Frederik Harwath d6fae7f921
Reapply "[Clang] Take libstdc++ into account during GCC detection" #145056 (#154487)
The Generic_GCC::GCCInstallationDetector class picks the GCC installation directory with the largest version number. Since the location of the libstdc++ include directories is tied to the GCC version, this can break C++ compilation if the libstdc++ headers for this particular GCC version are not available. Linux distributions tend to package the libstdc++ headers separately from GCC. This frequently leads to situations in which a newer version of GCC gets installed as a dependency of another package without installing the corresponding libstdc++ package. Clang then fails to compile C++ code because it cannot find the libstdc++ headers. Since libstdc++ headers are in fact installed on the system, the GCC installation continues to work, the user may not be aware of the details of the GCC detection, and the compiler does not recognize the situation and emit a warning, this behavior can be hard to understand - as witnessed by many related bug reports over the years.

The goal of this work is to change the GCC detection to prefer GCC installations that contain libstdc++ include directories over those which do not. This should happen regardless of the input language since picking different GCC installations for a build that mixes C and C++ might lead to incompatibilities.
Any change to the GCC installation detection will probably have a negative impact on some users. For instance, for a C user who relies on using the GCC installation with the largest version number, it might become necessary to use the --gcc-install-dir option to ensure that this GCC version is selected.
This seems like an acceptable trade-off given that the situation for users who do not have any special demands on the particular GCC installation directory would be improved significantly.
 
This patch does not yet change the automatic GCC installation directory choice. Instead, it does introduce a warning that informs the user about the future change if the chosen GCC installation directory differs from the one that would be chosen if the libstdc++ headers are taken into account.

See also this related Discourse discussion: https://discourse.llvm.org/t/rfc-take-libstdc-into-account-during-gcc-detection/86992.

This patch reapplies #145056. The test in the original PR did not specify a target in the clang RUN line and used a wrong way of piping to FileCheck.
2025-08-22 07:39:11 +02:00
2025-08-21 15:19:06 +09:00
2025-04-14 16:54:14 +08:00

The LLVM Compiler Infrastructure

OpenSSF Scorecard OpenSSF Best Practices libc++

Welcome to the LLVM project!

This repository contains the source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The LLVM project has multiple components. The core of the project is itself called "LLVM". This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer.

C-like languages use the Clang frontend. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

Consult the Getting Started with LLVM page for information on building and running LLVM.

For information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting in touch

Join the LLVM Discourse forums, Discord chat, LLVM Office Hours or Regular sync-ups.

The LLVM project has adopted a code of conduct for participants to all modes of communication within the project.

Description
The LLVM Project is a collection of modular and reusable compiler and toolchain technologies.
Readme 5.3 GiB
Languages
LLVM 42%
C++ 30.8%
C 13%
Assembly 9.5%
MLIR 1.4%
Other 2.9%