
Renames the current lowering scheme to "module" and introduces two new ones, "kernel" and "table", plus a "hybrid" that chooses between those three on a per-variable basis. Unit tests are set up to pass with the default lowering of "module" or "hybrid" with this patch defaulting to "module", which will be a less dramatic codegen change relative to the current. This reflects the sparsity of test coverage for the table lowering method. Hybrid is better than module in every respect and will be default in a subsequent patch. Reviewed By: arsenm Differential Revision: https://reviews.llvm.org/D139433
1276 lines
48 KiB
C++
1276 lines
48 KiB
C++
//===-- AMDGPULowerModuleLDSPass.cpp ------------------------------*- C++ -*-=//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass eliminates local data store, LDS, uses from non-kernel functions.
|
|
// LDS is contiguous memory allocated per kernel execution.
|
|
//
|
|
// Background.
|
|
//
|
|
// The programming model is global variables, or equivalently function local
|
|
// static variables, accessible from kernels or other functions. For uses from
|
|
// kernels this is straightforward - assign an integer to the kernel for the
|
|
// memory required by all the variables combined, allocate them within that.
|
|
// For uses from functions there are performance tradeoffs to choose between.
|
|
//
|
|
// This model means the GPU runtime can specify the amount of memory allocated.
|
|
// If this is more than the kernel assumed, the excess can be made available
|
|
// using a language specific feature, which IR represents as a variable with
|
|
// no initializer. This feature is not yet implemented for non-kernel functions.
|
|
// This lowering could be extended to handle that use case, but would probably
|
|
// require closer integration with promoteAllocaToLDS.
|
|
//
|
|
// Consequences of this GPU feature:
|
|
// - memory is limited and exceeding it halts compilation
|
|
// - a global accessed by one kernel exists independent of other kernels
|
|
// - a global exists independent of simultaneous execution of the same kernel
|
|
// - the address of the global may be different from different kernels as they
|
|
// do not alias, which permits only allocating variables they use
|
|
// - if the address is allowed to differ, functions need help to find it
|
|
//
|
|
// Uses from kernels are implemented here by grouping them in a per-kernel
|
|
// struct instance. This duplicates the variables, accurately modelling their
|
|
// aliasing properties relative to a single global representation. It also
|
|
// permits control over alignment via padding.
|
|
//
|
|
// Uses from functions are more complicated and the primary purpose of this
|
|
// IR pass. Several different lowering are chosen between to meet requirements
|
|
// to avoid allocating any LDS where it is not necessary, as that impacts
|
|
// occupancy and may fail the compilation, while not imposing overhead on a
|
|
// feature whose primary advantage over global memory is performance. The basic
|
|
// design goal is to avoid one kernel imposing overhead on another.
|
|
//
|
|
// Implementation.
|
|
//
|
|
// LDS variables with constant annotation or non-undef initializer are passed
|
|
// through unchanged for simplification or error diagnostics in later passes.
|
|
// Non-undef initializers are not yet implemented for LDS.
|
|
//
|
|
// LDS variables that are always allocated at the same address can be found
|
|
// by lookup at that address. Otherwise runtime information/cost is required.
|
|
//
|
|
// The simplest strategy possible is to group all LDS variables in a single
|
|
// struct and allocate that struct in every kernel such that the original
|
|
// variables are always at the same address. LDS is however a limited resource
|
|
// so this strategy is unusable in practice. It is not implemented here.
|
|
//
|
|
// Strategy | Precise allocation | Zero runtime cost | General purpose |
|
|
// --------+--------------------+-------------------+-----------------+
|
|
// Module | No | Yes | Yes |
|
|
// Table | Yes | No | Yes |
|
|
// Kernel | Yes | Yes | No |
|
|
// Hybrid | Yes | Partial | Yes |
|
|
//
|
|
// Module spends LDS memory to save cycles. Table spends cycles and global
|
|
// memory to save LDS. Kernel is as fast as kernel allocation but only works
|
|
// for variables that are known reachable from a single kernel. Hybrid picks
|
|
// between all three. When forced to choose between LDS and cycles it minimises
|
|
// LDS use.
|
|
|
|
// The "module" lowering implemented here finds LDS variables which are used by
|
|
// non-kernel functions and creates a new struct with a field for each of those
|
|
// LDS variables. Variables that are only used from kernels are excluded.
|
|
// Kernels that do not use this struct are annoteated with the attribute
|
|
// amdgpu-elide-module-lds which allows the back end to elide the allocation.
|
|
//
|
|
// The "table" lowering implemented here has three components.
|
|
// First kernels are assigned a unique integer identifier which is available in
|
|
// functions it calls through the intrinsic amdgcn_lds_kernel_id. The integer
|
|
// is passed through a specific SGPR, thus works with indirect calls.
|
|
// Second, each kernel allocates LDS variables independent of other kernels and
|
|
// writes the addresses it chose for each variable into an array in consistent
|
|
// order. If the kernel does not allocate a given variable, it writes undef to
|
|
// the corresponding array location. These arrays are written to a constant
|
|
// table in the order matching the kernel unique integer identifier.
|
|
// Third, uses from non-kernel functions are replaced with a table lookup using
|
|
// the intrinsic function to find the address of the variable.
|
|
//
|
|
// "Kernel" lowering is only applicable for variables that are unambiguously
|
|
// reachable from exactly one kernel. For those cases, accesses to the variable
|
|
// can be lowered to ConstantExpr address of a struct instance specific to that
|
|
// one kernel. This is zero cost in space and in compute. It will raise a fatal
|
|
// error on any variable that might be reachable from multiple kernels and is
|
|
// thus most easily used as part of the hybrid lowering strategy.
|
|
//
|
|
// Hybrid lowering is a mixture of the above. It uses the zero cost kernel
|
|
// lowering where it can. It lowers the variable accessed by the greatest
|
|
// number of kernels using the module strategy as that is free for the first
|
|
// variable. Any futher variables that can be lowered with the module strategy
|
|
// without incurring LDS memory overhead are. The remaining ones are lowered
|
|
// via table.
|
|
//
|
|
// Consequences
|
|
// - No heuristics or user controlled magic numbers, hybrid is the right choice
|
|
// - Kernels that don't use functions (or have had them all inlined) are not
|
|
// affected by any lowering for kernels that do.
|
|
// - Kernels that don't make indirect function calls are not affected by those
|
|
// that do.
|
|
// - Variables which are used by lots of kernels, e.g. those injected by a
|
|
// language runtime in most kernels, are expected to have no overhead
|
|
// - Implementations that instantiate templates per-kernel where those templates
|
|
// use LDS are expected to hit the "Kernel" lowering strategy
|
|
// - The runtime properties impose a cost in compiler implementation complexity
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "AMDGPU.h"
|
|
#include "Utils/AMDGPUBaseInfo.h"
|
|
#include "Utils/AMDGPUMemoryUtils.h"
|
|
#include "llvm/ADT/BitVector.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SetOperations.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/ADT/StringSwitch.h"
|
|
#include "llvm/Analysis/CallGraph.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/InlineAsm.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicsAMDGPU.h"
|
|
#include "llvm/IR/MDBuilder.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/OptimizedStructLayout.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Transforms/Utils/ModuleUtils.h"
|
|
|
|
#include <tuple>
|
|
#include <vector>
|
|
|
|
#include <cstdio>
|
|
|
|
#define DEBUG_TYPE "amdgpu-lower-module-lds"
|
|
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
|
|
cl::opt<bool> SuperAlignLDSGlobals(
|
|
"amdgpu-super-align-lds-globals",
|
|
cl::desc("Increase alignment of LDS if it is not on align boundary"),
|
|
cl::init(true), cl::Hidden);
|
|
|
|
enum class LoweringKind { module, table, kernel, hybrid };
|
|
cl::opt<LoweringKind> LoweringKindLoc(
|
|
"amdgpu-lower-module-lds-strategy",
|
|
cl::desc("Specify lowering strategy for function LDS access:"), cl::Hidden,
|
|
cl::init(LoweringKind::module),
|
|
cl::values(
|
|
clEnumValN(LoweringKind::table, "table", "Lower via table lookup"),
|
|
clEnumValN(LoweringKind::module, "module", "Lower via module struct"),
|
|
clEnumValN(
|
|
LoweringKind::kernel, "kernel",
|
|
"Lower variables reachable from one kernel, otherwise abort"),
|
|
clEnumValN(LoweringKind::hybrid, "hybrid",
|
|
"Lower via mixture of above strategies")));
|
|
|
|
bool isKernelLDS(const Function *F) {
|
|
// Some weirdness here. AMDGPU::isKernelCC does not call into
|
|
// AMDGPU::isKernel with the calling conv, it instead calls into
|
|
// isModuleEntryFunction which returns true for more calling conventions
|
|
// than AMDGPU::isKernel does. There's a FIXME on AMDGPU::isKernel.
|
|
// There's also a test that checks that the LDS lowering does not hit on
|
|
// a graphics shader, denoted amdgpu_ps, so stay with the limited case.
|
|
// Putting LDS in the name of the function to draw attention to this.
|
|
return AMDGPU::isKernel(F->getCallingConv());
|
|
}
|
|
|
|
class AMDGPULowerModuleLDS : public ModulePass {
|
|
|
|
static void removeFromUsedList(Module &M, StringRef Name,
|
|
SmallPtrSetImpl<Constant *> &ToRemove) {
|
|
GlobalVariable *GV = M.getNamedGlobal(Name);
|
|
if (!GV || ToRemove.empty()) {
|
|
return;
|
|
}
|
|
|
|
SmallVector<Constant *, 16> Init;
|
|
auto *CA = cast<ConstantArray>(GV->getInitializer());
|
|
for (auto &Op : CA->operands()) {
|
|
// ModuleUtils::appendToUsed only inserts Constants
|
|
Constant *C = cast<Constant>(Op);
|
|
if (!ToRemove.contains(C->stripPointerCasts())) {
|
|
Init.push_back(C);
|
|
}
|
|
}
|
|
|
|
if (Init.size() == CA->getNumOperands()) {
|
|
return; // none to remove
|
|
}
|
|
|
|
GV->eraseFromParent();
|
|
|
|
for (Constant *C : ToRemove) {
|
|
C->removeDeadConstantUsers();
|
|
}
|
|
|
|
if (!Init.empty()) {
|
|
ArrayType *ATy =
|
|
ArrayType::get(Type::getInt8PtrTy(M.getContext()), Init.size());
|
|
GV =
|
|
new GlobalVariable(M, ATy, false, GlobalValue::AppendingLinkage,
|
|
ConstantArray::get(ATy, Init), Name);
|
|
GV->setSection("llvm.metadata");
|
|
}
|
|
}
|
|
|
|
static void removeFromUsedLists(Module &M,
|
|
const DenseSet<GlobalVariable *> &LocalVars) {
|
|
// The verifier rejects used lists containing an inttoptr of a constant
|
|
// so remove the variables from these lists before replaceAllUsesWith
|
|
|
|
SmallPtrSet<Constant *, 32> LocalVarsSet;
|
|
for (GlobalVariable *LocalVar : LocalVars)
|
|
if (Constant *C = dyn_cast<Constant>(LocalVar->stripPointerCasts()))
|
|
LocalVarsSet.insert(C);
|
|
removeFromUsedList(M, "llvm.used", LocalVarsSet);
|
|
removeFromUsedList(M, "llvm.compiler.used", LocalVarsSet);
|
|
}
|
|
|
|
static void markUsedByKernel(IRBuilder<> &Builder, Function *Func,
|
|
GlobalVariable *SGV) {
|
|
// The llvm.amdgcn.module.lds instance is implicitly used by all kernels
|
|
// that might call a function which accesses a field within it. This is
|
|
// presently approximated to 'all kernels' if there are any such functions
|
|
// in the module. This implicit use is redefined as an explicit use here so
|
|
// that later passes, specifically PromoteAlloca, account for the required
|
|
// memory without any knowledge of this transform.
|
|
|
|
// An operand bundle on llvm.donothing works because the call instruction
|
|
// survives until after the last pass that needs to account for LDS. It is
|
|
// better than inline asm as the latter survives until the end of codegen. A
|
|
// totally robust solution would be a function with the same semantics as
|
|
// llvm.donothing that takes a pointer to the instance and is lowered to a
|
|
// no-op after LDS is allocated, but that is not presently necessary.
|
|
|
|
LLVMContext &Ctx = Func->getContext();
|
|
|
|
Builder.SetInsertPoint(Func->getEntryBlock().getFirstNonPHI());
|
|
|
|
FunctionType *FTy = FunctionType::get(Type::getVoidTy(Ctx), {});
|
|
|
|
Function *Decl =
|
|
Intrinsic::getDeclaration(Func->getParent(), Intrinsic::donothing, {});
|
|
|
|
Value *UseInstance[1] = {Builder.CreateInBoundsGEP(
|
|
SGV->getValueType(), SGV, ConstantInt::get(Type::getInt32Ty(Ctx), 0))};
|
|
|
|
Builder.CreateCall(FTy, Decl, {},
|
|
{OperandBundleDefT<Value *>("ExplicitUse", UseInstance)},
|
|
"");
|
|
}
|
|
|
|
static bool eliminateConstantExprUsesOfLDSFromAllInstructions(Module &M) {
|
|
// Constants are uniqued within LLVM. A ConstantExpr referring to a LDS
|
|
// global may have uses from multiple different functions as a result.
|
|
// This pass specialises LDS variables with respect to the kernel that
|
|
// allocates them.
|
|
|
|
// This is semantically equivalent to:
|
|
// for (auto &F : M.functions())
|
|
// for (auto &BB : F)
|
|
// for (auto &I : BB)
|
|
// for (Use &Op : I.operands())
|
|
// if (constantExprUsesLDS(Op))
|
|
// replaceConstantExprInFunction(I, Op);
|
|
|
|
bool Changed = false;
|
|
|
|
// Find all ConstantExpr that are direct users of an LDS global
|
|
SmallVector<ConstantExpr *> Stack;
|
|
for (auto &GV : M.globals())
|
|
if (AMDGPU::isLDSVariableToLower(GV))
|
|
for (User *U : GV.users())
|
|
if (ConstantExpr *C = dyn_cast<ConstantExpr>(U))
|
|
Stack.push_back(C);
|
|
|
|
// Expand to include constexpr users of direct users
|
|
SetVector<ConstantExpr *> ConstExprUsersOfLDS;
|
|
while (!Stack.empty()) {
|
|
ConstantExpr *V = Stack.pop_back_val();
|
|
if (ConstExprUsersOfLDS.contains(V))
|
|
continue;
|
|
|
|
ConstExprUsersOfLDS.insert(V);
|
|
|
|
for (auto *Nested : V->users())
|
|
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Nested))
|
|
Stack.push_back(CE);
|
|
}
|
|
|
|
// Find all instructions that use any of the ConstExpr users of LDS
|
|
SetVector<Instruction *> InstructionWorklist;
|
|
for (ConstantExpr *CE : ConstExprUsersOfLDS)
|
|
for (User *U : CE->users())
|
|
if (auto *I = dyn_cast<Instruction>(U))
|
|
InstructionWorklist.insert(I);
|
|
|
|
// Replace those ConstExpr operands with instructions
|
|
while (!InstructionWorklist.empty()) {
|
|
Instruction *I = InstructionWorklist.pop_back_val();
|
|
for (Use &U : I->operands()) {
|
|
|
|
auto *BI = I;
|
|
if (auto *Phi = dyn_cast<PHINode>(I)) {
|
|
BasicBlock *BB = Phi->getIncomingBlock(U);
|
|
BasicBlock::iterator It = BB->getFirstInsertionPt();
|
|
assert(It != BB->end() && "Unexpected empty basic block");
|
|
BI = &(*(It));
|
|
}
|
|
|
|
if (ConstantExpr *C = dyn_cast<ConstantExpr>(U.get())) {
|
|
if (ConstExprUsersOfLDS.contains(C)) {
|
|
Changed = true;
|
|
Instruction *NI = C->getAsInstruction(BI);
|
|
InstructionWorklist.insert(NI);
|
|
U.set(NI);
|
|
C->removeDeadConstantUsers();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
public:
|
|
static char ID;
|
|
|
|
AMDGPULowerModuleLDS() : ModulePass(ID) {
|
|
initializeAMDGPULowerModuleLDSPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
using FunctionVariableMap = DenseMap<Function *, DenseSet<GlobalVariable *>>;
|
|
|
|
using VariableFunctionMap = DenseMap<GlobalVariable *, DenseSet<Function *>>;
|
|
|
|
static void getUsesOfLDSByFunction(CallGraph const &CG, Module &M,
|
|
FunctionVariableMap &kernels,
|
|
FunctionVariableMap &functions) {
|
|
|
|
// Get uses from the current function, excluding uses by called functions
|
|
// Two output variables to avoid walking the globals list twice
|
|
for (auto &GV : M.globals()) {
|
|
if (!AMDGPU::isLDSVariableToLower(GV)) {
|
|
continue;
|
|
}
|
|
|
|
SmallVector<User *, 16> Stack(GV.users());
|
|
for (User *V : GV.users()) {
|
|
if (auto *I = dyn_cast<Instruction>(V)) {
|
|
Function *F = I->getFunction();
|
|
if (isKernelLDS(F)) {
|
|
kernels[F].insert(&GV);
|
|
} else {
|
|
functions[F].insert(&GV);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
struct LDSUsesInfoTy {
|
|
FunctionVariableMap direct_access;
|
|
FunctionVariableMap indirect_access;
|
|
};
|
|
|
|
static LDSUsesInfoTy getTransitiveUsesOfLDS(CallGraph const &CG, Module &M) {
|
|
|
|
FunctionVariableMap direct_map_kernel;
|
|
FunctionVariableMap direct_map_function;
|
|
getUsesOfLDSByFunction(CG, M, direct_map_kernel, direct_map_function);
|
|
|
|
// Collect variables that are used by functions whose address has escaped
|
|
DenseSet<GlobalVariable *> VariablesReachableThroughFunctionPointer;
|
|
for (Function &F : M.functions()) {
|
|
if (!isKernelLDS(&F))
|
|
if (F.hasAddressTaken(nullptr,
|
|
/* IgnoreCallbackUses */ false,
|
|
/* IgnoreAssumeLikeCalls */ false,
|
|
/* IgnoreLLVMUsed */ true,
|
|
/* IgnoreArcAttachedCall */ false)) {
|
|
set_union(VariablesReachableThroughFunctionPointer,
|
|
direct_map_function[&F]);
|
|
}
|
|
}
|
|
|
|
auto functionMakesUnknownCall = [&](const Function *F) -> bool {
|
|
assert(!F->isDeclaration());
|
|
for (CallGraphNode::CallRecord R : *CG[F]) {
|
|
if (!R.second->getFunction()) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
};
|
|
|
|
// Work out which variables are reachable through function calls
|
|
FunctionVariableMap transitive_map_function = direct_map_function;
|
|
|
|
// If the function makes any unknown call, assume the worst case that it can
|
|
// access all variables accessed by functions whose address escaped
|
|
for (Function &F : M.functions()) {
|
|
if (!F.isDeclaration() && functionMakesUnknownCall(&F)) {
|
|
if (!isKernelLDS(&F)) {
|
|
set_union(transitive_map_function[&F],
|
|
VariablesReachableThroughFunctionPointer);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Direct implementation of collecting all variables reachable from each
|
|
// function
|
|
for (Function &Func : M.functions()) {
|
|
if (Func.isDeclaration() || isKernelLDS(&Func))
|
|
continue;
|
|
|
|
DenseSet<Function *> seen; // catches cycles
|
|
SmallVector<Function *, 4> wip{&Func};
|
|
|
|
while (!wip.empty()) {
|
|
Function *F = wip.pop_back_val();
|
|
|
|
// Can accelerate this by referring to transitive map for functions that
|
|
// have already been computed, with more care than this
|
|
set_union(transitive_map_function[&Func], direct_map_function[F]);
|
|
|
|
for (CallGraphNode::CallRecord R : *CG[F]) {
|
|
Function *ith = R.second->getFunction();
|
|
if (ith) {
|
|
if (!seen.contains(ith)) {
|
|
seen.insert(ith);
|
|
wip.push_back(ith);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// direct_map_kernel lists which variables are used by the kernel
|
|
// find the variables which are used through a function call
|
|
FunctionVariableMap indirect_map_kernel;
|
|
|
|
for (Function &Func : M.functions()) {
|
|
if (Func.isDeclaration() || !isKernelLDS(&Func))
|
|
continue;
|
|
|
|
for (CallGraphNode::CallRecord R : *CG[&Func]) {
|
|
Function *ith = R.second->getFunction();
|
|
if (ith) {
|
|
set_union(indirect_map_kernel[&Func], transitive_map_function[ith]);
|
|
} else {
|
|
set_union(indirect_map_kernel[&Func],
|
|
VariablesReachableThroughFunctionPointer);
|
|
}
|
|
}
|
|
}
|
|
|
|
return {std::move(direct_map_kernel), std::move(indirect_map_kernel)};
|
|
}
|
|
|
|
struct LDSVariableReplacement {
|
|
GlobalVariable *SGV = nullptr;
|
|
DenseMap<GlobalVariable *, Constant *> LDSVarsToConstantGEP;
|
|
};
|
|
|
|
// remap from lds global to a constantexpr gep to where it has been moved to
|
|
// for each kernel
|
|
// an array with an element for each kernel containing where the corresponding
|
|
// variable was remapped to
|
|
|
|
static Constant *getAddressesOfVariablesInKernel(
|
|
LLVMContext &Ctx, ArrayRef<GlobalVariable *> Variables,
|
|
DenseMap<GlobalVariable *, Constant *> &LDSVarsToConstantGEP) {
|
|
// Create a ConstantArray containing the address of each Variable within the
|
|
// kernel corresponding to LDSVarsToConstantGEP, or poison if that kernel
|
|
// does not allocate it
|
|
// TODO: Drop the ptrtoint conversion
|
|
|
|
Type *I32 = Type::getInt32Ty(Ctx);
|
|
|
|
ArrayType *KernelOffsetsType = ArrayType::get(I32, Variables.size());
|
|
|
|
SmallVector<Constant *> Elements;
|
|
for (size_t i = 0; i < Variables.size(); i++) {
|
|
GlobalVariable *GV = Variables[i];
|
|
if (LDSVarsToConstantGEP.count(GV) != 0) {
|
|
auto elt = ConstantExpr::getPtrToInt(LDSVarsToConstantGEP[GV], I32);
|
|
Elements.push_back(elt);
|
|
} else {
|
|
Elements.push_back(PoisonValue::get(I32));
|
|
}
|
|
}
|
|
return ConstantArray::get(KernelOffsetsType, Elements);
|
|
}
|
|
|
|
static GlobalVariable *buildLookupTable(
|
|
Module &M, ArrayRef<GlobalVariable *> Variables,
|
|
ArrayRef<Function *> kernels,
|
|
DenseMap<Function *, LDSVariableReplacement> &KernelToReplacement) {
|
|
if (Variables.empty()) {
|
|
return nullptr;
|
|
}
|
|
LLVMContext &Ctx = M.getContext();
|
|
|
|
const size_t NumberVariables = Variables.size();
|
|
const size_t NumberKernels = kernels.size();
|
|
|
|
ArrayType *KernelOffsetsType =
|
|
ArrayType::get(Type::getInt32Ty(Ctx), NumberVariables);
|
|
|
|
ArrayType *AllKernelsOffsetsType =
|
|
ArrayType::get(KernelOffsetsType, NumberKernels);
|
|
|
|
std::vector<Constant *> overallConstantExprElts(NumberKernels);
|
|
for (size_t i = 0; i < NumberKernels; i++) {
|
|
LDSVariableReplacement Replacement = KernelToReplacement[kernels[i]];
|
|
overallConstantExprElts[i] = getAddressesOfVariablesInKernel(
|
|
Ctx, Variables, Replacement.LDSVarsToConstantGEP);
|
|
}
|
|
|
|
Constant *init =
|
|
ConstantArray::get(AllKernelsOffsetsType, overallConstantExprElts);
|
|
|
|
return new GlobalVariable(
|
|
M, AllKernelsOffsetsType, true, GlobalValue::InternalLinkage, init,
|
|
"llvm.amdgcn.lds.offset.table", nullptr, GlobalValue::NotThreadLocal,
|
|
AMDGPUAS::CONSTANT_ADDRESS);
|
|
}
|
|
|
|
void replaceUsesInInstructionsWithTableLookup(
|
|
Module &M, ArrayRef<GlobalVariable *> ModuleScopeVariables,
|
|
GlobalVariable *LookupTable) {
|
|
|
|
LLVMContext &Ctx = M.getContext();
|
|
IRBuilder<> Builder(Ctx);
|
|
Type *I32 = Type::getInt32Ty(Ctx);
|
|
|
|
// Accesses from a function use the amdgcn_lds_kernel_id intrinsic which
|
|
// lowers to a read from a live in register. Emit it once in the entry
|
|
// block to spare deduplicating it later.
|
|
|
|
DenseMap<Function *, Value *> tableKernelIndexCache;
|
|
auto getTableKernelIndex = [&](Function *F) -> Value * {
|
|
if (tableKernelIndexCache.count(F) == 0) {
|
|
LLVMContext &Ctx = M.getContext();
|
|
FunctionType *FTy = FunctionType::get(Type::getInt32Ty(Ctx), {});
|
|
Function *Decl =
|
|
Intrinsic::getDeclaration(&M, Intrinsic::amdgcn_lds_kernel_id, {});
|
|
|
|
BasicBlock::iterator it =
|
|
F->getEntryBlock().getFirstNonPHIOrDbgOrAlloca();
|
|
Instruction &i = *it;
|
|
Builder.SetInsertPoint(&i);
|
|
|
|
tableKernelIndexCache[F] = Builder.CreateCall(FTy, Decl, {});
|
|
}
|
|
|
|
return tableKernelIndexCache[F];
|
|
};
|
|
|
|
for (size_t Index = 0; Index < ModuleScopeVariables.size(); Index++) {
|
|
auto *GV = ModuleScopeVariables[Index];
|
|
|
|
for (Use &U : make_early_inc_range(GV->uses())) {
|
|
auto *I = dyn_cast<Instruction>(U.getUser());
|
|
if (!I)
|
|
continue;
|
|
|
|
Value *tableKernelIndex = getTableKernelIndex(I->getFunction());
|
|
|
|
// So if the phi uses this value multiple times, what does this look
|
|
// like?
|
|
if (auto *Phi = dyn_cast<PHINode>(I)) {
|
|
BasicBlock *BB = Phi->getIncomingBlock(U);
|
|
Builder.SetInsertPoint(&(*(BB->getFirstInsertionPt())));
|
|
} else {
|
|
Builder.SetInsertPoint(I);
|
|
}
|
|
|
|
Value *GEPIdx[3] = {
|
|
ConstantInt::get(I32, 0),
|
|
tableKernelIndex,
|
|
ConstantInt::get(I32, Index),
|
|
};
|
|
|
|
Value *Address = Builder.CreateInBoundsGEP(
|
|
LookupTable->getValueType(), LookupTable, GEPIdx, GV->getName());
|
|
|
|
Value *loaded = Builder.CreateLoad(I32, Address);
|
|
|
|
Value *replacement =
|
|
Builder.CreateIntToPtr(loaded, GV->getType(), GV->getName());
|
|
|
|
U.set(replacement);
|
|
}
|
|
}
|
|
}
|
|
|
|
static DenseSet<Function *> kernelsThatIndirectlyAccessAnyOfPassedVariables(
|
|
Module &M, LDSUsesInfoTy &LDSUsesInfo,
|
|
DenseSet<GlobalVariable *> const &VariableSet) {
|
|
|
|
DenseSet<Function *> KernelSet;
|
|
|
|
if (VariableSet.empty()) return KernelSet;
|
|
|
|
for (Function &Func : M.functions()) {
|
|
if (Func.isDeclaration() || !isKernelLDS(&Func))
|
|
continue;
|
|
for (GlobalVariable *GV : LDSUsesInfo.indirect_access[&Func]) {
|
|
if (VariableSet.contains(GV)) {
|
|
KernelSet.insert(&Func);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return KernelSet;
|
|
}
|
|
|
|
static GlobalVariable *
|
|
chooseBestVariableForModuleStrategy(const DataLayout &DL,
|
|
VariableFunctionMap &LDSVars) {
|
|
// Find the global variable with the most indirect uses from kernels
|
|
|
|
struct CandidateTy {
|
|
GlobalVariable *GV = nullptr;
|
|
size_t UserCount = 0;
|
|
size_t Size = 0;
|
|
|
|
CandidateTy() = default;
|
|
|
|
CandidateTy(GlobalVariable *GV, uint64_t UserCount, uint64_t AllocSize)
|
|
: GV(GV), UserCount(UserCount), Size(AllocSize) {}
|
|
|
|
bool operator<(const CandidateTy &Other) const {
|
|
// Fewer users makes module scope variable less attractive
|
|
if (UserCount < Other.UserCount) {
|
|
return true;
|
|
}
|
|
if (UserCount > Other.UserCount) {
|
|
return false;
|
|
}
|
|
|
|
// Bigger makes module scope variable less attractive
|
|
if (Size < Other.Size) {
|
|
return false;
|
|
}
|
|
|
|
if (Size > Other.Size) {
|
|
return true;
|
|
}
|
|
|
|
// Arbitrary but consistent
|
|
return GV->getName() < Other.GV->getName();
|
|
}
|
|
};
|
|
|
|
CandidateTy MostUsed;
|
|
|
|
for (auto &K : LDSVars) {
|
|
GlobalVariable *GV = K.first;
|
|
if (K.second.size() <= 1) {
|
|
// A variable reachable by only one kernel is best lowered with kernel
|
|
// strategy
|
|
continue;
|
|
}
|
|
CandidateTy Candidate(GV, K.second.size(),
|
|
DL.getTypeAllocSize(GV->getValueType()).getFixedValue());
|
|
if (MostUsed < Candidate)
|
|
MostUsed = Candidate;
|
|
}
|
|
|
|
return MostUsed.GV;
|
|
}
|
|
|
|
bool runOnModule(Module &M) override {
|
|
LLVMContext &Ctx = M.getContext();
|
|
CallGraph CG = CallGraph(M);
|
|
bool Changed = superAlignLDSGlobals(M);
|
|
|
|
Changed |= eliminateConstantExprUsesOfLDSFromAllInstructions(M);
|
|
|
|
Changed = true; // todo: narrow this down
|
|
|
|
// For each kernel, what variables does it access directly or through
|
|
// callees
|
|
LDSUsesInfoTy LDSUsesInfo = getTransitiveUsesOfLDS(CG, M);
|
|
|
|
// For each variable accessed through callees, which kernels access it
|
|
VariableFunctionMap LDSToKernelsThatNeedToAccessItIndirectly;
|
|
for (auto &K : LDSUsesInfo.indirect_access) {
|
|
Function *F = K.first;
|
|
assert(isKernelLDS(F));
|
|
for (GlobalVariable *GV : K.second) {
|
|
LDSToKernelsThatNeedToAccessItIndirectly[GV].insert(F);
|
|
}
|
|
}
|
|
|
|
// Partition variables into the different strategies
|
|
DenseSet<GlobalVariable *> ModuleScopeVariables;
|
|
DenseSet<GlobalVariable *> TableLookupVariables;
|
|
DenseSet<GlobalVariable *> KernelAccessVariables;
|
|
|
|
{
|
|
GlobalVariable *HybridModuleRoot =
|
|
LoweringKindLoc != LoweringKind::hybrid
|
|
? nullptr
|
|
: chooseBestVariableForModuleStrategy(
|
|
M.getDataLayout(),
|
|
LDSToKernelsThatNeedToAccessItIndirectly);
|
|
|
|
DenseSet<Function *> const EmptySet;
|
|
DenseSet<Function *> const &HybridModuleRootKernels =
|
|
HybridModuleRoot
|
|
? LDSToKernelsThatNeedToAccessItIndirectly[HybridModuleRoot]
|
|
: EmptySet;
|
|
|
|
for (auto &K : LDSToKernelsThatNeedToAccessItIndirectly) {
|
|
// Each iteration of this loop assigns exactly one global variable to
|
|
// exactly one of the implementation strategies.
|
|
|
|
GlobalVariable *GV = K.first;
|
|
assert(AMDGPU::isLDSVariableToLower(*GV));
|
|
assert(K.second.size() != 0);
|
|
|
|
switch (LoweringKindLoc) {
|
|
case LoweringKind::module:
|
|
ModuleScopeVariables.insert(GV);
|
|
break;
|
|
|
|
case LoweringKind::table:
|
|
TableLookupVariables.insert(GV);
|
|
break;
|
|
|
|
case LoweringKind::kernel:
|
|
if (K.second.size() == 1) {
|
|
KernelAccessVariables.insert(GV);
|
|
} else {
|
|
report_fatal_error("Cannot lower LDS to kernel access as it is "
|
|
"reachable from multiple kernels");
|
|
}
|
|
break;
|
|
|
|
case LoweringKind::hybrid: {
|
|
if (GV == HybridModuleRoot) {
|
|
assert(K.second.size() != 1);
|
|
ModuleScopeVariables.insert(GV);
|
|
} else if (K.second.size() == 1) {
|
|
KernelAccessVariables.insert(GV);
|
|
} else if (set_is_subset(K.second, HybridModuleRootKernels)) {
|
|
ModuleScopeVariables.insert(GV);
|
|
} else {
|
|
TableLookupVariables.insert(GV);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
assert(ModuleScopeVariables.size() + TableLookupVariables.size() +
|
|
KernelAccessVariables.size() ==
|
|
LDSToKernelsThatNeedToAccessItIndirectly.size());
|
|
} // Variables have now been partitioned into the three lowering strategies.
|
|
|
|
// If the kernel accesses a variable that is going to be stored in the
|
|
// module instance through a call then that kernel needs to allocate the
|
|
// module instance
|
|
DenseSet<Function *> KernelsThatAllocateModuleLDS =
|
|
kernelsThatIndirectlyAccessAnyOfPassedVariables(M, LDSUsesInfo,
|
|
ModuleScopeVariables);
|
|
DenseSet<Function *> KernelsThatAllocateTableLDS =
|
|
kernelsThatIndirectlyAccessAnyOfPassedVariables(M, LDSUsesInfo,
|
|
TableLookupVariables);
|
|
|
|
if (!ModuleScopeVariables.empty()) {
|
|
LDSVariableReplacement ModuleScopeReplacement =
|
|
createLDSVariableReplacement(M, "llvm.amdgcn.module.lds",
|
|
ModuleScopeVariables);
|
|
|
|
appendToCompilerUsed(M,
|
|
{static_cast<GlobalValue *>(
|
|
ConstantExpr::getPointerBitCastOrAddrSpaceCast(
|
|
cast<Constant>(ModuleScopeReplacement.SGV),
|
|
Type::getInt8PtrTy(Ctx)))});
|
|
|
|
// historic
|
|
removeFromUsedLists(M, ModuleScopeVariables);
|
|
|
|
// Replace all uses of module scope variable from non-kernel functions
|
|
replaceLDSVariablesWithStruct(
|
|
M, ModuleScopeVariables, ModuleScopeReplacement, [&](Use &U) {
|
|
Instruction *I = dyn_cast<Instruction>(U.getUser());
|
|
if (!I) {
|
|
return false;
|
|
}
|
|
Function *F = I->getFunction();
|
|
return !isKernelLDS(F);
|
|
});
|
|
|
|
// Replace uses of module scope variable from kernel functions that
|
|
// allocate the module scope variable, otherwise leave them unchanged
|
|
// Record on each kernel whether the module scope global is used by it
|
|
|
|
LLVMContext &Ctx = M.getContext();
|
|
IRBuilder<> Builder(Ctx);
|
|
|
|
for (Function &Func : M.functions()) {
|
|
if (Func.isDeclaration() || !isKernelLDS(&Func))
|
|
continue;
|
|
|
|
if (KernelsThatAllocateModuleLDS.contains(&Func)) {
|
|
replaceLDSVariablesWithStruct(
|
|
M, ModuleScopeVariables, ModuleScopeReplacement, [&](Use &U) {
|
|
Instruction *I = dyn_cast<Instruction>(U.getUser());
|
|
if (!I) {
|
|
return false;
|
|
}
|
|
Function *F = I->getFunction();
|
|
return F == &Func;
|
|
});
|
|
|
|
markUsedByKernel(Builder, &Func, ModuleScopeReplacement.SGV);
|
|
|
|
} else {
|
|
Func.addFnAttr("amdgpu-elide-module-lds");
|
|
}
|
|
}
|
|
}
|
|
|
|
// Create a struct for each kernel for the non-module-scope variables
|
|
DenseMap<Function *, LDSVariableReplacement> KernelToReplacement;
|
|
for (Function &Func : M.functions()) {
|
|
if (Func.isDeclaration() || !isKernelLDS(&Func))
|
|
continue;
|
|
|
|
DenseSet<GlobalVariable *> KernelUsedVariables;
|
|
for (auto &v : LDSUsesInfo.direct_access[&Func]) {
|
|
KernelUsedVariables.insert(v);
|
|
}
|
|
for (auto &v : LDSUsesInfo.indirect_access[&Func]) {
|
|
KernelUsedVariables.insert(v);
|
|
}
|
|
|
|
// Variables allocated in module lds must all resolve to that struct,
|
|
// not to the per-kernel instance.
|
|
if (KernelsThatAllocateModuleLDS.contains(&Func)) {
|
|
for (GlobalVariable *v : ModuleScopeVariables) {
|
|
KernelUsedVariables.erase(v);
|
|
}
|
|
}
|
|
|
|
if (KernelUsedVariables.empty()) {
|
|
// Either used no LDS, or all the LDS it used was also in module
|
|
continue;
|
|
}
|
|
|
|
// The association between kernel function and LDS struct is done by
|
|
// symbol name, which only works if the function in question has a
|
|
// name This is not expected to be a problem in practice as kernels
|
|
// are called by name making anonymous ones (which are named by the
|
|
// backend) difficult to use. This does mean that llvm test cases need
|
|
// to name the kernels.
|
|
if (!Func.hasName()) {
|
|
report_fatal_error("Anonymous kernels cannot use LDS variables");
|
|
}
|
|
|
|
std::string VarName =
|
|
(Twine("llvm.amdgcn.kernel.") + Func.getName() + ".lds").str();
|
|
|
|
auto Replacement =
|
|
createLDSVariableReplacement(M, VarName, KernelUsedVariables);
|
|
|
|
// remove preserves existing codegen
|
|
removeFromUsedLists(M, KernelUsedVariables);
|
|
KernelToReplacement[&Func] = Replacement;
|
|
|
|
// Rewrite uses within kernel to the new struct
|
|
replaceLDSVariablesWithStruct(
|
|
M, KernelUsedVariables, Replacement, [&Func](Use &U) {
|
|
Instruction *I = dyn_cast<Instruction>(U.getUser());
|
|
return I && I->getFunction() == &Func;
|
|
});
|
|
}
|
|
|
|
// Lower zero cost accesses to the kernel instances just created
|
|
for (auto &GV : KernelAccessVariables) {
|
|
auto &funcs = LDSToKernelsThatNeedToAccessItIndirectly[GV];
|
|
assert(funcs.size() == 1); // Only one kernel can access it
|
|
LDSVariableReplacement Replacement =
|
|
KernelToReplacement[*(funcs.begin())];
|
|
|
|
DenseSet<GlobalVariable *> Vec;
|
|
Vec.insert(GV);
|
|
|
|
replaceLDSVariablesWithStruct(M, Vec, Replacement, [](Use &U) {
|
|
return isa<Instruction>(U.getUser());
|
|
});
|
|
}
|
|
|
|
if (!KernelsThatAllocateTableLDS.empty()) {
|
|
// Collect the kernels that allocate table lookup LDS
|
|
std::vector<Function *> OrderedKernels;
|
|
{
|
|
for (Function &Func : M.functions()) {
|
|
if (Func.isDeclaration())
|
|
continue;
|
|
if (!isKernelLDS(&Func))
|
|
continue;
|
|
|
|
if (KernelsThatAllocateTableLDS.contains(&Func)) {
|
|
assert(Func.hasName()); // else fatal error earlier
|
|
OrderedKernels.push_back(&Func);
|
|
}
|
|
}
|
|
|
|
// Put them in an arbitrary but reproducible order
|
|
llvm::sort(OrderedKernels.begin(), OrderedKernels.end(),
|
|
[](const Function *lhs, const Function *rhs) -> bool {
|
|
return lhs->getName() < rhs->getName();
|
|
});
|
|
|
|
// Annotate the kernels with their order in this vector
|
|
LLVMContext &Ctx = M.getContext();
|
|
IRBuilder<> Builder(Ctx);
|
|
|
|
if (OrderedKernels.size() > UINT32_MAX) {
|
|
// 32 bit keeps it in one SGPR. > 2**32 kernels won't fit on the GPU
|
|
report_fatal_error("Unimplemented LDS lowering for > 2**32 kernels");
|
|
}
|
|
|
|
for (size_t i = 0; i < OrderedKernels.size(); i++) {
|
|
Metadata *AttrMDArgs[1] = {
|
|
ConstantAsMetadata::get(Builder.getInt32(i)),
|
|
};
|
|
OrderedKernels[i]->setMetadata("llvm.amdgcn.lds.kernel.id",
|
|
MDNode::get(Ctx, AttrMDArgs));
|
|
|
|
markUsedByKernel(Builder, OrderedKernels[i],
|
|
KernelToReplacement[OrderedKernels[i]].SGV);
|
|
}
|
|
}
|
|
|
|
// The order must be consistent between lookup table and accesses to
|
|
// lookup table
|
|
std::vector<GlobalVariable *> TableLookupVariablesOrdered(
|
|
TableLookupVariables.begin(), TableLookupVariables.end());
|
|
llvm::sort(TableLookupVariablesOrdered.begin(),
|
|
TableLookupVariablesOrdered.end(),
|
|
[](const GlobalVariable *lhs, const GlobalVariable *rhs) {
|
|
return lhs->getName() < rhs->getName();
|
|
});
|
|
|
|
GlobalVariable *LookupTable = buildLookupTable(
|
|
M, TableLookupVariablesOrdered, OrderedKernels, KernelToReplacement);
|
|
replaceUsesInInstructionsWithTableLookup(M, TableLookupVariablesOrdered,
|
|
LookupTable);
|
|
}
|
|
|
|
for (auto &GV : make_early_inc_range(M.globals()))
|
|
if (AMDGPU::isLDSVariableToLower(GV)) {
|
|
|
|
// probably want to remove from used lists
|
|
GV.removeDeadConstantUsers();
|
|
if (GV.use_empty())
|
|
GV.eraseFromParent();
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
private:
|
|
// Increase the alignment of LDS globals if necessary to maximise the chance
|
|
// that we can use aligned LDS instructions to access them.
|
|
static bool superAlignLDSGlobals(Module &M) {
|
|
const DataLayout &DL = M.getDataLayout();
|
|
bool Changed = false;
|
|
if (!SuperAlignLDSGlobals) {
|
|
return Changed;
|
|
}
|
|
|
|
for (auto &GV : M.globals()) {
|
|
if (GV.getType()->getPointerAddressSpace() != AMDGPUAS::LOCAL_ADDRESS) {
|
|
// Only changing alignment of LDS variables
|
|
continue;
|
|
}
|
|
if (!GV.hasInitializer()) {
|
|
// cuda/hip extern __shared__ variable, leave alignment alone
|
|
continue;
|
|
}
|
|
|
|
Align Alignment = AMDGPU::getAlign(DL, &GV);
|
|
TypeSize GVSize = DL.getTypeAllocSize(GV.getValueType());
|
|
|
|
if (GVSize > 8) {
|
|
// We might want to use a b96 or b128 load/store
|
|
Alignment = std::max(Alignment, Align(16));
|
|
} else if (GVSize > 4) {
|
|
// We might want to use a b64 load/store
|
|
Alignment = std::max(Alignment, Align(8));
|
|
} else if (GVSize > 2) {
|
|
// We might want to use a b32 load/store
|
|
Alignment = std::max(Alignment, Align(4));
|
|
} else if (GVSize > 1) {
|
|
// We might want to use a b16 load/store
|
|
Alignment = std::max(Alignment, Align(2));
|
|
}
|
|
|
|
if (Alignment != AMDGPU::getAlign(DL, &GV)) {
|
|
Changed = true;
|
|
GV.setAlignment(Alignment);
|
|
}
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
static LDSVariableReplacement createLDSVariableReplacement(
|
|
Module &M, std::string VarName,
|
|
DenseSet<GlobalVariable *> const &LDSVarsToTransform) {
|
|
// Create a struct instance containing LDSVarsToTransform and map from those
|
|
// variables to ConstantExprGEP
|
|
// Variables may be introduced to meet alignment requirements. No aliasing
|
|
// metadata is useful for these as they have no uses. Erased before return.
|
|
|
|
LLVMContext &Ctx = M.getContext();
|
|
const DataLayout &DL = M.getDataLayout();
|
|
assert(!LDSVarsToTransform.empty());
|
|
|
|
SmallVector<OptimizedStructLayoutField, 8> LayoutFields;
|
|
LayoutFields.reserve(LDSVarsToTransform.size());
|
|
{
|
|
// The order of fields in this struct depends on the order of
|
|
// varables in the argument which varies when changing how they
|
|
// are identified, leading to spurious test breakage.
|
|
std::vector<GlobalVariable *> Sorted(LDSVarsToTransform.begin(),
|
|
LDSVarsToTransform.end());
|
|
llvm::sort(Sorted.begin(), Sorted.end(),
|
|
[](const GlobalVariable *lhs, const GlobalVariable *rhs) {
|
|
return lhs->getName() < rhs->getName();
|
|
});
|
|
for (GlobalVariable *GV : Sorted) {
|
|
OptimizedStructLayoutField F(GV,
|
|
DL.getTypeAllocSize(GV->getValueType()),
|
|
AMDGPU::getAlign(DL, GV));
|
|
LayoutFields.emplace_back(F);
|
|
}
|
|
}
|
|
|
|
performOptimizedStructLayout(LayoutFields);
|
|
|
|
std::vector<GlobalVariable *> LocalVars;
|
|
BitVector IsPaddingField;
|
|
LocalVars.reserve(LDSVarsToTransform.size()); // will be at least this large
|
|
IsPaddingField.reserve(LDSVarsToTransform.size());
|
|
{
|
|
uint64_t CurrentOffset = 0;
|
|
for (size_t I = 0; I < LayoutFields.size(); I++) {
|
|
GlobalVariable *FGV = static_cast<GlobalVariable *>(
|
|
const_cast<void *>(LayoutFields[I].Id));
|
|
Align DataAlign = LayoutFields[I].Alignment;
|
|
|
|
uint64_t DataAlignV = DataAlign.value();
|
|
if (uint64_t Rem = CurrentOffset % DataAlignV) {
|
|
uint64_t Padding = DataAlignV - Rem;
|
|
|
|
// Append an array of padding bytes to meet alignment requested
|
|
// Note (o + (a - (o % a)) ) % a == 0
|
|
// (offset + Padding ) % align == 0
|
|
|
|
Type *ATy = ArrayType::get(Type::getInt8Ty(Ctx), Padding);
|
|
LocalVars.push_back(new GlobalVariable(
|
|
M, ATy, false, GlobalValue::InternalLinkage, UndefValue::get(ATy),
|
|
"", nullptr, GlobalValue::NotThreadLocal, AMDGPUAS::LOCAL_ADDRESS,
|
|
false));
|
|
IsPaddingField.push_back(true);
|
|
CurrentOffset += Padding;
|
|
}
|
|
|
|
LocalVars.push_back(FGV);
|
|
IsPaddingField.push_back(false);
|
|
CurrentOffset += LayoutFields[I].Size;
|
|
}
|
|
}
|
|
|
|
std::vector<Type *> LocalVarTypes;
|
|
LocalVarTypes.reserve(LocalVars.size());
|
|
std::transform(
|
|
LocalVars.cbegin(), LocalVars.cend(), std::back_inserter(LocalVarTypes),
|
|
[](const GlobalVariable *V) -> Type * { return V->getValueType(); });
|
|
|
|
StructType *LDSTy = StructType::create(Ctx, LocalVarTypes, VarName + ".t");
|
|
|
|
Align StructAlign = AMDGPU::getAlign(DL, LocalVars[0]);
|
|
|
|
GlobalVariable *SGV = new GlobalVariable(
|
|
M, LDSTy, false, GlobalValue::InternalLinkage, UndefValue::get(LDSTy),
|
|
VarName, nullptr, GlobalValue::NotThreadLocal, AMDGPUAS::LOCAL_ADDRESS,
|
|
false);
|
|
SGV->setAlignment(StructAlign);
|
|
|
|
DenseMap<GlobalVariable *, Constant *> Map;
|
|
Type *I32 = Type::getInt32Ty(Ctx);
|
|
for (size_t I = 0; I < LocalVars.size(); I++) {
|
|
GlobalVariable *GV = LocalVars[I];
|
|
Constant *GEPIdx[] = {ConstantInt::get(I32, 0), ConstantInt::get(I32, I)};
|
|
Constant *GEP = ConstantExpr::getGetElementPtr(LDSTy, SGV, GEPIdx, true);
|
|
if (IsPaddingField[I]) {
|
|
assert(GV->use_empty());
|
|
GV->eraseFromParent();
|
|
} else {
|
|
Map[GV] = GEP;
|
|
}
|
|
}
|
|
assert(Map.size() == LDSVarsToTransform.size());
|
|
return {SGV, std::move(Map)};
|
|
}
|
|
|
|
template <typename PredicateTy>
|
|
void replaceLDSVariablesWithStruct(
|
|
Module &M, DenseSet<GlobalVariable *> const &LDSVarsToTransformArg,
|
|
LDSVariableReplacement Replacement, PredicateTy Predicate) {
|
|
LLVMContext &Ctx = M.getContext();
|
|
const DataLayout &DL = M.getDataLayout();
|
|
|
|
// A hack... we need to insert the aliasing info in a predictable order for
|
|
// lit tests. Would like to have them in a stable order already, ideally the
|
|
// same order they get allocated, which might mean an ordered set container
|
|
std::vector<GlobalVariable *> LDSVarsToTransform(
|
|
LDSVarsToTransformArg.begin(), LDSVarsToTransformArg.end());
|
|
llvm::sort(LDSVarsToTransform.begin(), LDSVarsToTransform.end(),
|
|
[](const GlobalVariable *lhs, const GlobalVariable *rhs) {
|
|
return lhs->getName() < rhs->getName();
|
|
});
|
|
|
|
// Create alias.scope and their lists. Each field in the new structure
|
|
// does not alias with all other fields.
|
|
SmallVector<MDNode *> AliasScopes;
|
|
SmallVector<Metadata *> NoAliasList;
|
|
const size_t NumberVars = LDSVarsToTransform.size();
|
|
if (NumberVars > 1) {
|
|
MDBuilder MDB(Ctx);
|
|
AliasScopes.reserve(NumberVars);
|
|
MDNode *Domain = MDB.createAnonymousAliasScopeDomain();
|
|
for (size_t I = 0; I < NumberVars; I++) {
|
|
MDNode *Scope = MDB.createAnonymousAliasScope(Domain);
|
|
AliasScopes.push_back(Scope);
|
|
}
|
|
NoAliasList.append(&AliasScopes[1], AliasScopes.end());
|
|
}
|
|
|
|
// Replace uses of ith variable with a constantexpr to the corresponding
|
|
// field of the instance that will be allocated by AMDGPUMachineFunction
|
|
for (size_t I = 0; I < NumberVars; I++) {
|
|
GlobalVariable *GV = LDSVarsToTransform[I];
|
|
Constant *GEP = Replacement.LDSVarsToConstantGEP[GV];
|
|
|
|
GV->replaceUsesWithIf(GEP, Predicate);
|
|
|
|
APInt APOff(DL.getIndexTypeSizeInBits(GEP->getType()), 0);
|
|
GEP->stripAndAccumulateInBoundsConstantOffsets(DL, APOff);
|
|
uint64_t Offset = APOff.getZExtValue();
|
|
|
|
Align A =
|
|
commonAlignment(Replacement.SGV->getAlign().valueOrOne(), Offset);
|
|
|
|
if (I)
|
|
NoAliasList[I - 1] = AliasScopes[I - 1];
|
|
MDNode *NoAlias =
|
|
NoAliasList.empty() ? nullptr : MDNode::get(Ctx, NoAliasList);
|
|
MDNode *AliasScope =
|
|
AliasScopes.empty() ? nullptr : MDNode::get(Ctx, {AliasScopes[I]});
|
|
|
|
refineUsesAlignmentAndAA(GEP, A, DL, AliasScope, NoAlias);
|
|
}
|
|
}
|
|
|
|
void refineUsesAlignmentAndAA(Value *Ptr, Align A, const DataLayout &DL,
|
|
MDNode *AliasScope, MDNode *NoAlias,
|
|
unsigned MaxDepth = 5) {
|
|
if (!MaxDepth || (A == 1 && !AliasScope))
|
|
return;
|
|
|
|
for (User *U : Ptr->users()) {
|
|
if (auto *I = dyn_cast<Instruction>(U)) {
|
|
if (AliasScope && I->mayReadOrWriteMemory()) {
|
|
MDNode *AS = I->getMetadata(LLVMContext::MD_alias_scope);
|
|
AS = (AS ? MDNode::getMostGenericAliasScope(AS, AliasScope)
|
|
: AliasScope);
|
|
I->setMetadata(LLVMContext::MD_alias_scope, AS);
|
|
|
|
MDNode *NA = I->getMetadata(LLVMContext::MD_noalias);
|
|
NA = (NA ? MDNode::intersect(NA, NoAlias) : NoAlias);
|
|
I->setMetadata(LLVMContext::MD_noalias, NA);
|
|
}
|
|
}
|
|
|
|
if (auto *LI = dyn_cast<LoadInst>(U)) {
|
|
LI->setAlignment(std::max(A, LI->getAlign()));
|
|
continue;
|
|
}
|
|
if (auto *SI = dyn_cast<StoreInst>(U)) {
|
|
if (SI->getPointerOperand() == Ptr)
|
|
SI->setAlignment(std::max(A, SI->getAlign()));
|
|
continue;
|
|
}
|
|
if (auto *AI = dyn_cast<AtomicRMWInst>(U)) {
|
|
// None of atomicrmw operations can work on pointers, but let's
|
|
// check it anyway in case it will or we will process ConstantExpr.
|
|
if (AI->getPointerOperand() == Ptr)
|
|
AI->setAlignment(std::max(A, AI->getAlign()));
|
|
continue;
|
|
}
|
|
if (auto *AI = dyn_cast<AtomicCmpXchgInst>(U)) {
|
|
if (AI->getPointerOperand() == Ptr)
|
|
AI->setAlignment(std::max(A, AI->getAlign()));
|
|
continue;
|
|
}
|
|
if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) {
|
|
unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
|
|
APInt Off(BitWidth, 0);
|
|
if (GEP->getPointerOperand() == Ptr) {
|
|
Align GA;
|
|
if (GEP->accumulateConstantOffset(DL, Off))
|
|
GA = commonAlignment(A, Off.getLimitedValue());
|
|
refineUsesAlignmentAndAA(GEP, GA, DL, AliasScope, NoAlias,
|
|
MaxDepth - 1);
|
|
}
|
|
continue;
|
|
}
|
|
if (auto *I = dyn_cast<Instruction>(U)) {
|
|
if (I->getOpcode() == Instruction::BitCast ||
|
|
I->getOpcode() == Instruction::AddrSpaceCast)
|
|
refineUsesAlignmentAndAA(I, A, DL, AliasScope, NoAlias, MaxDepth - 1);
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
char AMDGPULowerModuleLDS::ID = 0;
|
|
|
|
char &llvm::AMDGPULowerModuleLDSID = AMDGPULowerModuleLDS::ID;
|
|
|
|
INITIALIZE_PASS(AMDGPULowerModuleLDS, DEBUG_TYPE,
|
|
"Lower uses of LDS variables from non-kernel functions", false,
|
|
false)
|
|
|
|
ModulePass *llvm::createAMDGPULowerModuleLDSPass() {
|
|
return new AMDGPULowerModuleLDS();
|
|
}
|
|
|
|
PreservedAnalyses AMDGPULowerModuleLDSPass::run(Module &M,
|
|
ModuleAnalysisManager &) {
|
|
return AMDGPULowerModuleLDS().runOnModule(M) ? PreservedAnalyses::none()
|
|
: PreservedAnalyses::all();
|
|
}
|