
This is a major change on how we represent nested name qualifications in the AST. * The nested name specifier itself and how it's stored is changed. The prefixes for types are handled within the type hierarchy, which makes canonicalization for them super cheap, no memory allocation required. Also translating a type into nested name specifier form becomes a no-op. An identifier is stored as a DependentNameType. The nested name specifier gains a lightweight handle class, to be used instead of passing around pointers, which is similar to what is implemented for TemplateName. There is still one free bit available, and this handle can be used within a PointerUnion and PointerIntPair, which should keep bit-packing aficionados happy. * The ElaboratedType node is removed, all type nodes in which it could previously apply to can now store the elaborated keyword and name qualifier, tail allocating when present. * TagTypes can now point to the exact declaration found when producing these, as opposed to the previous situation of there only existing one TagType per entity. This increases the amount of type sugar retained, and can have several applications, for example in tracking module ownership, and other tools which care about source file origins, such as IWYU. These TagTypes are lazily allocated, in order to limit the increase in AST size. This patch offers a great performance benefit. It greatly improves compilation time for [stdexec](https://github.com/NVIDIA/stdexec). For one datapoint, for `test_on2.cpp` in that project, which is the slowest compiling test, this patch improves `-c` compilation time by about 7.2%, with the `-fsyntax-only` improvement being at ~12%. This has great results on compile-time-tracker as well:  This patch also further enables other optimziations in the future, and will reduce the performance impact of template specialization resugaring when that lands. It has some other miscelaneous drive-by fixes. About the review: Yes the patch is huge, sorry about that. Part of the reason is that I started by the nested name specifier part, before the ElaboratedType part, but that had a huge performance downside, as ElaboratedType is a big performance hog. I didn't have the steam to go back and change the patch after the fact. There is also a lot of internal API changes, and it made sense to remove ElaboratedType in one go, versus removing it from one type at a time, as that would present much more churn to the users. Also, the nested name specifier having a different API avoids missing changes related to how prefixes work now, which could make existing code compile but not work. How to review: The important changes are all in `clang/include/clang/AST` and `clang/lib/AST`, with also important changes in `clang/lib/Sema/TreeTransform.h`. The rest and bulk of the changes are mostly consequences of the changes in API. PS: TagType::getDecl is renamed to `getOriginalDecl` in this patch, just for easier to rebasing. I plan to rename it back after this lands. Fixes #136624 Fixes https://github.com/llvm/llvm-project/issues/43179 Fixes https://github.com/llvm/llvm-project/issues/68670 Fixes https://github.com/llvm/llvm-project/issues/92757
1019 lines
33 KiB
C++
1019 lines
33 KiB
C++
//===- ASTDiff.cpp - AST differencing implementation-----------*- C++ -*- -===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains definitons for the AST differencing interface.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/Tooling/ASTDiff/ASTDiff.h"
|
|
#include "clang/AST/ParentMapContext.h"
|
|
#include "clang/AST/RecursiveASTVisitor.h"
|
|
#include "clang/Basic/SourceManager.h"
|
|
#include "clang/Lex/Lexer.h"
|
|
#include "llvm/ADT/PriorityQueue.h"
|
|
|
|
#include <limits>
|
|
#include <memory>
|
|
#include <optional>
|
|
#include <unordered_set>
|
|
|
|
using namespace llvm;
|
|
using namespace clang;
|
|
|
|
namespace clang {
|
|
namespace diff {
|
|
|
|
namespace {
|
|
/// Maps nodes of the left tree to ones on the right, and vice versa.
|
|
class Mapping {
|
|
public:
|
|
Mapping() = default;
|
|
Mapping(Mapping &&Other) = default;
|
|
Mapping &operator=(Mapping &&Other) = default;
|
|
|
|
Mapping(size_t Size) {
|
|
SrcToDst = std::make_unique<NodeId[]>(Size);
|
|
DstToSrc = std::make_unique<NodeId[]>(Size);
|
|
}
|
|
|
|
void link(NodeId Src, NodeId Dst) {
|
|
SrcToDst[Src] = Dst, DstToSrc[Dst] = Src;
|
|
}
|
|
|
|
NodeId getDst(NodeId Src) const { return SrcToDst[Src]; }
|
|
NodeId getSrc(NodeId Dst) const { return DstToSrc[Dst]; }
|
|
bool hasSrc(NodeId Src) const { return getDst(Src).isValid(); }
|
|
bool hasDst(NodeId Dst) const { return getSrc(Dst).isValid(); }
|
|
|
|
private:
|
|
std::unique_ptr<NodeId[]> SrcToDst, DstToSrc;
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
class ASTDiff::Impl {
|
|
public:
|
|
SyntaxTree::Impl &T1, &T2;
|
|
Mapping TheMapping;
|
|
|
|
Impl(SyntaxTree::Impl &T1, SyntaxTree::Impl &T2,
|
|
const ComparisonOptions &Options);
|
|
|
|
/// Matches nodes one-by-one based on their similarity.
|
|
void computeMapping();
|
|
|
|
// Compute Change for each node based on similarity.
|
|
void computeChangeKinds(Mapping &M);
|
|
|
|
NodeId getMapped(const std::unique_ptr<SyntaxTree::Impl> &Tree,
|
|
NodeId Id) const {
|
|
if (&*Tree == &T1)
|
|
return TheMapping.getDst(Id);
|
|
assert(&*Tree == &T2 && "Invalid tree.");
|
|
return TheMapping.getSrc(Id);
|
|
}
|
|
|
|
private:
|
|
// Returns true if the two subtrees are identical.
|
|
bool identical(NodeId Id1, NodeId Id2) const;
|
|
|
|
// Returns false if the nodes must not be mached.
|
|
bool isMatchingPossible(NodeId Id1, NodeId Id2) const;
|
|
|
|
// Returns true if the nodes' parents are matched.
|
|
bool haveSameParents(const Mapping &M, NodeId Id1, NodeId Id2) const;
|
|
|
|
// Uses an optimal albeit slow algorithm to compute a mapping between two
|
|
// subtrees, but only if both have fewer nodes than MaxSize.
|
|
void addOptimalMapping(Mapping &M, NodeId Id1, NodeId Id2) const;
|
|
|
|
// Computes the ratio of common descendants between the two nodes.
|
|
// Descendants are only considered to be equal when they are mapped in M.
|
|
double getJaccardSimilarity(const Mapping &M, NodeId Id1, NodeId Id2) const;
|
|
|
|
// Returns the node that has the highest degree of similarity.
|
|
NodeId findCandidate(const Mapping &M, NodeId Id1) const;
|
|
|
|
// Returns a mapping of identical subtrees.
|
|
Mapping matchTopDown() const;
|
|
|
|
// Tries to match any yet unmapped nodes, in a bottom-up fashion.
|
|
void matchBottomUp(Mapping &M) const;
|
|
|
|
const ComparisonOptions &Options;
|
|
|
|
friend class ZhangShashaMatcher;
|
|
};
|
|
|
|
/// Represents the AST of a TranslationUnit.
|
|
class SyntaxTree::Impl {
|
|
public:
|
|
Impl(SyntaxTree *Parent, ASTContext &AST);
|
|
/// Constructs a tree from an AST node.
|
|
Impl(SyntaxTree *Parent, Decl *N, ASTContext &AST);
|
|
Impl(SyntaxTree *Parent, Stmt *N, ASTContext &AST);
|
|
template <class T>
|
|
Impl(SyntaxTree *Parent,
|
|
std::enable_if_t<std::is_base_of_v<Stmt, T>, T> *Node, ASTContext &AST)
|
|
: Impl(Parent, dyn_cast<Stmt>(Node), AST) {}
|
|
template <class T>
|
|
Impl(SyntaxTree *Parent,
|
|
std::enable_if_t<std::is_base_of_v<Decl, T>, T> *Node, ASTContext &AST)
|
|
: Impl(Parent, dyn_cast<Decl>(Node), AST) {}
|
|
|
|
SyntaxTree *Parent;
|
|
ASTContext &AST;
|
|
PrintingPolicy TypePP;
|
|
/// Nodes in preorder.
|
|
std::vector<Node> Nodes;
|
|
std::vector<NodeId> Leaves;
|
|
// Maps preorder indices to postorder ones.
|
|
std::vector<int> PostorderIds;
|
|
std::vector<NodeId> NodesBfs;
|
|
|
|
int getSize() const { return Nodes.size(); }
|
|
NodeId getRootId() const { return 0; }
|
|
PreorderIterator begin() const { return getRootId(); }
|
|
PreorderIterator end() const { return getSize(); }
|
|
|
|
const Node &getNode(NodeId Id) const { return Nodes[Id]; }
|
|
Node &getMutableNode(NodeId Id) { return Nodes[Id]; }
|
|
bool isValidNodeId(NodeId Id) const { return Id >= 0 && Id < getSize(); }
|
|
void addNode(Node &N) { Nodes.push_back(N); }
|
|
int getNumberOfDescendants(NodeId Id) const;
|
|
bool isInSubtree(NodeId Id, NodeId SubtreeRoot) const;
|
|
int findPositionInParent(NodeId Id, bool Shifted = false) const;
|
|
|
|
std::string getRelativeName(const NamedDecl *ND,
|
|
const DeclContext *Context) const;
|
|
std::string getRelativeName(const NamedDecl *ND) const;
|
|
|
|
std::string getNodeValue(NodeId Id) const;
|
|
std::string getNodeValue(const Node &Node) const;
|
|
std::string getDeclValue(const Decl *D) const;
|
|
std::string getStmtValue(const Stmt *S) const;
|
|
|
|
private:
|
|
void initTree();
|
|
void setLeftMostDescendants();
|
|
};
|
|
|
|
static bool isSpecializedNodeExcluded(const Decl *D) { return D->isImplicit(); }
|
|
static bool isSpecializedNodeExcluded(const Stmt *S) { return false; }
|
|
static bool isSpecializedNodeExcluded(CXXCtorInitializer *I) {
|
|
return !I->isWritten();
|
|
}
|
|
|
|
template <class T>
|
|
static bool isNodeExcluded(const SourceManager &SrcMgr, T *N) {
|
|
if (!N)
|
|
return true;
|
|
SourceLocation SLoc = N->getSourceRange().getBegin();
|
|
if (SLoc.isValid()) {
|
|
// Ignore everything from other files.
|
|
if (!SrcMgr.isInMainFile(SLoc))
|
|
return true;
|
|
// Ignore macros.
|
|
if (SLoc != SrcMgr.getSpellingLoc(SLoc))
|
|
return true;
|
|
}
|
|
return isSpecializedNodeExcluded(N);
|
|
}
|
|
|
|
namespace {
|
|
// Sets Height, Parent and Children for each node.
|
|
struct PreorderVisitor : public RecursiveASTVisitor<PreorderVisitor> {
|
|
int Id = 0, Depth = 0;
|
|
NodeId Parent;
|
|
SyntaxTree::Impl &Tree;
|
|
|
|
PreorderVisitor(SyntaxTree::Impl &Tree) : Tree(Tree) {}
|
|
|
|
template <class T> std::tuple<NodeId, NodeId> PreTraverse(T *ASTNode) {
|
|
NodeId MyId = Id;
|
|
Tree.Nodes.emplace_back();
|
|
Node &N = Tree.getMutableNode(MyId);
|
|
N.Parent = Parent;
|
|
N.Depth = Depth;
|
|
N.ASTNode = DynTypedNode::create(*ASTNode);
|
|
assert(!N.ASTNode.getNodeKind().isNone() &&
|
|
"Expected nodes to have a valid kind.");
|
|
if (Parent.isValid()) {
|
|
Node &P = Tree.getMutableNode(Parent);
|
|
P.Children.push_back(MyId);
|
|
}
|
|
Parent = MyId;
|
|
++Id;
|
|
++Depth;
|
|
return std::make_tuple(MyId, Tree.getNode(MyId).Parent);
|
|
}
|
|
void PostTraverse(std::tuple<NodeId, NodeId> State) {
|
|
NodeId MyId, PreviousParent;
|
|
std::tie(MyId, PreviousParent) = State;
|
|
assert(MyId.isValid() && "Expecting to only traverse valid nodes.");
|
|
Parent = PreviousParent;
|
|
--Depth;
|
|
Node &N = Tree.getMutableNode(MyId);
|
|
N.RightMostDescendant = Id - 1;
|
|
assert(N.RightMostDescendant >= 0 &&
|
|
N.RightMostDescendant < Tree.getSize() &&
|
|
"Rightmost descendant must be a valid tree node.");
|
|
if (N.isLeaf())
|
|
Tree.Leaves.push_back(MyId);
|
|
N.Height = 1;
|
|
for (NodeId Child : N.Children)
|
|
N.Height = std::max(N.Height, 1 + Tree.getNode(Child).Height);
|
|
}
|
|
bool TraverseDecl(Decl *D) {
|
|
if (isNodeExcluded(Tree.AST.getSourceManager(), D))
|
|
return true;
|
|
auto SavedState = PreTraverse(D);
|
|
RecursiveASTVisitor<PreorderVisitor>::TraverseDecl(D);
|
|
PostTraverse(SavedState);
|
|
return true;
|
|
}
|
|
bool TraverseStmt(Stmt *S) {
|
|
if (auto *E = dyn_cast_or_null<Expr>(S))
|
|
S = E->IgnoreImplicit();
|
|
if (isNodeExcluded(Tree.AST.getSourceManager(), S))
|
|
return true;
|
|
auto SavedState = PreTraverse(S);
|
|
RecursiveASTVisitor<PreorderVisitor>::TraverseStmt(S);
|
|
PostTraverse(SavedState);
|
|
return true;
|
|
}
|
|
bool TraverseType(QualType T, bool TraverseQualifier = true) { return true; }
|
|
bool TraverseConstructorInitializer(CXXCtorInitializer *Init) {
|
|
if (isNodeExcluded(Tree.AST.getSourceManager(), Init))
|
|
return true;
|
|
auto SavedState = PreTraverse(Init);
|
|
RecursiveASTVisitor<PreorderVisitor>::TraverseConstructorInitializer(Init);
|
|
PostTraverse(SavedState);
|
|
return true;
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
SyntaxTree::Impl::Impl(SyntaxTree *Parent, ASTContext &AST)
|
|
: Parent(Parent), AST(AST), TypePP(AST.getLangOpts()) {
|
|
TypePP.AnonymousTagLocations = false;
|
|
}
|
|
|
|
SyntaxTree::Impl::Impl(SyntaxTree *Parent, Decl *N, ASTContext &AST)
|
|
: Impl(Parent, AST) {
|
|
PreorderVisitor PreorderWalker(*this);
|
|
PreorderWalker.TraverseDecl(N);
|
|
initTree();
|
|
}
|
|
|
|
SyntaxTree::Impl::Impl(SyntaxTree *Parent, Stmt *N, ASTContext &AST)
|
|
: Impl(Parent, AST) {
|
|
PreorderVisitor PreorderWalker(*this);
|
|
PreorderWalker.TraverseStmt(N);
|
|
initTree();
|
|
}
|
|
|
|
static std::vector<NodeId> getSubtreePostorder(const SyntaxTree::Impl &Tree,
|
|
NodeId Root) {
|
|
std::vector<NodeId> Postorder;
|
|
std::function<void(NodeId)> Traverse = [&](NodeId Id) {
|
|
const Node &N = Tree.getNode(Id);
|
|
for (NodeId Child : N.Children)
|
|
Traverse(Child);
|
|
Postorder.push_back(Id);
|
|
};
|
|
Traverse(Root);
|
|
return Postorder;
|
|
}
|
|
|
|
static std::vector<NodeId> getSubtreeBfs(const SyntaxTree::Impl &Tree,
|
|
NodeId Root) {
|
|
std::vector<NodeId> Ids;
|
|
size_t Expanded = 0;
|
|
Ids.push_back(Root);
|
|
while (Expanded < Ids.size())
|
|
for (NodeId Child : Tree.getNode(Ids[Expanded++]).Children)
|
|
Ids.push_back(Child);
|
|
return Ids;
|
|
}
|
|
|
|
void SyntaxTree::Impl::initTree() {
|
|
setLeftMostDescendants();
|
|
int PostorderId = 0;
|
|
PostorderIds.resize(getSize());
|
|
std::function<void(NodeId)> PostorderTraverse = [&](NodeId Id) {
|
|
for (NodeId Child : getNode(Id).Children)
|
|
PostorderTraverse(Child);
|
|
PostorderIds[Id] = PostorderId;
|
|
++PostorderId;
|
|
};
|
|
PostorderTraverse(getRootId());
|
|
NodesBfs = getSubtreeBfs(*this, getRootId());
|
|
}
|
|
|
|
void SyntaxTree::Impl::setLeftMostDescendants() {
|
|
for (NodeId Leaf : Leaves) {
|
|
getMutableNode(Leaf).LeftMostDescendant = Leaf;
|
|
NodeId Parent, Cur = Leaf;
|
|
while ((Parent = getNode(Cur).Parent).isValid() &&
|
|
getNode(Parent).Children[0] == Cur) {
|
|
Cur = Parent;
|
|
getMutableNode(Cur).LeftMostDescendant = Leaf;
|
|
}
|
|
}
|
|
}
|
|
|
|
int SyntaxTree::Impl::getNumberOfDescendants(NodeId Id) const {
|
|
return getNode(Id).RightMostDescendant - Id + 1;
|
|
}
|
|
|
|
bool SyntaxTree::Impl::isInSubtree(NodeId Id, NodeId SubtreeRoot) const {
|
|
return Id >= SubtreeRoot && Id <= getNode(SubtreeRoot).RightMostDescendant;
|
|
}
|
|
|
|
int SyntaxTree::Impl::findPositionInParent(NodeId Id, bool Shifted) const {
|
|
NodeId Parent = getNode(Id).Parent;
|
|
if (Parent.isInvalid())
|
|
return 0;
|
|
const auto &Siblings = getNode(Parent).Children;
|
|
int Position = 0;
|
|
for (size_t I = 0, E = Siblings.size(); I < E; ++I) {
|
|
if (Shifted)
|
|
Position += getNode(Siblings[I]).Shift;
|
|
if (Siblings[I] == Id) {
|
|
Position += I;
|
|
return Position;
|
|
}
|
|
}
|
|
llvm_unreachable("Node not found in parent's children.");
|
|
}
|
|
|
|
// Returns the qualified name of ND. If it is subordinate to Context,
|
|
// then the prefix of the latter is removed from the returned value.
|
|
std::string
|
|
SyntaxTree::Impl::getRelativeName(const NamedDecl *ND,
|
|
const DeclContext *Context) const {
|
|
std::string Val = ND->getQualifiedNameAsString();
|
|
std::string ContextPrefix;
|
|
if (!Context)
|
|
return Val;
|
|
if (auto *Namespace = dyn_cast<NamespaceDecl>(Context))
|
|
ContextPrefix = Namespace->getQualifiedNameAsString();
|
|
else if (auto *Record = dyn_cast<RecordDecl>(Context))
|
|
ContextPrefix = Record->getQualifiedNameAsString();
|
|
else if (AST.getLangOpts().CPlusPlus11)
|
|
if (auto *Tag = dyn_cast<TagDecl>(Context))
|
|
ContextPrefix = Tag->getQualifiedNameAsString();
|
|
// Strip the qualifier, if Val refers to something in the current scope.
|
|
// But leave one leading ':' in place, so that we know that this is a
|
|
// relative path.
|
|
if (!ContextPrefix.empty() && StringRef(Val).starts_with(ContextPrefix))
|
|
Val = Val.substr(ContextPrefix.size() + 1);
|
|
return Val;
|
|
}
|
|
|
|
std::string SyntaxTree::Impl::getRelativeName(const NamedDecl *ND) const {
|
|
return getRelativeName(ND, ND->getDeclContext());
|
|
}
|
|
|
|
static const DeclContext *getEnclosingDeclContext(ASTContext &AST,
|
|
const Stmt *S) {
|
|
while (S) {
|
|
const auto &Parents = AST.getParents(*S);
|
|
if (Parents.empty())
|
|
return nullptr;
|
|
const auto &P = Parents[0];
|
|
if (const auto *D = P.get<Decl>())
|
|
return D->getDeclContext();
|
|
S = P.get<Stmt>();
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
static std::string getInitializerValue(const CXXCtorInitializer *Init,
|
|
const PrintingPolicy &TypePP) {
|
|
if (Init->isAnyMemberInitializer())
|
|
return std::string(Init->getAnyMember()->getName());
|
|
if (Init->isBaseInitializer())
|
|
return QualType(Init->getBaseClass(), 0).getAsString(TypePP);
|
|
if (Init->isDelegatingInitializer())
|
|
return Init->getTypeSourceInfo()->getType().getAsString(TypePP);
|
|
llvm_unreachable("Unknown initializer type");
|
|
}
|
|
|
|
std::string SyntaxTree::Impl::getNodeValue(NodeId Id) const {
|
|
return getNodeValue(getNode(Id));
|
|
}
|
|
|
|
std::string SyntaxTree::Impl::getNodeValue(const Node &N) const {
|
|
const DynTypedNode &DTN = N.ASTNode;
|
|
if (auto *S = DTN.get<Stmt>())
|
|
return getStmtValue(S);
|
|
if (auto *D = DTN.get<Decl>())
|
|
return getDeclValue(D);
|
|
if (auto *Init = DTN.get<CXXCtorInitializer>())
|
|
return getInitializerValue(Init, TypePP);
|
|
llvm_unreachable("Fatal: unhandled AST node.\n");
|
|
}
|
|
|
|
std::string SyntaxTree::Impl::getDeclValue(const Decl *D) const {
|
|
std::string Value;
|
|
if (auto *V = dyn_cast<ValueDecl>(D))
|
|
return getRelativeName(V) + "(" + V->getType().getAsString(TypePP) + ")";
|
|
if (auto *N = dyn_cast<NamedDecl>(D))
|
|
Value += getRelativeName(N) + ";";
|
|
if (auto *T = dyn_cast<TypedefNameDecl>(D))
|
|
return Value + T->getUnderlyingType().getAsString(TypePP) + ";";
|
|
if (auto *T = dyn_cast<TypeDecl>(D)) {
|
|
const ASTContext &Ctx = T->getASTContext();
|
|
Value +=
|
|
Ctx.getTypeDeclType(T)->getCanonicalTypeInternal().getAsString(TypePP) +
|
|
";";
|
|
}
|
|
if (auto *U = dyn_cast<UsingDirectiveDecl>(D))
|
|
return std::string(U->getNominatedNamespace()->getName());
|
|
if (auto *A = dyn_cast<AccessSpecDecl>(D)) {
|
|
CharSourceRange Range(A->getSourceRange(), false);
|
|
return std::string(
|
|
Lexer::getSourceText(Range, AST.getSourceManager(), AST.getLangOpts()));
|
|
}
|
|
return Value;
|
|
}
|
|
|
|
std::string SyntaxTree::Impl::getStmtValue(const Stmt *S) const {
|
|
if (auto *U = dyn_cast<UnaryOperator>(S))
|
|
return std::string(UnaryOperator::getOpcodeStr(U->getOpcode()));
|
|
if (auto *B = dyn_cast<BinaryOperator>(S))
|
|
return std::string(B->getOpcodeStr());
|
|
if (auto *M = dyn_cast<MemberExpr>(S))
|
|
return getRelativeName(M->getMemberDecl());
|
|
if (auto *I = dyn_cast<IntegerLiteral>(S)) {
|
|
SmallString<256> Str;
|
|
I->getValue().toString(Str, /*Radix=*/10, /*Signed=*/false);
|
|
return std::string(Str);
|
|
}
|
|
if (auto *F = dyn_cast<FloatingLiteral>(S)) {
|
|
SmallString<256> Str;
|
|
F->getValue().toString(Str);
|
|
return std::string(Str);
|
|
}
|
|
if (auto *D = dyn_cast<DeclRefExpr>(S))
|
|
return getRelativeName(D->getDecl(), getEnclosingDeclContext(AST, S));
|
|
if (auto *String = dyn_cast<StringLiteral>(S))
|
|
return std::string(String->getString());
|
|
if (auto *B = dyn_cast<CXXBoolLiteralExpr>(S))
|
|
return B->getValue() ? "true" : "false";
|
|
return "";
|
|
}
|
|
|
|
/// Identifies a node in a subtree by its postorder offset, starting at 1.
|
|
struct SNodeId {
|
|
int Id = 0;
|
|
|
|
explicit SNodeId(int Id) : Id(Id) {}
|
|
explicit SNodeId() = default;
|
|
|
|
operator int() const { return Id; }
|
|
SNodeId &operator++() { return ++Id, *this; }
|
|
SNodeId &operator--() { return --Id, *this; }
|
|
SNodeId operator+(int Other) const { return SNodeId(Id + Other); }
|
|
};
|
|
|
|
class Subtree {
|
|
private:
|
|
/// The parent tree.
|
|
const SyntaxTree::Impl &Tree;
|
|
/// Maps SNodeIds to original ids.
|
|
std::vector<NodeId> RootIds;
|
|
/// Maps subtree nodes to their leftmost descendants wtihin the subtree.
|
|
std::vector<SNodeId> LeftMostDescendants;
|
|
|
|
public:
|
|
std::vector<SNodeId> KeyRoots;
|
|
|
|
Subtree(const SyntaxTree::Impl &Tree, NodeId SubtreeRoot) : Tree(Tree) {
|
|
RootIds = getSubtreePostorder(Tree, SubtreeRoot);
|
|
int NumLeaves = setLeftMostDescendants();
|
|
computeKeyRoots(NumLeaves);
|
|
}
|
|
int getSize() const { return RootIds.size(); }
|
|
NodeId getIdInRoot(SNodeId Id) const {
|
|
assert(Id > 0 && Id <= getSize() && "Invalid subtree node index.");
|
|
return RootIds[Id - 1];
|
|
}
|
|
const Node &getNode(SNodeId Id) const {
|
|
return Tree.getNode(getIdInRoot(Id));
|
|
}
|
|
SNodeId getLeftMostDescendant(SNodeId Id) const {
|
|
assert(Id > 0 && Id <= getSize() && "Invalid subtree node index.");
|
|
return LeftMostDescendants[Id - 1];
|
|
}
|
|
/// Returns the postorder index of the leftmost descendant in the subtree.
|
|
NodeId getPostorderOffset() const {
|
|
return Tree.PostorderIds[getIdInRoot(SNodeId(1))];
|
|
}
|
|
std::string getNodeValue(SNodeId Id) const {
|
|
return Tree.getNodeValue(getIdInRoot(Id));
|
|
}
|
|
|
|
private:
|
|
/// Returns the number of leafs in the subtree.
|
|
int setLeftMostDescendants() {
|
|
int NumLeaves = 0;
|
|
LeftMostDescendants.resize(getSize());
|
|
for (int I = 0; I < getSize(); ++I) {
|
|
SNodeId SI(I + 1);
|
|
const Node &N = getNode(SI);
|
|
NumLeaves += N.isLeaf();
|
|
assert(I == Tree.PostorderIds[getIdInRoot(SI)] - getPostorderOffset() &&
|
|
"Postorder traversal in subtree should correspond to traversal in "
|
|
"the root tree by a constant offset.");
|
|
LeftMostDescendants[I] = SNodeId(Tree.PostorderIds[N.LeftMostDescendant] -
|
|
getPostorderOffset());
|
|
}
|
|
return NumLeaves;
|
|
}
|
|
void computeKeyRoots(int Leaves) {
|
|
KeyRoots.resize(Leaves);
|
|
std::unordered_set<int> Visited;
|
|
int K = Leaves - 1;
|
|
for (SNodeId I(getSize()); I > 0; --I) {
|
|
SNodeId LeftDesc = getLeftMostDescendant(I);
|
|
if (Visited.count(LeftDesc))
|
|
continue;
|
|
assert(K >= 0 && "K should be non-negative");
|
|
KeyRoots[K] = I;
|
|
Visited.insert(LeftDesc);
|
|
--K;
|
|
}
|
|
}
|
|
};
|
|
|
|
/// Implementation of Zhang and Shasha's Algorithm for tree edit distance.
|
|
/// Computes an optimal mapping between two trees using only insertion,
|
|
/// deletion and update as edit actions (similar to the Levenshtein distance).
|
|
class ZhangShashaMatcher {
|
|
const ASTDiff::Impl &DiffImpl;
|
|
Subtree S1;
|
|
Subtree S2;
|
|
std::unique_ptr<std::unique_ptr<double[]>[]> TreeDist, ForestDist;
|
|
|
|
public:
|
|
ZhangShashaMatcher(const ASTDiff::Impl &DiffImpl, const SyntaxTree::Impl &T1,
|
|
const SyntaxTree::Impl &T2, NodeId Id1, NodeId Id2)
|
|
: DiffImpl(DiffImpl), S1(T1, Id1), S2(T2, Id2) {
|
|
TreeDist = std::make_unique<std::unique_ptr<double[]>[]>(
|
|
size_t(S1.getSize()) + 1);
|
|
ForestDist = std::make_unique<std::unique_ptr<double[]>[]>(
|
|
size_t(S1.getSize()) + 1);
|
|
for (int I = 0, E = S1.getSize() + 1; I < E; ++I) {
|
|
TreeDist[I] = std::make_unique<double[]>(size_t(S2.getSize()) + 1);
|
|
ForestDist[I] = std::make_unique<double[]>(size_t(S2.getSize()) + 1);
|
|
}
|
|
}
|
|
|
|
std::vector<std::pair<NodeId, NodeId>> getMatchingNodes() {
|
|
std::vector<std::pair<NodeId, NodeId>> Matches;
|
|
std::vector<std::pair<SNodeId, SNodeId>> TreePairs;
|
|
|
|
computeTreeDist();
|
|
|
|
bool RootNodePair = true;
|
|
|
|
TreePairs.emplace_back(SNodeId(S1.getSize()), SNodeId(S2.getSize()));
|
|
|
|
while (!TreePairs.empty()) {
|
|
SNodeId LastRow, LastCol, FirstRow, FirstCol, Row, Col;
|
|
std::tie(LastRow, LastCol) = TreePairs.back();
|
|
TreePairs.pop_back();
|
|
|
|
if (!RootNodePair) {
|
|
computeForestDist(LastRow, LastCol);
|
|
}
|
|
|
|
RootNodePair = false;
|
|
|
|
FirstRow = S1.getLeftMostDescendant(LastRow);
|
|
FirstCol = S2.getLeftMostDescendant(LastCol);
|
|
|
|
Row = LastRow;
|
|
Col = LastCol;
|
|
|
|
while (Row > FirstRow || Col > FirstCol) {
|
|
if (Row > FirstRow &&
|
|
ForestDist[Row - 1][Col] + 1 == ForestDist[Row][Col]) {
|
|
--Row;
|
|
} else if (Col > FirstCol &&
|
|
ForestDist[Row][Col - 1] + 1 == ForestDist[Row][Col]) {
|
|
--Col;
|
|
} else {
|
|
SNodeId LMD1 = S1.getLeftMostDescendant(Row);
|
|
SNodeId LMD2 = S2.getLeftMostDescendant(Col);
|
|
if (LMD1 == S1.getLeftMostDescendant(LastRow) &&
|
|
LMD2 == S2.getLeftMostDescendant(LastCol)) {
|
|
NodeId Id1 = S1.getIdInRoot(Row);
|
|
NodeId Id2 = S2.getIdInRoot(Col);
|
|
assert(DiffImpl.isMatchingPossible(Id1, Id2) &&
|
|
"These nodes must not be matched.");
|
|
Matches.emplace_back(Id1, Id2);
|
|
--Row;
|
|
--Col;
|
|
} else {
|
|
TreePairs.emplace_back(Row, Col);
|
|
Row = LMD1;
|
|
Col = LMD2;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return Matches;
|
|
}
|
|
|
|
private:
|
|
/// We use a simple cost model for edit actions, which seems good enough.
|
|
/// Simple cost model for edit actions. This seems to make the matching
|
|
/// algorithm perform reasonably well.
|
|
/// The values range between 0 and 1, or infinity if this edit action should
|
|
/// always be avoided.
|
|
static constexpr double DeletionCost = 1;
|
|
static constexpr double InsertionCost = 1;
|
|
|
|
double getUpdateCost(SNodeId Id1, SNodeId Id2) {
|
|
if (!DiffImpl.isMatchingPossible(S1.getIdInRoot(Id1), S2.getIdInRoot(Id2)))
|
|
return std::numeric_limits<double>::max();
|
|
return S1.getNodeValue(Id1) != S2.getNodeValue(Id2);
|
|
}
|
|
|
|
void computeTreeDist() {
|
|
for (SNodeId Id1 : S1.KeyRoots)
|
|
for (SNodeId Id2 : S2.KeyRoots)
|
|
computeForestDist(Id1, Id2);
|
|
}
|
|
|
|
void computeForestDist(SNodeId Id1, SNodeId Id2) {
|
|
assert(Id1 > 0 && Id2 > 0 && "Expecting offsets greater than 0.");
|
|
SNodeId LMD1 = S1.getLeftMostDescendant(Id1);
|
|
SNodeId LMD2 = S2.getLeftMostDescendant(Id2);
|
|
|
|
ForestDist[LMD1][LMD2] = 0;
|
|
for (SNodeId D1 = LMD1 + 1; D1 <= Id1; ++D1) {
|
|
ForestDist[D1][LMD2] = ForestDist[D1 - 1][LMD2] + DeletionCost;
|
|
for (SNodeId D2 = LMD2 + 1; D2 <= Id2; ++D2) {
|
|
ForestDist[LMD1][D2] = ForestDist[LMD1][D2 - 1] + InsertionCost;
|
|
SNodeId DLMD1 = S1.getLeftMostDescendant(D1);
|
|
SNodeId DLMD2 = S2.getLeftMostDescendant(D2);
|
|
if (DLMD1 == LMD1 && DLMD2 == LMD2) {
|
|
double UpdateCost = getUpdateCost(D1, D2);
|
|
ForestDist[D1][D2] =
|
|
std::min({ForestDist[D1 - 1][D2] + DeletionCost,
|
|
ForestDist[D1][D2 - 1] + InsertionCost,
|
|
ForestDist[D1 - 1][D2 - 1] + UpdateCost});
|
|
TreeDist[D1][D2] = ForestDist[D1][D2];
|
|
} else {
|
|
ForestDist[D1][D2] =
|
|
std::min({ForestDist[D1 - 1][D2] + DeletionCost,
|
|
ForestDist[D1][D2 - 1] + InsertionCost,
|
|
ForestDist[DLMD1][DLMD2] + TreeDist[D1][D2]});
|
|
}
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
ASTNodeKind Node::getType() const { return ASTNode.getNodeKind(); }
|
|
|
|
StringRef Node::getTypeLabel() const { return getType().asStringRef(); }
|
|
|
|
std::optional<std::string> Node::getQualifiedIdentifier() const {
|
|
if (auto *ND = ASTNode.get<NamedDecl>()) {
|
|
if (ND->getDeclName().isIdentifier())
|
|
return ND->getQualifiedNameAsString();
|
|
}
|
|
return std::nullopt;
|
|
}
|
|
|
|
std::optional<StringRef> Node::getIdentifier() const {
|
|
if (auto *ND = ASTNode.get<NamedDecl>()) {
|
|
if (ND->getDeclName().isIdentifier())
|
|
return ND->getName();
|
|
}
|
|
return std::nullopt;
|
|
}
|
|
|
|
namespace {
|
|
// Compares nodes by their depth.
|
|
struct HeightLess {
|
|
const SyntaxTree::Impl &Tree;
|
|
HeightLess(const SyntaxTree::Impl &Tree) : Tree(Tree) {}
|
|
bool operator()(NodeId Id1, NodeId Id2) const {
|
|
return Tree.getNode(Id1).Height < Tree.getNode(Id2).Height;
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
namespace {
|
|
// Priority queue for nodes, sorted descendingly by their height.
|
|
class PriorityList {
|
|
const SyntaxTree::Impl &Tree;
|
|
HeightLess Cmp;
|
|
std::vector<NodeId> Container;
|
|
PriorityQueue<NodeId, std::vector<NodeId>, HeightLess> List;
|
|
|
|
public:
|
|
PriorityList(const SyntaxTree::Impl &Tree)
|
|
: Tree(Tree), Cmp(Tree), List(Cmp, Container) {}
|
|
|
|
void push(NodeId id) { List.push(id); }
|
|
|
|
std::vector<NodeId> pop() {
|
|
int Max = peekMax();
|
|
std::vector<NodeId> Result;
|
|
if (Max == 0)
|
|
return Result;
|
|
while (peekMax() == Max) {
|
|
Result.push_back(List.top());
|
|
List.pop();
|
|
}
|
|
// TODO this is here to get a stable output, not a good heuristic
|
|
llvm::sort(Result);
|
|
return Result;
|
|
}
|
|
int peekMax() const {
|
|
if (List.empty())
|
|
return 0;
|
|
return Tree.getNode(List.top()).Height;
|
|
}
|
|
void open(NodeId Id) {
|
|
for (NodeId Child : Tree.getNode(Id).Children)
|
|
push(Child);
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
bool ASTDiff::Impl::identical(NodeId Id1, NodeId Id2) const {
|
|
const Node &N1 = T1.getNode(Id1);
|
|
const Node &N2 = T2.getNode(Id2);
|
|
if (N1.Children.size() != N2.Children.size() ||
|
|
!isMatchingPossible(Id1, Id2) ||
|
|
T1.getNodeValue(Id1) != T2.getNodeValue(Id2))
|
|
return false;
|
|
for (size_t Id = 0, E = N1.Children.size(); Id < E; ++Id)
|
|
if (!identical(N1.Children[Id], N2.Children[Id]))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
bool ASTDiff::Impl::isMatchingPossible(NodeId Id1, NodeId Id2) const {
|
|
return Options.isMatchingAllowed(T1.getNode(Id1), T2.getNode(Id2));
|
|
}
|
|
|
|
bool ASTDiff::Impl::haveSameParents(const Mapping &M, NodeId Id1,
|
|
NodeId Id2) const {
|
|
NodeId P1 = T1.getNode(Id1).Parent;
|
|
NodeId P2 = T2.getNode(Id2).Parent;
|
|
return (P1.isInvalid() && P2.isInvalid()) ||
|
|
(P1.isValid() && P2.isValid() && M.getDst(P1) == P2);
|
|
}
|
|
|
|
void ASTDiff::Impl::addOptimalMapping(Mapping &M, NodeId Id1,
|
|
NodeId Id2) const {
|
|
if (std::max(T1.getNumberOfDescendants(Id1), T2.getNumberOfDescendants(Id2)) >
|
|
Options.MaxSize)
|
|
return;
|
|
ZhangShashaMatcher Matcher(*this, T1, T2, Id1, Id2);
|
|
std::vector<std::pair<NodeId, NodeId>> R = Matcher.getMatchingNodes();
|
|
for (const auto &Tuple : R) {
|
|
NodeId Src = Tuple.first;
|
|
NodeId Dst = Tuple.second;
|
|
if (!M.hasSrc(Src) && !M.hasDst(Dst))
|
|
M.link(Src, Dst);
|
|
}
|
|
}
|
|
|
|
double ASTDiff::Impl::getJaccardSimilarity(const Mapping &M, NodeId Id1,
|
|
NodeId Id2) const {
|
|
int CommonDescendants = 0;
|
|
const Node &N1 = T1.getNode(Id1);
|
|
// Count the common descendants, excluding the subtree root.
|
|
for (NodeId Src = Id1 + 1; Src <= N1.RightMostDescendant; ++Src) {
|
|
NodeId Dst = M.getDst(Src);
|
|
CommonDescendants += int(Dst.isValid() && T2.isInSubtree(Dst, Id2));
|
|
}
|
|
// We need to subtract 1 to get the number of descendants excluding the root.
|
|
double Denominator = T1.getNumberOfDescendants(Id1) - 1 +
|
|
T2.getNumberOfDescendants(Id2) - 1 - CommonDescendants;
|
|
// CommonDescendants is less than the size of one subtree.
|
|
assert(Denominator >= 0 && "Expected non-negative denominator.");
|
|
if (Denominator == 0)
|
|
return 0;
|
|
return CommonDescendants / Denominator;
|
|
}
|
|
|
|
NodeId ASTDiff::Impl::findCandidate(const Mapping &M, NodeId Id1) const {
|
|
NodeId Candidate;
|
|
double HighestSimilarity = 0.0;
|
|
for (NodeId Id2 : T2) {
|
|
if (!isMatchingPossible(Id1, Id2))
|
|
continue;
|
|
if (M.hasDst(Id2))
|
|
continue;
|
|
double Similarity = getJaccardSimilarity(M, Id1, Id2);
|
|
if (Similarity >= Options.MinSimilarity && Similarity > HighestSimilarity) {
|
|
HighestSimilarity = Similarity;
|
|
Candidate = Id2;
|
|
}
|
|
}
|
|
return Candidate;
|
|
}
|
|
|
|
void ASTDiff::Impl::matchBottomUp(Mapping &M) const {
|
|
std::vector<NodeId> Postorder = getSubtreePostorder(T1, T1.getRootId());
|
|
for (NodeId Id1 : Postorder) {
|
|
if (Id1 == T1.getRootId() && !M.hasSrc(T1.getRootId()) &&
|
|
!M.hasDst(T2.getRootId())) {
|
|
if (isMatchingPossible(T1.getRootId(), T2.getRootId())) {
|
|
M.link(T1.getRootId(), T2.getRootId());
|
|
addOptimalMapping(M, T1.getRootId(), T2.getRootId());
|
|
}
|
|
break;
|
|
}
|
|
bool Matched = M.hasSrc(Id1);
|
|
const Node &N1 = T1.getNode(Id1);
|
|
bool MatchedChildren = llvm::any_of(
|
|
N1.Children, [&](NodeId Child) { return M.hasSrc(Child); });
|
|
if (Matched || !MatchedChildren)
|
|
continue;
|
|
NodeId Id2 = findCandidate(M, Id1);
|
|
if (Id2.isValid()) {
|
|
M.link(Id1, Id2);
|
|
addOptimalMapping(M, Id1, Id2);
|
|
}
|
|
}
|
|
}
|
|
|
|
Mapping ASTDiff::Impl::matchTopDown() const {
|
|
PriorityList L1(T1);
|
|
PriorityList L2(T2);
|
|
|
|
Mapping M(T1.getSize() + T2.getSize());
|
|
|
|
L1.push(T1.getRootId());
|
|
L2.push(T2.getRootId());
|
|
|
|
int Max1, Max2;
|
|
while (std::min(Max1 = L1.peekMax(), Max2 = L2.peekMax()) >
|
|
Options.MinHeight) {
|
|
if (Max1 > Max2) {
|
|
for (NodeId Id : L1.pop())
|
|
L1.open(Id);
|
|
continue;
|
|
}
|
|
if (Max2 > Max1) {
|
|
for (NodeId Id : L2.pop())
|
|
L2.open(Id);
|
|
continue;
|
|
}
|
|
std::vector<NodeId> H1, H2;
|
|
H1 = L1.pop();
|
|
H2 = L2.pop();
|
|
for (NodeId Id1 : H1) {
|
|
for (NodeId Id2 : H2) {
|
|
if (identical(Id1, Id2) && !M.hasSrc(Id1) && !M.hasDst(Id2)) {
|
|
for (int I = 0, E = T1.getNumberOfDescendants(Id1); I < E; ++I)
|
|
M.link(Id1 + I, Id2 + I);
|
|
}
|
|
}
|
|
}
|
|
for (NodeId Id1 : H1) {
|
|
if (!M.hasSrc(Id1))
|
|
L1.open(Id1);
|
|
}
|
|
for (NodeId Id2 : H2) {
|
|
if (!M.hasDst(Id2))
|
|
L2.open(Id2);
|
|
}
|
|
}
|
|
return M;
|
|
}
|
|
|
|
ASTDiff::Impl::Impl(SyntaxTree::Impl &T1, SyntaxTree::Impl &T2,
|
|
const ComparisonOptions &Options)
|
|
: T1(T1), T2(T2), Options(Options) {
|
|
computeMapping();
|
|
computeChangeKinds(TheMapping);
|
|
}
|
|
|
|
void ASTDiff::Impl::computeMapping() {
|
|
TheMapping = matchTopDown();
|
|
if (Options.StopAfterTopDown)
|
|
return;
|
|
matchBottomUp(TheMapping);
|
|
}
|
|
|
|
void ASTDiff::Impl::computeChangeKinds(Mapping &M) {
|
|
for (NodeId Id1 : T1) {
|
|
if (!M.hasSrc(Id1)) {
|
|
T1.getMutableNode(Id1).Change = Delete;
|
|
T1.getMutableNode(Id1).Shift -= 1;
|
|
}
|
|
}
|
|
for (NodeId Id2 : T2) {
|
|
if (!M.hasDst(Id2)) {
|
|
T2.getMutableNode(Id2).Change = Insert;
|
|
T2.getMutableNode(Id2).Shift -= 1;
|
|
}
|
|
}
|
|
for (NodeId Id1 : T1.NodesBfs) {
|
|
NodeId Id2 = M.getDst(Id1);
|
|
if (Id2.isInvalid())
|
|
continue;
|
|
if (!haveSameParents(M, Id1, Id2) ||
|
|
T1.findPositionInParent(Id1, true) !=
|
|
T2.findPositionInParent(Id2, true)) {
|
|
T1.getMutableNode(Id1).Shift -= 1;
|
|
T2.getMutableNode(Id2).Shift -= 1;
|
|
}
|
|
}
|
|
for (NodeId Id2 : T2.NodesBfs) {
|
|
NodeId Id1 = M.getSrc(Id2);
|
|
if (Id1.isInvalid())
|
|
continue;
|
|
Node &N1 = T1.getMutableNode(Id1);
|
|
Node &N2 = T2.getMutableNode(Id2);
|
|
if (Id1.isInvalid())
|
|
continue;
|
|
if (!haveSameParents(M, Id1, Id2) ||
|
|
T1.findPositionInParent(Id1, true) !=
|
|
T2.findPositionInParent(Id2, true)) {
|
|
N1.Change = N2.Change = Move;
|
|
}
|
|
if (T1.getNodeValue(Id1) != T2.getNodeValue(Id2)) {
|
|
N1.Change = N2.Change = (N1.Change == Move ? UpdateMove : Update);
|
|
}
|
|
}
|
|
}
|
|
|
|
ASTDiff::ASTDiff(SyntaxTree &T1, SyntaxTree &T2,
|
|
const ComparisonOptions &Options)
|
|
: DiffImpl(std::make_unique<Impl>(*T1.TreeImpl, *T2.TreeImpl, Options)) {}
|
|
|
|
ASTDiff::~ASTDiff() = default;
|
|
|
|
NodeId ASTDiff::getMapped(const SyntaxTree &SourceTree, NodeId Id) const {
|
|
return DiffImpl->getMapped(SourceTree.TreeImpl, Id);
|
|
}
|
|
|
|
SyntaxTree::SyntaxTree(ASTContext &AST)
|
|
: TreeImpl(std::make_unique<SyntaxTree::Impl>(
|
|
this, AST.getTranslationUnitDecl(), AST)) {}
|
|
|
|
SyntaxTree::~SyntaxTree() = default;
|
|
|
|
const ASTContext &SyntaxTree::getASTContext() const { return TreeImpl->AST; }
|
|
|
|
const Node &SyntaxTree::getNode(NodeId Id) const {
|
|
return TreeImpl->getNode(Id);
|
|
}
|
|
|
|
int SyntaxTree::getSize() const { return TreeImpl->getSize(); }
|
|
NodeId SyntaxTree::getRootId() const { return TreeImpl->getRootId(); }
|
|
SyntaxTree::PreorderIterator SyntaxTree::begin() const {
|
|
return TreeImpl->begin();
|
|
}
|
|
SyntaxTree::PreorderIterator SyntaxTree::end() const { return TreeImpl->end(); }
|
|
|
|
int SyntaxTree::findPositionInParent(NodeId Id) const {
|
|
return TreeImpl->findPositionInParent(Id);
|
|
}
|
|
|
|
std::pair<unsigned, unsigned>
|
|
SyntaxTree::getSourceRangeOffsets(const Node &N) const {
|
|
const SourceManager &SrcMgr = TreeImpl->AST.getSourceManager();
|
|
SourceRange Range = N.ASTNode.getSourceRange();
|
|
SourceLocation BeginLoc = Range.getBegin();
|
|
SourceLocation EndLoc = Lexer::getLocForEndOfToken(
|
|
Range.getEnd(), /*Offset=*/0, SrcMgr, TreeImpl->AST.getLangOpts());
|
|
if (auto *ThisExpr = N.ASTNode.get<CXXThisExpr>()) {
|
|
if (ThisExpr->isImplicit())
|
|
EndLoc = BeginLoc;
|
|
}
|
|
unsigned Begin = SrcMgr.getFileOffset(SrcMgr.getExpansionLoc(BeginLoc));
|
|
unsigned End = SrcMgr.getFileOffset(SrcMgr.getExpansionLoc(EndLoc));
|
|
return {Begin, End};
|
|
}
|
|
|
|
std::string SyntaxTree::getNodeValue(NodeId Id) const {
|
|
return TreeImpl->getNodeValue(Id);
|
|
}
|
|
|
|
std::string SyntaxTree::getNodeValue(const Node &N) const {
|
|
return TreeImpl->getNodeValue(N);
|
|
}
|
|
|
|
} // end namespace diff
|
|
} // end namespace clang
|