_tile_sizes=*/Value(),
/*static_num_threads=*/staticNumThreadsAttr,
/*static_tile_sizes=*/builder.getDenseI64ArrayAttr({}),
/*mapping=*/mapping);
}
DiagnosedSilenceableFailure transform::tileToForallOpImpl(
RewriterBase &rewriter, transform::TransformState &state,
TransformOpInterface transformOp, Operation *target,
ArrayRef<OpFoldResult> mixedNumThreads,
ArrayRef<OpFoldResult> mixedTileSizes, std::optional<ArrayAttr> mapping,
linalg::ForallTilingResult &tilingResult) {
// Transform all targets one by one.
auto tileableOp = dyn_cast<TilingInterface>(target);
if (!tileableOp) {
DiagnosedSilenceableFailure diag =
transformOp.emitSilenceableError()
<< "only TilingInterface ops are supported";
diag.attachNote(target->getLoc()) << "target op";
return diag;
}
rewriter.setInsertionPoint(tileableOp);
FailureOr<linalg::ForallTilingResult> maybeTilingResult = failure();
if (!mixedNumThreads.empty()) {
maybeTilingResult =
linalg::tileToForallOp(rewriter, tileableOp, mixedNumThreads, mapping);
} else {
maybeTilingResult = linalg::tileToForallOpUsingTileSizes(
rewriter, tileableOp, mixedTileSizes, mapping);
}
if (failed(maybeTilingResult))
return transformOp.emitDefaultSilenceableFailure(tileableOp);
rewriter.replaceOp(tileableOp, maybeTilingResult->tileOp->getResults());
tilingResult = *maybeTilingResult;
return DiagnosedSilenceableFailure::success();
}
DiagnosedSilenceableFailure transform::TileUsingForallOp::apply(
transform::TransformRewriter &rewriter,
transform::TransformResults &transformResults,
transform::TransformState &state) {
auto transformOp = cast<TransformOpInterface>(getOperation());
// Result payload ops.
SmallVector<Operation *> tileOps;
SmallVector<Operation *> tiledOps;
// Unpack handles.
SmallVector<OpFoldResult> mixedNumThreads;
DiagnosedSilenceableFailure status =
getPackedNumThreads()
? unpackSingleIndexResultPayloadOperations(
state, transformOp, mixedNumThreads, getPackedNumThreads())
: unpackSingleIndexResultPayloadOperations(
state, transformOp, mixedNumThreads, getMixedNumThreads());
if (!status.succeeded())
return status;
SmallVector<OpFoldResult> mixedTileSizes;
status = getPackedTileSizes()
? unpackSingleIndexResultPayloadOperations(
state, transformOp, mixedTileSizes, getPackedTileSizes())
: unpackSingleIndexResultPayloadOperations(
state, transformOp, mixedTileSizes, getMixedTileSizes());
if (!status.succeeded())
return status;
for (Operation *target : state.getPayloadOps(getTarget())) {
linalg::ForallTilingResult tilingResult;
DiagnosedSilenceableFailure diag = tileToForallOpImpl(
rewriter, state, transformOp, target, mixedNumThreads, mixedTileSizes,
getMapping(), tilingResult);
if (!diag.succeeded())
return diag;
tileOps.push_back(tilingResult.tileOp);
tiledOps.push_back(tilingResult.tiledOp);
}
transformResults.set(cast<OpResult>(getForallOp()), tileOps);
transformResults.set(cast<OpResult>(getTiledOp()), tiledOps);
return DiagnosedSilenceableFailure::success();
}
void transform::TileUsingForallOp::getEffects(
SmallVectorImpl<MemoryEffects::EffectInstance> &effects) {
consumesHandle(getTarget(), effects);
onlyReadsHandle(getTileSizes(), effects);
onlyReadsHandle(getNumThreads(), effects);
onlyReadsHandle(getPackedNumThreads(), effects);
onlyReadsHandle(getPackedTileSizes(), effects);
producesHandle(getResults(), effects);
modifiesPayload(effects);
}
SmallVector<OpFoldResult> TileUsingForallOp::getMixedNumThreads() {
Builder b(getContext());
return getMixedValues(getStaticNumThreads(), getNumThreads(), b);
}
SmallVector<OpFoldResult> TileUsingForallOp::getMixedTileSizes() {
Builder b(getContext());
return getMixedValues(getStaticTileSizes(), getTileSizes(), b);
}
LogicalResult TileUsingForallOp::verify() {
int numThreadsSpec = static_cast<int>(!getMixedNumThreads().empty()) +
static_cast<int>(getPackedNumThreads() != Value());
if (numThreadsSpec > 1)
return emitOpError(
"num_threads and packed_num_threads are mutually exclusive");
int tileSizesSpec = static_cast<int>(!getMixedTileSizes().empty()) +
static_cast<int>(getPackedTileSizes() != Value());
if (tileSizesSpec > 1)
return emitOpError(
"tile_sizes and packed_tile_sizes are mutually exclusive");
if (numThreadsSpec == 0 && tileSizesSpec == 0)
return emitOpError("either (packed_)num_threads or (packed_)tile_sizes "
"must be specified");
return success();
}
//===----------------------------------------------------------------------===//
// VectorizeChildrenAndApplyPatternsOp
//===----------------------------------------------------------------------===//
void transform::VectorizeChildrenAndApplyPatternsOp::build(
OpBuilder &builder, OperationState &result, Value target,
bool vectorizePadding, bool vectorizeExtract, bool flatten1DDepthwiseConv) {
result.addOperands(target);
if (vectorizePadding) {
result.addAttribute(
VectorizeChildrenAndApplyPatternsOp::getVectorizePaddingAttrName(
result.name),
builder.getUnitAttr());
}
if (vectorizeExtract) {
result.addAttribute(
VectorizeChildrenAndApplyPatternsOp::getVectorizeNdExtractAttrName(
result.name),
builder.getUnitAttr());
}
if (flatten1DDepthwiseConv) {
result.addAttribute(
VectorizeChildrenAndApplyPatternsOp::getFlatten_1dDepthwiseConvAttrName(
result.name),
builder.getUnitAttr());
}
result.addTypes(transform::AnyOpType::get(builder.getContext()));
}
namespace {
/// This is an helper only to call vectorize via a pattern inside of
/// VectorizeChildrenAndApplyPatternsOp::applyToOne.
struct VectorizationPattern : public RewritePattern {
explicit VectorizationPattern(MLIRContext *context,
bool vectorizeExtract = false,
bool flattenConv = false)
: RewritePattern(MatchAnyOpTypeTag(), /*benefit=*/1, context),
vectorizeNDExtract(vectorizeExtract),
flatten1DDepthwiseConv(flattenConv) {}
LogicalResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const override {
LinalgOp linalgOp = dyn_cast<LinalgOp>(op);
if (!linalgOp)
return rewriter.notifyMatchFailure(op, "expected Linalg Op");
return vectorize(rewriter, linalgOp, /*inputVectorSizes=*/{},
/*scalableVecDims=*/{}, vectorizeNDExtract,
flatten1DDepthwiseConv);
}
private:
/// Controls whether to vectorize `tensor.extract` when the input tensor is
/// rank >= 2.
bool vectorizeNDExtract = false;
/// Controls whether to "flatten" the channel dimension when vectorising 1D
/// depthwise convolutions. This should lead to bette vectorization for
/// tensors with a low number of channel dimensions.
bool flatten1DDepthwiseConv = false;
};
} // namespace
DiagnosedSilenceableFailure
transform::VectorizeChildrenAndApplyPatternsOp::applyToOne(
transform::TransformRewriter &rewriter, Operation *target,
transform::ApplyToEachResultList &results,
transform::TransformState &state) {
if (!target->hasTrait<OpTrait::IsIsolatedFromAbove>()) {
auto diag = this->emitOpError("requires isolated-from-above targets");
diag.attachNote(target->getLoc()) << "non-isolated target";
return DiagnosedSilenceableFailure::definiteFailure();
}
MLIRContext *ctx = getContext();
RewritePatternSet patterns(ctx);
patterns.add<VectorizationPattern>(ctx, getVectorizeNdExtract(),
getFlatten_1dDepthwiseConv());
if (!getDisableTransferPermutationMapLoweringPatterns())
vector::populateVectorTransferPermutationMapLoweringPatterns(patterns);
if (!getDisableMultiReductionToContractPatterns())
vector::populateVectorReductionToContractPatterns(patterns);
vector::populateSinkVectorBroadcastPatterns(patterns);
patterns.add<linalg::LinalgCopyVTRForwardingPattern,
linalg::LinalgCopyVTWForwardingPattern>(ctx,
/*benefit=*/2);
vector::TransferReadOp::getCanonicalizationPatterns(patterns, ctx);
vector::TransferWriteOp::getCanonicalizationPatterns(patterns, ctx);
tensor::populateFoldTensorSubsetIntoVectorTransferPatterns(patterns);
patterns.add<CopyVectorizationPattern>(ctx);
if (getVectorizePadding())
linalg::populatePadOpVectorizationPatterns(patterns);
TrackingListener listener(state, *this);
GreedyRewriteConfig config;
config.listener = &listener;
if (failed(applyPatternsAndFoldGreedily(target, std::move(patterns), config)))
return emitDefaultDefiniteFailure(target);
results.push_back(target);
return DiagnosedSilenceableFailure::success();
}
//===----------------------------------------------------------------------===//
// VectorizeOp
//===----------------------------------------------------------------------===//
DiagnosedSilenceableFailure transform::VectorizeOp::apply(
transform::TransformRewriter &rewriter,
mlir::transform::TransformResults &transformResults,
mlir::transform::TransformState &state) {
auto targets = state.getPayloadOps(getTarget());
if (std::empty(targets))
return DiagnosedSilenceableFailure::success();
SmallVector<int64_t> vectorSizes;
for (OpFoldResult sz : getMixedVectorSizes()) {
if (sz.is<Attribute>()) {
auto attr = sz.get<Attribute>();
vectorSizes.push_back(cast<IntegerAttr>(attr).getInt());
continue;
}
auto szPayloads = state.getPayloadOps(sz.get<Value>());
if (!llvm::hasSingleElement(szPayloads)) {
auto diag = this->emitOpError(
"requires vector size handle that is mapped to 1 payload op");
diag.attachNote(sz.get<Value>().getLoc())
<< "mapped to " << llvm::range_size(szPayloads) << " payload ops";
return DiagnosedSilenceableFailure::definiteFailure();
}
Operation *szPayloadOp = *szPayloads.begin();
if (szPayloadOp->getNumResults() != 1 ||
!szPayloadOp->getResult(0).getType().isIndex()) {
auto diag = this->emitOpError(
"requires vector size payload op with 1 index result");
diag.attachNote(szPayloadOp->getLoc()) << "vector size payload op";
return DiagnosedSilenceableFailure::definiteFailure();
}
IntegerAttr attr;
if (!matchPattern(szPayloadOp->getResult(0), m_Constant(&attr))) {
auto diag = this->emitOpError("requires constant vector size");
diag.attachNote(szPayloadOp->getLoc()) << "vector size payload op";
return DiagnosedSilenceableFailure::definiteFailure();
}
vectorSizes.push_back(attr.getInt());
}
// TODO: Check that the correct number of vectorSizes was provided.
for (Operation *target : targets) {
if (!isa<linalg::LinalgOp, tensor::PadOp>(target)) {
return mlir::emitSilenceableFailure(target->getLoc())
<< "Unsupported Op, cannot vectorize";
}
if (failed(linalg::vectorize(rewriter, target, vectorSizes,
getScalableSizes(),
getVectorizeNdExtract().has_value()
? getVectorizeNdExtract().value()
: false))) {
return mlir::emitSilenceableFailure(target->getLoc())
<< "Attempted to vectorize, but failed";
}
}
return DiagnosedSilenceableFailure::success();
}
void transform::VectorizeOp::getEffects(
SmallVectorImpl<MemoryEffects::EffectInstance> &effects) {
consumesHandle(getTarget(), effects);
onlyReadsHandle(getVectorSizes(), effects);
modifiesPayload(effects);
}
SmallVector<OpFoldResult> VectorizeOp::getMixedVectorSizes() {
OpBuilder b(getContext());
return getMixedValues(getStaticVectorSizes(), getVectorSizes(), b);
}
LogicalResult transform::VectorizeOp::verify() {
if (getStaticVectorSizes().size() != getScalableSizes().size())
return emitOpError("expected same number of vector sizes (")
<< getStaticVectorSizes().size() << ") and scalable sizes ("
<< getScalableSizes().size() << ")";
return success();
}
//===----------------------------------------------------------------------===//
// HoistRedundantVectorTransfersOp
//===----------------------------------------------------------------------===//
DiagnosedSilenceableFailure
transform::HoistRedundantVectorTransfersOp::applyToOne(
transform::TransformRewriter &rewriter, func::FuncOp target,
transform::ApplyToEachResultList &results,
transform::TransformState &state) {
// WARNING: This hoisting does not model parallelism and is generally
// incorrect when used on distributed loops with memref semantics!
// TODO: obsolete and should be retired.
linalg::hoistRedundantVectorTransfers(target);
results.push_back(target);
return DiagnosedSilenceableFailure::success();
}
//===----------------------------------------------------------------------===//
// ConvertConv2DToImg2ColOp.
//===----------------------------------------------------------------------===//
DiagnosedSilenceableFailure transform::ConvertConv2DToImg2ColOp::applyToOne(
transform::TransformRewriter &rewriter, linalg::LinalgOp target,
transform::ApplyToEachResultList &results,
transform::TransformState &state) {
rewriter.setInsertionPoint(target);
auto maybeTransformed =
TypeSwitch<Operation *, FailureOr<std::pair<Operation *, Operation *>>>(
target)
.Case([&](linalg::Conv2DNhwcHwcfOp op) {
return rewriteInIm2Col(rewriter, op);
})
.Case([&](linalg::Conv2DNhwcFhwcOp op) {
return rewriteInIm2Col(rewriter, op);
})
.Case([&](linalg::DepthwiseConv2DNhwcHwcOp op) {
return rewriteInIm2Col(rewriter, op);
})
.Case([&](linalg::Conv2DNchwFchwOp op) {
return rewriteInIm2Col(rewriter, op);
})
.Default([&](Operation *op) {
return rewriter.notifyMatchFailure(op, "not supported");
});
if (failed(maybeTransformed))
return emitDefaultSilenceableFailure(target);
// Handle to the operation producing the img2col tensor.
results.push_back(maybeTransformed->first);
// Handle to the operation that replaces the original convolution.
results.push_back(maybeTransformed->second);
return DiagnosedSilenceableFailure::success();
}
//===----------------------------------------------------------------------===//
// TransposeConv2DOp
//===----------------------------------------------------------------------===//
DiagnosedSilenceableFailure transform::TransposeConv2DOp::applyToOne(
transform::TransformRewriter &rewriter, linalg::LinalgOp target,
transform::ApplyToEachResultList &results,
transform::TransformState &state) {
rewriter.setInsertionPoint(target);
auto maybeTransformed =
TypeSwitch<Operation *, FailureOr<Operation *>>(target)
.Case([&](linalg::Conv2DNhwcFhwcOp op) {
return transposeConv2D(rewriter, op);
})
.Case([&](linalg::Conv2DNhwcFhwcQOp op) {
return transposeConv2D(rewriter, op);
})
.Default([&](Operation *op) {
return rewriter.notifyMatchFailure(op, "not supported");
});
if (failed(maybeTransformed))
return emitDefaultSilenceableFailure(target);
// Handle to the new Conv2D operation with transposed filters
results.push_back(*maybeTransformed);
return DiagnosedSilenceableFailure::success();
}
//===----------------------------------------------------------------------===//
// InsertSliceToCopyOp
//===----------------------------------------------------------------------===//
template <typename OpTy>
DiagnosedSilenceableFailure doit(RewriterBase &rewriter, OpTy target,
transform::ApplyToEachResultList &results,
transform::TransformState &state) {
static_assert(llvm::is_one_of<OpTy, tensor::InsertSliceOp,
tensor::ParallelInsertSliceOp>() &&
"wrong op type");
if (auto copySource =
target.getSource().template getDefiningOp<linalg::CopyOp>()) {
results.push_back(copySource);
return DiagnosedSilenceableFailure::success();
}
// If we are inside an InParallel region, temporarily set the insertion point
// outside: only tensor.parallel_insert_slice ops are allowed in there.
if constexpr (std::is_same_v<OpTy, tensor::ParallelInsertSliceOp>) {
rewriter.setInsertionPoint(
target->template getParentOfType<scf::InParallelOp>());
}
Value extracted = rewriter.create<tensor::ExtractSliceOp>(
target.getLoc(), target.getDest(), target.getMixedOffsets(),
target.getMixedSizes(), target.getMixedStrides());
Value copied = rewriter
.create<linalg::CopyOp>(target.getLoc(),
target.getSource(), extracted)
.getResult(0);
// Reset the insertion point.
rewriter.setInsertionPoint(target);
rewriter.replaceOpWithNewOp<OpTy>(
target, copied, target.getDest(), target.getMixedOffsets(),
target.getMixedSizes(), target.getMixedStrides());
results.push_back(copied.getDefiningOp());
return DiagnosedSilenceableFailure::success();
}
DiagnosedSilenceableFailure transform::InsertSliceToCopyOp::applyToOne(
transform::TransformRewriter &rewriter, Operation *targetOp,
transform::ApplyToEachResultList &results,
transform::TransformState &state) {
rewriter.setInsertionPoint(targetOp);
if (auto target = dyn_cast<tensor::InsertSliceOp>(targetOp))
return doit(rewriter, target, results, state);
if (auto target = dyn_cast<tensor::ParallelInsertSliceOp>(targetOp))
return doit(rewriter, target, results, state);
DiagnosedSilenceableFailure diag =
emitSilenceableError()
<< "only InsertSliceOp and ParallelInsertSliceOp ops are supported";
diag.attachNote(targetOp->getLoc()) << "target op";
return diag;
}
//===----------------------------------------------------------------------===//
// MapCopyToThreadsOp
//===----------------------------------------------------------------------===//
DiagnosedSilenceableFailure transform::MapCopyToThreadsOp::applyToOne(
transform::TransformRewriter &rewriter, Operation *target,
transform::ApplyToEachResultList &results,
transform::TransformState &state) {
// Check if the op is supported.
if (!isa<linalg::CopyOp, tensor::PadOp>(target)) {
DiagnosedSilenceableFailure diag =
emitSilenceableError()
<< "only linalg.copy and tensor.pad target ops are supported";
diag.attachNote(target->getLoc()) << "target op";
return diag;
}
assert(target->getNumResults() == 1 && "expected single result");
auto resultShapedType = cast<ShapedType>(target->getResult(0).getType());
if (!resultShapedType.hasStaticShape()) {
DiagnosedSilenceableFailure diag =
emitSilenceableError()
<< "only statically sized ops of rank <= 3 are supported";
diag.attachNote(target->getLoc()) << "target op";
return diag;
}
// Conservatively set the minimum viable desired bitwidth alignment.
int64_t desiredBitAlignment = getDesiredBitAlignment();
int64_t eltBitwidth =
resultShapedType.getElementType().getIntOrFloatBitWidth();
if (desiredBitAlignment % eltBitwidth != 0) {
desiredBitAlignment = eltBitwidth;
}
gpu::CopyMappingInfo mapping(
/*ctx=*/getContext(),
/*totalNumThreads=*/getTotalNumThreads(),
/*alignment=*/desiredBitAlignment,
/*sizes=*/resultShapedType.getShape(),
/*favorPredication=*/false,
/*elementalBitwidth=*/
resultShapedType.getElementType().getIntOrFloatBitWidth());
if (mapping.status == gpu::CopyMappingInfo::Status::Invalid) {
DiagnosedSilenceableFailure diag =
emitSilenceableError()
<< "too few threads to map copy op to threads on the most minor "
"dimension, given alignment and vector size constraints, try "
"smaller tile size of mapping to more threads";
diag.attachNote(target->getLoc()) << "target op";
return diag;
}
// OpBuilder only used to compute attributes.
OpBuilder b(getContext());
linalg::ForallTilingResult tilingResult;
DiagnosedSilenceableFailure diag = tileToForallOpImpl(
/*rewriter=*/rewriter,
/*state=*/state,
/*transformOp=*/*this,
/*target=*/target,
/*mixedNumThreads=*/getMixedValues(mapping.numThreads, {}, b),
/*mixedTileSizes=*/ArrayRef<OpFoldResult>{},
/*mapping=*/b.getArrayAttr(mapping.threadMapping),
/*tilingResult=*/tilingResult);
if (!diag.succeeded())
return diag;
results.push_back(tilingResult.tileOp);
results.push_back(tilingResult.tiledOp);
return DiagnosedSilenceableFailure::success();
}
#include "mlir/Dialect/Linalg/TransformOps/LinalgTransformOpsEnums.cpp.inc"
#define GET_OP_CLASSES
#include "mlir/Dialect/Linalg/TransformOps/LinalgTransformOps.cpp.inc"