llvm-project/llvm/lib/Target/WebAssembly/WebAssemblyCFGStackify.cpp
Reid Kleckner 984dc4b9cd [WebAssembly] Create separation between MC and CodeGen layers
Move WebAssemblyUtilities from Utils to the CodeGen library. It
primarily deals in MIR layer types, so it really lives in the CodeGen
library.

Move a variety of other things around to try create better separation.

See issue #64166 for more info on layering.

Move llvm/include/CodeGen/WasmAddressSpaces.h back to
llvm/lib/Target/WebAssembly/Utils.

Differential Revision: https://reviews.llvm.org/D156472
2023-08-18 14:08:37 -07:00

1777 lines
65 KiB
C++

//===-- WebAssemblyCFGStackify.cpp - CFG Stackification -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file implements a CFG stacking pass.
///
/// This pass inserts BLOCK, LOOP, and TRY markers to mark the start of scopes,
/// since scope boundaries serve as the labels for WebAssembly's control
/// transfers.
///
/// This is sufficient to convert arbitrary CFGs into a form that works on
/// WebAssembly, provided that all loops are single-entry.
///
/// In case we use exceptions, this pass also fixes mismatches in unwind
/// destinations created during transforming CFG into wasm structured format.
///
//===----------------------------------------------------------------------===//
#include "Utils/WebAssemblyTypeUtilities.h"
#include "WebAssembly.h"
#include "WebAssemblyExceptionInfo.h"
#include "WebAssemblyMachineFunctionInfo.h"
#include "WebAssemblySortRegion.h"
#include "WebAssemblySubtarget.h"
#include "WebAssemblyUtilities.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/WasmEHFuncInfo.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/Target/TargetMachine.h"
using namespace llvm;
using WebAssembly::SortRegionInfo;
#define DEBUG_TYPE "wasm-cfg-stackify"
STATISTIC(NumCallUnwindMismatches, "Number of call unwind mismatches found");
STATISTIC(NumCatchUnwindMismatches, "Number of catch unwind mismatches found");
namespace {
class WebAssemblyCFGStackify final : public MachineFunctionPass {
StringRef getPassName() const override { return "WebAssembly CFG Stackify"; }
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<MachineDominatorTree>();
AU.addRequired<MachineLoopInfo>();
AU.addRequired<WebAssemblyExceptionInfo>();
MachineFunctionPass::getAnalysisUsage(AU);
}
bool runOnMachineFunction(MachineFunction &MF) override;
// For each block whose label represents the end of a scope, record the block
// which holds the beginning of the scope. This will allow us to quickly skip
// over scoped regions when walking blocks.
SmallVector<MachineBasicBlock *, 8> ScopeTops;
void updateScopeTops(MachineBasicBlock *Begin, MachineBasicBlock *End) {
int EndNo = End->getNumber();
if (!ScopeTops[EndNo] || ScopeTops[EndNo]->getNumber() > Begin->getNumber())
ScopeTops[EndNo] = Begin;
}
// Placing markers.
void placeMarkers(MachineFunction &MF);
void placeBlockMarker(MachineBasicBlock &MBB);
void placeLoopMarker(MachineBasicBlock &MBB);
void placeTryMarker(MachineBasicBlock &MBB);
// Exception handling related functions
bool fixCallUnwindMismatches(MachineFunction &MF);
bool fixCatchUnwindMismatches(MachineFunction &MF);
void addTryDelegate(MachineInstr *RangeBegin, MachineInstr *RangeEnd,
MachineBasicBlock *DelegateDest);
void recalculateScopeTops(MachineFunction &MF);
void removeUnnecessaryInstrs(MachineFunction &MF);
// Wrap-up
using EndMarkerInfo =
std::pair<const MachineBasicBlock *, const MachineInstr *>;
unsigned getBranchDepth(const SmallVectorImpl<EndMarkerInfo> &Stack,
const MachineBasicBlock *MBB);
unsigned getDelegateDepth(const SmallVectorImpl<EndMarkerInfo> &Stack,
const MachineBasicBlock *MBB);
unsigned
getRethrowDepth(const SmallVectorImpl<EndMarkerInfo> &Stack,
const SmallVectorImpl<const MachineBasicBlock *> &EHPadStack);
void rewriteDepthImmediates(MachineFunction &MF);
void fixEndsAtEndOfFunction(MachineFunction &MF);
void cleanupFunctionData(MachineFunction &MF);
// For each BLOCK|LOOP|TRY, the corresponding END_(BLOCK|LOOP|TRY) or DELEGATE
// (in case of TRY).
DenseMap<const MachineInstr *, MachineInstr *> BeginToEnd;
// For each END_(BLOCK|LOOP|TRY) or DELEGATE, the corresponding
// BLOCK|LOOP|TRY.
DenseMap<const MachineInstr *, MachineInstr *> EndToBegin;
// <TRY marker, EH pad> map
DenseMap<const MachineInstr *, MachineBasicBlock *> TryToEHPad;
// <EH pad, TRY marker> map
DenseMap<const MachineBasicBlock *, MachineInstr *> EHPadToTry;
// We need an appendix block to place 'end_loop' or 'end_try' marker when the
// loop / exception bottom block is the last block in a function
MachineBasicBlock *AppendixBB = nullptr;
MachineBasicBlock *getAppendixBlock(MachineFunction &MF) {
if (!AppendixBB) {
AppendixBB = MF.CreateMachineBasicBlock();
// Give it a fake predecessor so that AsmPrinter prints its label.
AppendixBB->addSuccessor(AppendixBB);
MF.push_back(AppendixBB);
}
return AppendixBB;
}
// Before running rewriteDepthImmediates function, 'delegate' has a BB as its
// destination operand. getFakeCallerBlock() returns a fake BB that will be
// used for the operand when 'delegate' needs to rethrow to the caller. This
// will be rewritten as an immediate value that is the number of block depths
// + 1 in rewriteDepthImmediates, and this fake BB will be removed at the end
// of the pass.
MachineBasicBlock *FakeCallerBB = nullptr;
MachineBasicBlock *getFakeCallerBlock(MachineFunction &MF) {
if (!FakeCallerBB)
FakeCallerBB = MF.CreateMachineBasicBlock();
return FakeCallerBB;
}
// Helper functions to register / unregister scope information created by
// marker instructions.
void registerScope(MachineInstr *Begin, MachineInstr *End);
void registerTryScope(MachineInstr *Begin, MachineInstr *End,
MachineBasicBlock *EHPad);
void unregisterScope(MachineInstr *Begin);
public:
static char ID; // Pass identification, replacement for typeid
WebAssemblyCFGStackify() : MachineFunctionPass(ID) {}
~WebAssemblyCFGStackify() override { releaseMemory(); }
void releaseMemory() override;
};
} // end anonymous namespace
char WebAssemblyCFGStackify::ID = 0;
INITIALIZE_PASS(WebAssemblyCFGStackify, DEBUG_TYPE,
"Insert BLOCK/LOOP/TRY markers for WebAssembly scopes", false,
false)
FunctionPass *llvm::createWebAssemblyCFGStackify() {
return new WebAssemblyCFGStackify();
}
/// Test whether Pred has any terminators explicitly branching to MBB, as
/// opposed to falling through. Note that it's possible (eg. in unoptimized
/// code) for a branch instruction to both branch to a block and fallthrough
/// to it, so we check the actual branch operands to see if there are any
/// explicit mentions.
static bool explicitlyBranchesTo(MachineBasicBlock *Pred,
MachineBasicBlock *MBB) {
for (MachineInstr &MI : Pred->terminators())
for (MachineOperand &MO : MI.explicit_operands())
if (MO.isMBB() && MO.getMBB() == MBB)
return true;
return false;
}
// Returns an iterator to the earliest position possible within the MBB,
// satisfying the restrictions given by BeforeSet and AfterSet. BeforeSet
// contains instructions that should go before the marker, and AfterSet contains
// ones that should go after the marker. In this function, AfterSet is only
// used for validation checking.
template <typename Container>
static MachineBasicBlock::iterator
getEarliestInsertPos(MachineBasicBlock *MBB, const Container &BeforeSet,
const Container &AfterSet) {
auto InsertPos = MBB->end();
while (InsertPos != MBB->begin()) {
if (BeforeSet.count(&*std::prev(InsertPos))) {
#ifndef NDEBUG
// Validation check
for (auto Pos = InsertPos, E = MBB->begin(); Pos != E; --Pos)
assert(!AfterSet.count(&*std::prev(Pos)));
#endif
break;
}
--InsertPos;
}
return InsertPos;
}
// Returns an iterator to the latest position possible within the MBB,
// satisfying the restrictions given by BeforeSet and AfterSet. BeforeSet
// contains instructions that should go before the marker, and AfterSet contains
// ones that should go after the marker. In this function, BeforeSet is only
// used for validation checking.
template <typename Container>
static MachineBasicBlock::iterator
getLatestInsertPos(MachineBasicBlock *MBB, const Container &BeforeSet,
const Container &AfterSet) {
auto InsertPos = MBB->begin();
while (InsertPos != MBB->end()) {
if (AfterSet.count(&*InsertPos)) {
#ifndef NDEBUG
// Validation check
for (auto Pos = InsertPos, E = MBB->end(); Pos != E; ++Pos)
assert(!BeforeSet.count(&*Pos));
#endif
break;
}
++InsertPos;
}
return InsertPos;
}
void WebAssemblyCFGStackify::registerScope(MachineInstr *Begin,
MachineInstr *End) {
BeginToEnd[Begin] = End;
EndToBegin[End] = Begin;
}
// When 'End' is not an 'end_try' but 'delegate, EHPad is nullptr.
void WebAssemblyCFGStackify::registerTryScope(MachineInstr *Begin,
MachineInstr *End,
MachineBasicBlock *EHPad) {
registerScope(Begin, End);
TryToEHPad[Begin] = EHPad;
EHPadToTry[EHPad] = Begin;
}
void WebAssemblyCFGStackify::unregisterScope(MachineInstr *Begin) {
assert(BeginToEnd.count(Begin));
MachineInstr *End = BeginToEnd[Begin];
assert(EndToBegin.count(End));
BeginToEnd.erase(Begin);
EndToBegin.erase(End);
MachineBasicBlock *EHPad = TryToEHPad.lookup(Begin);
if (EHPad) {
assert(EHPadToTry.count(EHPad));
TryToEHPad.erase(Begin);
EHPadToTry.erase(EHPad);
}
}
/// Insert a BLOCK marker for branches to MBB (if needed).
// TODO Consider a more generalized way of handling block (and also loop and
// try) signatures when we implement the multi-value proposal later.
void WebAssemblyCFGStackify::placeBlockMarker(MachineBasicBlock &MBB) {
assert(!MBB.isEHPad());
MachineFunction &MF = *MBB.getParent();
auto &MDT = getAnalysis<MachineDominatorTree>();
const auto &TII = *MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo();
const auto &MFI = *MF.getInfo<WebAssemblyFunctionInfo>();
// First compute the nearest common dominator of all forward non-fallthrough
// predecessors so that we minimize the time that the BLOCK is on the stack,
// which reduces overall stack height.
MachineBasicBlock *Header = nullptr;
bool IsBranchedTo = false;
int MBBNumber = MBB.getNumber();
for (MachineBasicBlock *Pred : MBB.predecessors()) {
if (Pred->getNumber() < MBBNumber) {
Header = Header ? MDT.findNearestCommonDominator(Header, Pred) : Pred;
if (explicitlyBranchesTo(Pred, &MBB))
IsBranchedTo = true;
}
}
if (!Header)
return;
if (!IsBranchedTo)
return;
assert(&MBB != &MF.front() && "Header blocks shouldn't have predecessors");
MachineBasicBlock *LayoutPred = MBB.getPrevNode();
// If the nearest common dominator is inside a more deeply nested context,
// walk out to the nearest scope which isn't more deeply nested.
for (MachineFunction::iterator I(LayoutPred), E(Header); I != E; --I) {
if (MachineBasicBlock *ScopeTop = ScopeTops[I->getNumber()]) {
if (ScopeTop->getNumber() > Header->getNumber()) {
// Skip over an intervening scope.
I = std::next(ScopeTop->getIterator());
} else {
// We found a scope level at an appropriate depth.
Header = ScopeTop;
break;
}
}
}
// Decide where in Header to put the BLOCK.
// Instructions that should go before the BLOCK.
SmallPtrSet<const MachineInstr *, 4> BeforeSet;
// Instructions that should go after the BLOCK.
SmallPtrSet<const MachineInstr *, 4> AfterSet;
for (const auto &MI : *Header) {
// If there is a previously placed LOOP marker and the bottom block of the
// loop is above MBB, it should be after the BLOCK, because the loop is
// nested in this BLOCK. Otherwise it should be before the BLOCK.
if (MI.getOpcode() == WebAssembly::LOOP) {
auto *LoopBottom = BeginToEnd[&MI]->getParent()->getPrevNode();
if (MBB.getNumber() > LoopBottom->getNumber())
AfterSet.insert(&MI);
#ifndef NDEBUG
else
BeforeSet.insert(&MI);
#endif
}
// If there is a previously placed BLOCK/TRY marker and its corresponding
// END marker is before the current BLOCK's END marker, that should be
// placed after this BLOCK. Otherwise it should be placed before this BLOCK
// marker.
if (MI.getOpcode() == WebAssembly::BLOCK ||
MI.getOpcode() == WebAssembly::TRY) {
if (BeginToEnd[&MI]->getParent()->getNumber() <= MBB.getNumber())
AfterSet.insert(&MI);
#ifndef NDEBUG
else
BeforeSet.insert(&MI);
#endif
}
#ifndef NDEBUG
// All END_(BLOCK|LOOP|TRY) markers should be before the BLOCK.
if (MI.getOpcode() == WebAssembly::END_BLOCK ||
MI.getOpcode() == WebAssembly::END_LOOP ||
MI.getOpcode() == WebAssembly::END_TRY)
BeforeSet.insert(&MI);
#endif
// Terminators should go after the BLOCK.
if (MI.isTerminator())
AfterSet.insert(&MI);
}
// Local expression tree should go after the BLOCK.
for (auto I = Header->getFirstTerminator(), E = Header->begin(); I != E;
--I) {
if (std::prev(I)->isDebugInstr() || std::prev(I)->isPosition())
continue;
if (WebAssembly::isChild(*std::prev(I), MFI))
AfterSet.insert(&*std::prev(I));
else
break;
}
// Add the BLOCK.
WebAssembly::BlockType ReturnType = WebAssembly::BlockType::Void;
auto InsertPos = getLatestInsertPos(Header, BeforeSet, AfterSet);
MachineInstr *Begin =
BuildMI(*Header, InsertPos, Header->findDebugLoc(InsertPos),
TII.get(WebAssembly::BLOCK))
.addImm(int64_t(ReturnType));
// Decide where in Header to put the END_BLOCK.
BeforeSet.clear();
AfterSet.clear();
for (auto &MI : MBB) {
#ifndef NDEBUG
// END_BLOCK should precede existing LOOP and TRY markers.
if (MI.getOpcode() == WebAssembly::LOOP ||
MI.getOpcode() == WebAssembly::TRY)
AfterSet.insert(&MI);
#endif
// If there is a previously placed END_LOOP marker and the header of the
// loop is above this block's header, the END_LOOP should be placed after
// the BLOCK, because the loop contains this block. Otherwise the END_LOOP
// should be placed before the BLOCK. The same for END_TRY.
if (MI.getOpcode() == WebAssembly::END_LOOP ||
MI.getOpcode() == WebAssembly::END_TRY) {
if (EndToBegin[&MI]->getParent()->getNumber() >= Header->getNumber())
BeforeSet.insert(&MI);
#ifndef NDEBUG
else
AfterSet.insert(&MI);
#endif
}
}
// Mark the end of the block.
InsertPos = getEarliestInsertPos(&MBB, BeforeSet, AfterSet);
MachineInstr *End = BuildMI(MBB, InsertPos, MBB.findPrevDebugLoc(InsertPos),
TII.get(WebAssembly::END_BLOCK));
registerScope(Begin, End);
// Track the farthest-spanning scope that ends at this point.
updateScopeTops(Header, &MBB);
}
/// Insert a LOOP marker for a loop starting at MBB (if it's a loop header).
void WebAssemblyCFGStackify::placeLoopMarker(MachineBasicBlock &MBB) {
MachineFunction &MF = *MBB.getParent();
const auto &MLI = getAnalysis<MachineLoopInfo>();
const auto &WEI = getAnalysis<WebAssemblyExceptionInfo>();
SortRegionInfo SRI(MLI, WEI);
const auto &TII = *MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo();
MachineLoop *Loop = MLI.getLoopFor(&MBB);
if (!Loop || Loop->getHeader() != &MBB)
return;
// The operand of a LOOP is the first block after the loop. If the loop is the
// bottom of the function, insert a dummy block at the end.
MachineBasicBlock *Bottom = SRI.getBottom(Loop);
auto Iter = std::next(Bottom->getIterator());
if (Iter == MF.end()) {
getAppendixBlock(MF);
Iter = std::next(Bottom->getIterator());
}
MachineBasicBlock *AfterLoop = &*Iter;
// Decide where in Header to put the LOOP.
SmallPtrSet<const MachineInstr *, 4> BeforeSet;
SmallPtrSet<const MachineInstr *, 4> AfterSet;
for (const auto &MI : MBB) {
// LOOP marker should be after any existing loop that ends here. Otherwise
// we assume the instruction belongs to the loop.
if (MI.getOpcode() == WebAssembly::END_LOOP)
BeforeSet.insert(&MI);
#ifndef NDEBUG
else
AfterSet.insert(&MI);
#endif
}
// Mark the beginning of the loop.
auto InsertPos = getEarliestInsertPos(&MBB, BeforeSet, AfterSet);
MachineInstr *Begin = BuildMI(MBB, InsertPos, MBB.findDebugLoc(InsertPos),
TII.get(WebAssembly::LOOP))
.addImm(int64_t(WebAssembly::BlockType::Void));
// Decide where in Header to put the END_LOOP.
BeforeSet.clear();
AfterSet.clear();
#ifndef NDEBUG
for (const auto &MI : MBB)
// Existing END_LOOP markers belong to parent loops of this loop
if (MI.getOpcode() == WebAssembly::END_LOOP)
AfterSet.insert(&MI);
#endif
// Mark the end of the loop (using arbitrary debug location that branched to
// the loop end as its location).
InsertPos = getEarliestInsertPos(AfterLoop, BeforeSet, AfterSet);
DebugLoc EndDL = AfterLoop->pred_empty()
? DebugLoc()
: (*AfterLoop->pred_rbegin())->findBranchDebugLoc();
MachineInstr *End =
BuildMI(*AfterLoop, InsertPos, EndDL, TII.get(WebAssembly::END_LOOP));
registerScope(Begin, End);
assert((!ScopeTops[AfterLoop->getNumber()] ||
ScopeTops[AfterLoop->getNumber()]->getNumber() < MBB.getNumber()) &&
"With block sorting the outermost loop for a block should be first.");
updateScopeTops(&MBB, AfterLoop);
}
void WebAssemblyCFGStackify::placeTryMarker(MachineBasicBlock &MBB) {
assert(MBB.isEHPad());
MachineFunction &MF = *MBB.getParent();
auto &MDT = getAnalysis<MachineDominatorTree>();
const auto &TII = *MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo();
const auto &MLI = getAnalysis<MachineLoopInfo>();
const auto &WEI = getAnalysis<WebAssemblyExceptionInfo>();
SortRegionInfo SRI(MLI, WEI);
const auto &MFI = *MF.getInfo<WebAssemblyFunctionInfo>();
// Compute the nearest common dominator of all unwind predecessors
MachineBasicBlock *Header = nullptr;
int MBBNumber = MBB.getNumber();
for (auto *Pred : MBB.predecessors()) {
if (Pred->getNumber() < MBBNumber) {
Header = Header ? MDT.findNearestCommonDominator(Header, Pred) : Pred;
assert(!explicitlyBranchesTo(Pred, &MBB) &&
"Explicit branch to an EH pad!");
}
}
if (!Header)
return;
// If this try is at the bottom of the function, insert a dummy block at the
// end.
WebAssemblyException *WE = WEI.getExceptionFor(&MBB);
assert(WE);
MachineBasicBlock *Bottom = SRI.getBottom(WE);
auto Iter = std::next(Bottom->getIterator());
if (Iter == MF.end()) {
getAppendixBlock(MF);
Iter = std::next(Bottom->getIterator());
}
MachineBasicBlock *Cont = &*Iter;
assert(Cont != &MF.front());
MachineBasicBlock *LayoutPred = Cont->getPrevNode();
// If the nearest common dominator is inside a more deeply nested context,
// walk out to the nearest scope which isn't more deeply nested.
for (MachineFunction::iterator I(LayoutPred), E(Header); I != E; --I) {
if (MachineBasicBlock *ScopeTop = ScopeTops[I->getNumber()]) {
if (ScopeTop->getNumber() > Header->getNumber()) {
// Skip over an intervening scope.
I = std::next(ScopeTop->getIterator());
} else {
// We found a scope level at an appropriate depth.
Header = ScopeTop;
break;
}
}
}
// Decide where in Header to put the TRY.
// Instructions that should go before the TRY.
SmallPtrSet<const MachineInstr *, 4> BeforeSet;
// Instructions that should go after the TRY.
SmallPtrSet<const MachineInstr *, 4> AfterSet;
for (const auto &MI : *Header) {
// If there is a previously placed LOOP marker and the bottom block of the
// loop is above MBB, it should be after the TRY, because the loop is nested
// in this TRY. Otherwise it should be before the TRY.
if (MI.getOpcode() == WebAssembly::LOOP) {
auto *LoopBottom = BeginToEnd[&MI]->getParent()->getPrevNode();
if (MBB.getNumber() > LoopBottom->getNumber())
AfterSet.insert(&MI);
#ifndef NDEBUG
else
BeforeSet.insert(&MI);
#endif
}
// All previously inserted BLOCK/TRY markers should be after the TRY because
// they are all nested trys.
if (MI.getOpcode() == WebAssembly::BLOCK ||
MI.getOpcode() == WebAssembly::TRY)
AfterSet.insert(&MI);
#ifndef NDEBUG
// All END_(BLOCK/LOOP/TRY) markers should be before the TRY.
if (MI.getOpcode() == WebAssembly::END_BLOCK ||
MI.getOpcode() == WebAssembly::END_LOOP ||
MI.getOpcode() == WebAssembly::END_TRY)
BeforeSet.insert(&MI);
#endif
// Terminators should go after the TRY.
if (MI.isTerminator())
AfterSet.insert(&MI);
}
// If Header unwinds to MBB (= Header contains 'invoke'), the try block should
// contain the call within it. So the call should go after the TRY. The
// exception is when the header's terminator is a rethrow instruction, in
// which case that instruction, not a call instruction before it, is gonna
// throw.
MachineInstr *ThrowingCall = nullptr;
if (MBB.isPredecessor(Header)) {
auto TermPos = Header->getFirstTerminator();
if (TermPos == Header->end() ||
TermPos->getOpcode() != WebAssembly::RETHROW) {
for (auto &MI : reverse(*Header)) {
if (MI.isCall()) {
AfterSet.insert(&MI);
ThrowingCall = &MI;
// Possibly throwing calls are usually wrapped by EH_LABEL
// instructions. We don't want to split them and the call.
if (MI.getIterator() != Header->begin() &&
std::prev(MI.getIterator())->isEHLabel()) {
AfterSet.insert(&*std::prev(MI.getIterator()));
ThrowingCall = &*std::prev(MI.getIterator());
}
break;
}
}
}
}
// Local expression tree should go after the TRY.
// For BLOCK placement, we start the search from the previous instruction of a
// BB's terminator, but in TRY's case, we should start from the previous
// instruction of a call that can throw, or a EH_LABEL that precedes the call,
// because the return values of the call's previous instructions can be
// stackified and consumed by the throwing call.
auto SearchStartPt = ThrowingCall ? MachineBasicBlock::iterator(ThrowingCall)
: Header->getFirstTerminator();
for (auto I = SearchStartPt, E = Header->begin(); I != E; --I) {
if (std::prev(I)->isDebugInstr() || std::prev(I)->isPosition())
continue;
if (WebAssembly::isChild(*std::prev(I), MFI))
AfterSet.insert(&*std::prev(I));
else
break;
}
// Add the TRY.
auto InsertPos = getLatestInsertPos(Header, BeforeSet, AfterSet);
MachineInstr *Begin =
BuildMI(*Header, InsertPos, Header->findDebugLoc(InsertPos),
TII.get(WebAssembly::TRY))
.addImm(int64_t(WebAssembly::BlockType::Void));
// Decide where in Header to put the END_TRY.
BeforeSet.clear();
AfterSet.clear();
for (const auto &MI : *Cont) {
#ifndef NDEBUG
// END_TRY should precede existing LOOP and BLOCK markers.
if (MI.getOpcode() == WebAssembly::LOOP ||
MI.getOpcode() == WebAssembly::BLOCK)
AfterSet.insert(&MI);
// All END_TRY markers placed earlier belong to exceptions that contains
// this one.
if (MI.getOpcode() == WebAssembly::END_TRY)
AfterSet.insert(&MI);
#endif
// If there is a previously placed END_LOOP marker and its header is after
// where TRY marker is, this loop is contained within the 'catch' part, so
// the END_TRY marker should go after that. Otherwise, the whole try-catch
// is contained within this loop, so the END_TRY should go before that.
if (MI.getOpcode() == WebAssembly::END_LOOP) {
// For a LOOP to be after TRY, LOOP's BB should be after TRY's BB; if they
// are in the same BB, LOOP is always before TRY.
if (EndToBegin[&MI]->getParent()->getNumber() > Header->getNumber())
BeforeSet.insert(&MI);
#ifndef NDEBUG
else
AfterSet.insert(&MI);
#endif
}
// It is not possible for an END_BLOCK to be already in this block.
}
// Mark the end of the TRY.
InsertPos = getEarliestInsertPos(Cont, BeforeSet, AfterSet);
MachineInstr *End =
BuildMI(*Cont, InsertPos, Bottom->findBranchDebugLoc(),
TII.get(WebAssembly::END_TRY));
registerTryScope(Begin, End, &MBB);
// Track the farthest-spanning scope that ends at this point. We create two
// mappings: (BB with 'end_try' -> BB with 'try') and (BB with 'catch' -> BB
// with 'try'). We need to create 'catch' -> 'try' mapping here too because
// markers should not span across 'catch'. For example, this should not
// happen:
//
// try
// block --| (X)
// catch |
// end_block --|
// end_try
for (auto *End : {&MBB, Cont})
updateScopeTops(Header, End);
}
void WebAssemblyCFGStackify::removeUnnecessaryInstrs(MachineFunction &MF) {
const auto &TII = *MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo();
// When there is an unconditional branch right before a catch instruction and
// it branches to the end of end_try marker, we don't need the branch, because
// it there is no exception, the control flow transfers to that point anyway.
// bb0:
// try
// ...
// br bb2 <- Not necessary
// bb1 (ehpad):
// catch
// ...
// bb2: <- Continuation BB
// end
//
// A more involved case: When the BB where 'end' is located is an another EH
// pad, the Cont (= continuation) BB is that EH pad's 'end' BB. For example,
// bb0:
// try
// try
// ...
// br bb3 <- Not necessary
// bb1 (ehpad):
// catch
// bb2 (ehpad):
// end
// catch
// ...
// bb3: <- Continuation BB
// end
//
// When the EH pad at hand is bb1, its matching end_try is in bb2. But it is
// another EH pad, so bb0's continuation BB becomes bb3. So 'br bb3' in the
// code can be deleted. This is why we run 'while' until 'Cont' is not an EH
// pad.
for (auto &MBB : MF) {
if (!MBB.isEHPad())
continue;
MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
SmallVector<MachineOperand, 4> Cond;
MachineBasicBlock *EHPadLayoutPred = MBB.getPrevNode();
MachineBasicBlock *Cont = &MBB;
while (Cont->isEHPad()) {
MachineInstr *Try = EHPadToTry[Cont];
MachineInstr *EndTry = BeginToEnd[Try];
// We started from an EH pad, so the end marker cannot be a delegate
assert(EndTry->getOpcode() != WebAssembly::DELEGATE);
Cont = EndTry->getParent();
}
bool Analyzable = !TII.analyzeBranch(*EHPadLayoutPred, TBB, FBB, Cond);
// This condition means either
// 1. This BB ends with a single unconditional branch whose destinaion is
// Cont.
// 2. This BB ends with a conditional branch followed by an unconditional
// branch, and the unconditional branch's destination is Cont.
// In both cases, we want to remove the last (= unconditional) branch.
if (Analyzable && ((Cond.empty() && TBB && TBB == Cont) ||
(!Cond.empty() && FBB && FBB == Cont))) {
bool ErasedUncondBr = false;
(void)ErasedUncondBr;
for (auto I = EHPadLayoutPred->end(), E = EHPadLayoutPred->begin();
I != E; --I) {
auto PrevI = std::prev(I);
if (PrevI->isTerminator()) {
assert(PrevI->getOpcode() == WebAssembly::BR);
PrevI->eraseFromParent();
ErasedUncondBr = true;
break;
}
}
assert(ErasedUncondBr && "Unconditional branch not erased!");
}
}
// When there are block / end_block markers that overlap with try / end_try
// markers, and the block and try markers' return types are the same, the
// block /end_block markers are not necessary, because try / end_try markers
// also can serve as boundaries for branches.
// block <- Not necessary
// try
// ...
// catch
// ...
// end
// end <- Not necessary
SmallVector<MachineInstr *, 32> ToDelete;
for (auto &MBB : MF) {
for (auto &MI : MBB) {
if (MI.getOpcode() != WebAssembly::TRY)
continue;
MachineInstr *Try = &MI, *EndTry = BeginToEnd[Try];
if (EndTry->getOpcode() == WebAssembly::DELEGATE)
continue;
MachineBasicBlock *TryBB = Try->getParent();
MachineBasicBlock *Cont = EndTry->getParent();
int64_t RetType = Try->getOperand(0).getImm();
for (auto B = Try->getIterator(), E = std::next(EndTry->getIterator());
B != TryBB->begin() && E != Cont->end() &&
std::prev(B)->getOpcode() == WebAssembly::BLOCK &&
E->getOpcode() == WebAssembly::END_BLOCK &&
std::prev(B)->getOperand(0).getImm() == RetType;
--B, ++E) {
ToDelete.push_back(&*std::prev(B));
ToDelete.push_back(&*E);
}
}
}
for (auto *MI : ToDelete) {
if (MI->getOpcode() == WebAssembly::BLOCK)
unregisterScope(MI);
MI->eraseFromParent();
}
}
// When MBB is split into MBB and Split, we should unstackify defs in MBB that
// have their uses in Split.
static void unstackifyVRegsUsedInSplitBB(MachineBasicBlock &MBB,
MachineBasicBlock &Split) {
MachineFunction &MF = *MBB.getParent();
const auto &TII = *MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo();
auto &MFI = *MF.getInfo<WebAssemblyFunctionInfo>();
auto &MRI = MF.getRegInfo();
for (auto &MI : Split) {
for (auto &MO : MI.explicit_uses()) {
if (!MO.isReg() || MO.getReg().isPhysical())
continue;
if (MachineInstr *Def = MRI.getUniqueVRegDef(MO.getReg()))
if (Def->getParent() == &MBB)
MFI.unstackifyVReg(MO.getReg());
}
}
// In RegStackify, when a register definition is used multiple times,
// Reg = INST ...
// INST ..., Reg, ...
// INST ..., Reg, ...
// INST ..., Reg, ...
//
// we introduce a TEE, which has the following form:
// DefReg = INST ...
// TeeReg, Reg = TEE_... DefReg
// INST ..., TeeReg, ...
// INST ..., Reg, ...
// INST ..., Reg, ...
// with DefReg and TeeReg stackified but Reg not stackified.
//
// But the invariant that TeeReg should be stackified can be violated while we
// unstackify registers in the split BB above. In this case, we convert TEEs
// into two COPYs. This COPY will be eventually eliminated in ExplicitLocals.
// DefReg = INST ...
// TeeReg = COPY DefReg
// Reg = COPY DefReg
// INST ..., TeeReg, ...
// INST ..., Reg, ...
// INST ..., Reg, ...
for (MachineInstr &MI : llvm::make_early_inc_range(MBB)) {
if (!WebAssembly::isTee(MI.getOpcode()))
continue;
Register TeeReg = MI.getOperand(0).getReg();
Register Reg = MI.getOperand(1).getReg();
Register DefReg = MI.getOperand(2).getReg();
if (!MFI.isVRegStackified(TeeReg)) {
// Now we are not using TEE anymore, so unstackify DefReg too
MFI.unstackifyVReg(DefReg);
unsigned CopyOpc =
WebAssembly::getCopyOpcodeForRegClass(MRI.getRegClass(DefReg));
BuildMI(MBB, &MI, MI.getDebugLoc(), TII.get(CopyOpc), TeeReg)
.addReg(DefReg);
BuildMI(MBB, &MI, MI.getDebugLoc(), TII.get(CopyOpc), Reg).addReg(DefReg);
MI.eraseFromParent();
}
}
}
// Wrap the given range of instruction with try-delegate. RangeBegin and
// RangeEnd are inclusive.
void WebAssemblyCFGStackify::addTryDelegate(MachineInstr *RangeBegin,
MachineInstr *RangeEnd,
MachineBasicBlock *DelegateDest) {
auto *BeginBB = RangeBegin->getParent();
auto *EndBB = RangeEnd->getParent();
MachineFunction &MF = *BeginBB->getParent();
const auto &MFI = *MF.getInfo<WebAssemblyFunctionInfo>();
const auto &TII = *MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo();
// Local expression tree before the first call of this range should go
// after the nested TRY.
SmallPtrSet<const MachineInstr *, 4> AfterSet;
AfterSet.insert(RangeBegin);
for (auto I = MachineBasicBlock::iterator(RangeBegin), E = BeginBB->begin();
I != E; --I) {
if (std::prev(I)->isDebugInstr() || std::prev(I)->isPosition())
continue;
if (WebAssembly::isChild(*std::prev(I), MFI))
AfterSet.insert(&*std::prev(I));
else
break;
}
// Create the nested try instruction.
auto TryPos = getLatestInsertPos(
BeginBB, SmallPtrSet<const MachineInstr *, 4>(), AfterSet);
MachineInstr *Try = BuildMI(*BeginBB, TryPos, RangeBegin->getDebugLoc(),
TII.get(WebAssembly::TRY))
.addImm(int64_t(WebAssembly::BlockType::Void));
// Create a BB to insert the 'delegate' instruction.
MachineBasicBlock *DelegateBB = MF.CreateMachineBasicBlock();
// If the destination of 'delegate' is not the caller, adds the destination to
// the BB's successors.
if (DelegateDest != FakeCallerBB)
DelegateBB->addSuccessor(DelegateDest);
auto SplitPos = std::next(RangeEnd->getIterator());
if (SplitPos == EndBB->end()) {
// If the range's end instruction is at the end of the BB, insert the new
// delegate BB after the current BB.
MF.insert(std::next(EndBB->getIterator()), DelegateBB);
EndBB->addSuccessor(DelegateBB);
} else {
// When the split pos is in the middle of a BB, we split the BB into two and
// put the 'delegate' BB in between. We normally create a split BB and make
// it a successor of the original BB (PostSplit == true), but in case the BB
// is an EH pad and the split pos is before 'catch', we should preserve the
// BB's property, including that it is an EH pad, in the later part of the
// BB, where 'catch' is. In this case we set PostSplit to false.
bool PostSplit = true;
if (EndBB->isEHPad()) {
for (auto I = MachineBasicBlock::iterator(SplitPos), E = EndBB->end();
I != E; ++I) {
if (WebAssembly::isCatch(I->getOpcode())) {
PostSplit = false;
break;
}
}
}
MachineBasicBlock *PreBB = nullptr, *PostBB = nullptr;
if (PostSplit) {
// If the range's end instruction is in the middle of the BB, we split the
// BB into two and insert the delegate BB in between.
// - Before:
// bb:
// range_end
// other_insts
//
// - After:
// pre_bb: (previous 'bb')
// range_end
// delegate_bb: (new)
// delegate
// post_bb: (new)
// other_insts
PreBB = EndBB;
PostBB = MF.CreateMachineBasicBlock();
MF.insert(std::next(PreBB->getIterator()), PostBB);
MF.insert(std::next(PreBB->getIterator()), DelegateBB);
PostBB->splice(PostBB->end(), PreBB, SplitPos, PreBB->end());
PostBB->transferSuccessors(PreBB);
} else {
// - Before:
// ehpad:
// range_end
// catch
// ...
//
// - After:
// pre_bb: (new)
// range_end
// delegate_bb: (new)
// delegate
// post_bb: (previous 'ehpad')
// catch
// ...
assert(EndBB->isEHPad());
PreBB = MF.CreateMachineBasicBlock();
PostBB = EndBB;
MF.insert(PostBB->getIterator(), PreBB);
MF.insert(PostBB->getIterator(), DelegateBB);
PreBB->splice(PreBB->end(), PostBB, PostBB->begin(), SplitPos);
// We don't need to transfer predecessors of the EH pad to 'PreBB',
// because an EH pad's predecessors are all through unwind edges and they
// should still unwind to the EH pad, not PreBB.
}
unstackifyVRegsUsedInSplitBB(*PreBB, *PostBB);
PreBB->addSuccessor(DelegateBB);
PreBB->addSuccessor(PostBB);
}
// Add 'delegate' instruction in the delegate BB created above.
MachineInstr *Delegate = BuildMI(DelegateBB, RangeEnd->getDebugLoc(),
TII.get(WebAssembly::DELEGATE))
.addMBB(DelegateDest);
registerTryScope(Try, Delegate, nullptr);
}
bool WebAssemblyCFGStackify::fixCallUnwindMismatches(MachineFunction &MF) {
// Linearizing the control flow by placing TRY / END_TRY markers can create
// mismatches in unwind destinations for throwing instructions, such as calls.
//
// We use the 'delegate' instruction to fix the unwind mismatches. 'delegate'
// instruction delegates an exception to an outer 'catch'. It can target not
// only 'catch' but all block-like structures including another 'delegate',
// but with slightly different semantics than branches. When it targets a
// 'catch', it will delegate the exception to that catch. It is being
// discussed how to define the semantics when 'delegate''s target is a non-try
// block: it will either be a validation failure or it will target the next
// outer try-catch. But anyway our LLVM backend currently does not generate
// such code. The example below illustrates where the 'delegate' instruction
// in the middle will delegate the exception to, depending on the value of N.
// try
// try
// block
// try
// try
// call @foo
// delegate N ;; Where will this delegate to?
// catch ;; N == 0
// end
// end ;; N == 1 (invalid; will not be generated)
// delegate ;; N == 2
// catch ;; N == 3
// end
// ;; N == 4 (to caller)
// 1. When an instruction may throw, but the EH pad it will unwind to can be
// different from the original CFG.
//
// Example: we have the following CFG:
// bb0:
// call @foo ; if it throws, unwind to bb2
// bb1:
// call @bar ; if it throws, unwind to bb3
// bb2 (ehpad):
// catch
// ...
// bb3 (ehpad)
// catch
// ...
//
// And the CFG is sorted in this order. Then after placing TRY markers, it
// will look like: (BB markers are omitted)
// try
// try
// call @foo
// call @bar ;; if it throws, unwind to bb3
// catch ;; ehpad (bb2)
// ...
// end_try
// catch ;; ehpad (bb3)
// ...
// end_try
//
// Now if bar() throws, it is going to end up ip in bb2, not bb3, where it
// is supposed to end up. We solve this problem by wrapping the mismatching
// call with an inner try-delegate that rethrows the exception to the right
// 'catch'.
//
// try
// try
// call @foo
// try ;; (new)
// call @bar
// delegate 1 (bb3) ;; (new)
// catch ;; ehpad (bb2)
// ...
// end_try
// catch ;; ehpad (bb3)
// ...
// end_try
//
// ---
// 2. The same as 1, but in this case an instruction unwinds to a caller
// function and not another EH pad.
//
// Example: we have the following CFG:
// bb0:
// call @foo ; if it throws, unwind to bb2
// bb1:
// call @bar ; if it throws, unwind to caller
// bb2 (ehpad):
// catch
// ...
//
// And the CFG is sorted in this order. Then after placing TRY markers, it
// will look like:
// try
// call @foo
// call @bar ;; if it throws, unwind to caller
// catch ;; ehpad (bb2)
// ...
// end_try
//
// Now if bar() throws, it is going to end up ip in bb2, when it is supposed
// throw up to the caller. We solve this problem in the same way, but in this
// case 'delegate's immediate argument is the number of block depths + 1,
// which means it rethrows to the caller.
// try
// call @foo
// try ;; (new)
// call @bar
// delegate 1 (caller) ;; (new)
// catch ;; ehpad (bb2)
// ...
// end_try
//
// Before rewriteDepthImmediates, delegate's argument is a BB. In case of the
// caller, it will take a fake BB generated by getFakeCallerBlock(), which
// will be converted to a correct immediate argument later.
//
// In case there are multiple calls in a BB that may throw to the caller, they
// can be wrapped together in one nested try-delegate scope. (In 1, this
// couldn't happen, because may-throwing instruction there had an unwind
// destination, i.e., it was an invoke before, and there could be only one
// invoke within a BB.)
SmallVector<const MachineBasicBlock *, 8> EHPadStack;
// Range of intructions to be wrapped in a new nested try/catch. A range
// exists in a single BB and does not span multiple BBs.
using TryRange = std::pair<MachineInstr *, MachineInstr *>;
// In original CFG, <unwind destination BB, a vector of try ranges>
DenseMap<MachineBasicBlock *, SmallVector<TryRange, 4>> UnwindDestToTryRanges;
// Gather possibly throwing calls (i.e., previously invokes) whose current
// unwind destination is not the same as the original CFG. (Case 1)
for (auto &MBB : reverse(MF)) {
bool SeenThrowableInstInBB = false;
for (auto &MI : reverse(MBB)) {
if (MI.getOpcode() == WebAssembly::TRY)
EHPadStack.pop_back();
else if (WebAssembly::isCatch(MI.getOpcode()))
EHPadStack.push_back(MI.getParent());
// In this loop we only gather calls that have an EH pad to unwind. So
// there will be at most 1 such call (= invoke) in a BB, so after we've
// seen one, we can skip the rest of BB. Also if MBB has no EH pad
// successor or MI does not throw, this is not an invoke.
if (SeenThrowableInstInBB || !MBB.hasEHPadSuccessor() ||
!WebAssembly::mayThrow(MI))
continue;
SeenThrowableInstInBB = true;
// If the EH pad on the stack top is where this instruction should unwind
// next, we're good.
MachineBasicBlock *UnwindDest = getFakeCallerBlock(MF);
for (auto *Succ : MBB.successors()) {
// Even though semantically a BB can have multiple successors in case an
// exception is not caught by a catchpad, in our backend implementation
// it is guaranteed that a BB can have at most one EH pad successor. For
// details, refer to comments in findWasmUnwindDestinations function in
// SelectionDAGBuilder.cpp.
if (Succ->isEHPad()) {
UnwindDest = Succ;
break;
}
}
if (EHPadStack.back() == UnwindDest)
continue;
// Include EH_LABELs in the range before and afer the invoke
MachineInstr *RangeBegin = &MI, *RangeEnd = &MI;
if (RangeBegin->getIterator() != MBB.begin() &&
std::prev(RangeBegin->getIterator())->isEHLabel())
RangeBegin = &*std::prev(RangeBegin->getIterator());
if (std::next(RangeEnd->getIterator()) != MBB.end() &&
std::next(RangeEnd->getIterator())->isEHLabel())
RangeEnd = &*std::next(RangeEnd->getIterator());
// If not, record the range.
UnwindDestToTryRanges[UnwindDest].push_back(
TryRange(RangeBegin, RangeEnd));
LLVM_DEBUG(dbgs() << "- Call unwind mismatch: MBB = " << MBB.getName()
<< "\nCall = " << MI
<< "\nOriginal dest = " << UnwindDest->getName()
<< " Current dest = " << EHPadStack.back()->getName()
<< "\n\n");
}
}
assert(EHPadStack.empty());
// Gather possibly throwing calls that are supposed to unwind up to the caller
// if they throw, but currently unwind to an incorrect destination. Unlike the
// loop above, there can be multiple calls within a BB that unwind to the
// caller, which we should group together in a range. (Case 2)
MachineInstr *RangeBegin = nullptr, *RangeEnd = nullptr; // inclusive
// Record the range.
auto RecordCallerMismatchRange = [&](const MachineBasicBlock *CurrentDest) {
UnwindDestToTryRanges[getFakeCallerBlock(MF)].push_back(
TryRange(RangeBegin, RangeEnd));
LLVM_DEBUG(dbgs() << "- Call unwind mismatch: MBB = "
<< RangeBegin->getParent()->getName()
<< "\nRange begin = " << *RangeBegin
<< "Range end = " << *RangeEnd
<< "\nOriginal dest = caller Current dest = "
<< CurrentDest->getName() << "\n\n");
RangeBegin = RangeEnd = nullptr; // Reset range pointers
};
for (auto &MBB : reverse(MF)) {
bool SeenThrowableInstInBB = false;
for (auto &MI : reverse(MBB)) {
bool MayThrow = WebAssembly::mayThrow(MI);
// If MBB has an EH pad successor and this is the last instruction that
// may throw, this instruction unwinds to the EH pad and not to the
// caller.
if (MBB.hasEHPadSuccessor() && MayThrow && !SeenThrowableInstInBB)
SeenThrowableInstInBB = true;
// We wrap up the current range when we see a marker even if we haven't
// finished a BB.
else if (RangeEnd && WebAssembly::isMarker(MI.getOpcode()))
RecordCallerMismatchRange(EHPadStack.back());
// If EHPadStack is empty, that means it correctly unwinds to the caller
// if it throws, so we're good. If MI does not throw, we're good too.
else if (EHPadStack.empty() || !MayThrow) {
}
// We found an instruction that unwinds to the caller but currently has an
// incorrect unwind destination. Create a new range or increment the
// currently existing range.
else {
if (!RangeEnd)
RangeBegin = RangeEnd = &MI;
else
RangeBegin = &MI;
}
// Update EHPadStack.
if (MI.getOpcode() == WebAssembly::TRY)
EHPadStack.pop_back();
else if (WebAssembly::isCatch(MI.getOpcode()))
EHPadStack.push_back(MI.getParent());
}
if (RangeEnd)
RecordCallerMismatchRange(EHPadStack.back());
}
assert(EHPadStack.empty());
// We don't have any unwind destination mismatches to resolve.
if (UnwindDestToTryRanges.empty())
return false;
// Now we fix the mismatches by wrapping calls with inner try-delegates.
for (auto &P : UnwindDestToTryRanges) {
NumCallUnwindMismatches += P.second.size();
MachineBasicBlock *UnwindDest = P.first;
auto &TryRanges = P.second;
for (auto Range : TryRanges) {
MachineInstr *RangeBegin = nullptr, *RangeEnd = nullptr;
std::tie(RangeBegin, RangeEnd) = Range;
auto *MBB = RangeBegin->getParent();
// If this BB has an EH pad successor, i.e., ends with an 'invoke', now we
// are going to wrap the invoke with try-delegate, making the 'delegate'
// BB the new successor instead, so remove the EH pad succesor here. The
// BB may not have an EH pad successor if calls in this BB throw to the
// caller.
MachineBasicBlock *EHPad = nullptr;
for (auto *Succ : MBB->successors()) {
if (Succ->isEHPad()) {
EHPad = Succ;
break;
}
}
if (EHPad)
MBB->removeSuccessor(EHPad);
addTryDelegate(RangeBegin, RangeEnd, UnwindDest);
}
}
return true;
}
bool WebAssemblyCFGStackify::fixCatchUnwindMismatches(MachineFunction &MF) {
// There is another kind of unwind destination mismatches besides call unwind
// mismatches, which we will call "catch unwind mismatches". See this example
// after the marker placement:
// try
// try
// call @foo
// catch __cpp_exception ;; ehpad A (next unwind dest: caller)
// ...
// end_try
// catch_all ;; ehpad B
// ...
// end_try
//
// 'call @foo's unwind destination is the ehpad A. But suppose 'call @foo'
// throws a foreign exception that is not caught by ehpad A, and its next
// destination should be the caller. But after control flow linearization,
// another EH pad can be placed in between (e.g. ehpad B here), making the
// next unwind destination incorrect. In this case, the foreign exception
// will instead go to ehpad B and will be caught there instead. In this
// example the correct next unwind destination is the caller, but it can be
// another outer catch in other cases.
//
// There is no specific 'call' or 'throw' instruction to wrap with a
// try-delegate, so we wrap the whole try-catch-end with a try-delegate and
// make it rethrow to the right destination, as in the example below:
// try
// try ;; (new)
// try
// call @foo
// catch __cpp_exception ;; ehpad A (next unwind dest: caller)
// ...
// end_try
// delegate 1 (caller) ;; (new)
// catch_all ;; ehpad B
// ...
// end_try
const auto *EHInfo = MF.getWasmEHFuncInfo();
assert(EHInfo);
SmallVector<const MachineBasicBlock *, 8> EHPadStack;
// For EH pads that have catch unwind mismatches, a map of <EH pad, its
// correct unwind destination>.
DenseMap<MachineBasicBlock *, MachineBasicBlock *> EHPadToUnwindDest;
for (auto &MBB : reverse(MF)) {
for (auto &MI : reverse(MBB)) {
if (MI.getOpcode() == WebAssembly::TRY)
EHPadStack.pop_back();
else if (MI.getOpcode() == WebAssembly::DELEGATE)
EHPadStack.push_back(&MBB);
else if (WebAssembly::isCatch(MI.getOpcode())) {
auto *EHPad = &MBB;
// catch_all always catches an exception, so we don't need to do
// anything
if (MI.getOpcode() == WebAssembly::CATCH_ALL) {
}
// This can happen when the unwind dest was removed during the
// optimization, e.g. because it was unreachable.
else if (EHPadStack.empty() && EHInfo->hasUnwindDest(EHPad)) {
LLVM_DEBUG(dbgs() << "EHPad (" << EHPad->getName()
<< "'s unwind destination does not exist anymore"
<< "\n\n");
}
// The EHPad's next unwind destination is the caller, but we incorrectly
// unwind to another EH pad.
else if (!EHPadStack.empty() && !EHInfo->hasUnwindDest(EHPad)) {
EHPadToUnwindDest[EHPad] = getFakeCallerBlock(MF);
LLVM_DEBUG(dbgs()
<< "- Catch unwind mismatch:\nEHPad = " << EHPad->getName()
<< " Original dest = caller Current dest = "
<< EHPadStack.back()->getName() << "\n\n");
}
// The EHPad's next unwind destination is an EH pad, whereas we
// incorrectly unwind to another EH pad.
else if (!EHPadStack.empty() && EHInfo->hasUnwindDest(EHPad)) {
auto *UnwindDest = EHInfo->getUnwindDest(EHPad);
if (EHPadStack.back() != UnwindDest) {
EHPadToUnwindDest[EHPad] = UnwindDest;
LLVM_DEBUG(dbgs() << "- Catch unwind mismatch:\nEHPad = "
<< EHPad->getName() << " Original dest = "
<< UnwindDest->getName() << " Current dest = "
<< EHPadStack.back()->getName() << "\n\n");
}
}
EHPadStack.push_back(EHPad);
}
}
}
assert(EHPadStack.empty());
if (EHPadToUnwindDest.empty())
return false;
NumCatchUnwindMismatches += EHPadToUnwindDest.size();
SmallPtrSet<MachineBasicBlock *, 4> NewEndTryBBs;
for (auto &P : EHPadToUnwindDest) {
MachineBasicBlock *EHPad = P.first;
MachineBasicBlock *UnwindDest = P.second;
MachineInstr *Try = EHPadToTry[EHPad];
MachineInstr *EndTry = BeginToEnd[Try];
addTryDelegate(Try, EndTry, UnwindDest);
NewEndTryBBs.insert(EndTry->getParent());
}
// Adding a try-delegate wrapping an existing try-catch-end can make existing
// branch destination BBs invalid. For example,
//
// - Before:
// bb0:
// block
// br bb3
// bb1:
// try
// ...
// bb2: (ehpad)
// catch
// bb3:
// end_try
// end_block ;; 'br bb3' targets here
//
// Suppose this try-catch-end has a catch unwind mismatch, so we need to wrap
// this with a try-delegate. Then this becomes:
//
// - After:
// bb0:
// block
// br bb3 ;; invalid destination!
// bb1:
// try ;; (new instruction)
// try
// ...
// bb2: (ehpad)
// catch
// bb3:
// end_try ;; 'br bb3' still incorrectly targets here!
// delegate_bb: ;; (new BB)
// delegate ;; (new instruction)
// split_bb: ;; (new BB)
// end_block
//
// Now 'br bb3' incorrectly branches to an inner scope.
//
// As we can see in this case, when branches target a BB that has both
// 'end_try' and 'end_block' and the BB is split to insert a 'delegate', we
// have to remap existing branch destinations so that they target not the
// 'end_try' BB but the new 'end_block' BB. There can be multiple 'delegate's
// in between, so we try to find the next BB with 'end_block' instruction. In
// this example, the 'br bb3' instruction should be remapped to 'br split_bb'.
for (auto &MBB : MF) {
for (auto &MI : MBB) {
if (MI.isTerminator()) {
for (auto &MO : MI.operands()) {
if (MO.isMBB() && NewEndTryBBs.count(MO.getMBB())) {
auto *BrDest = MO.getMBB();
bool FoundEndBlock = false;
for (; std::next(BrDest->getIterator()) != MF.end();
BrDest = BrDest->getNextNode()) {
for (const auto &MI : *BrDest) {
if (MI.getOpcode() == WebAssembly::END_BLOCK) {
FoundEndBlock = true;
break;
}
}
if (FoundEndBlock)
break;
}
assert(FoundEndBlock);
MO.setMBB(BrDest);
}
}
}
}
}
return true;
}
void WebAssemblyCFGStackify::recalculateScopeTops(MachineFunction &MF) {
// Renumber BBs and recalculate ScopeTop info because new BBs might have been
// created and inserted during fixing unwind mismatches.
MF.RenumberBlocks();
ScopeTops.clear();
ScopeTops.resize(MF.getNumBlockIDs());
for (auto &MBB : reverse(MF)) {
for (auto &MI : reverse(MBB)) {
if (ScopeTops[MBB.getNumber()])
break;
switch (MI.getOpcode()) {
case WebAssembly::END_BLOCK:
case WebAssembly::END_LOOP:
case WebAssembly::END_TRY:
case WebAssembly::DELEGATE:
updateScopeTops(EndToBegin[&MI]->getParent(), &MBB);
break;
case WebAssembly::CATCH:
case WebAssembly::CATCH_ALL:
updateScopeTops(EHPadToTry[&MBB]->getParent(), &MBB);
break;
}
}
}
}
/// In normal assembly languages, when the end of a function is unreachable,
/// because the function ends in an infinite loop or a noreturn call or similar,
/// it isn't necessary to worry about the function return type at the end of
/// the function, because it's never reached. However, in WebAssembly, blocks
/// that end at the function end need to have a return type signature that
/// matches the function signature, even though it's unreachable. This function
/// checks for such cases and fixes up the signatures.
void WebAssemblyCFGStackify::fixEndsAtEndOfFunction(MachineFunction &MF) {
const auto &MFI = *MF.getInfo<WebAssemblyFunctionInfo>();
if (MFI.getResults().empty())
return;
// MCInstLower will add the proper types to multivalue signatures based on the
// function return type
WebAssembly::BlockType RetType =
MFI.getResults().size() > 1
? WebAssembly::BlockType::Multivalue
: WebAssembly::BlockType(
WebAssembly::toValType(MFI.getResults().front()));
SmallVector<MachineBasicBlock::reverse_iterator, 4> Worklist;
Worklist.push_back(MF.rbegin()->rbegin());
auto Process = [&](MachineBasicBlock::reverse_iterator It) {
auto *MBB = It->getParent();
while (It != MBB->rend()) {
MachineInstr &MI = *It++;
if (MI.isPosition() || MI.isDebugInstr())
continue;
switch (MI.getOpcode()) {
case WebAssembly::END_TRY: {
// If a 'try''s return type is fixed, both its try body and catch body
// should satisfy the return type, so we need to search 'end'
// instructions before its corresponding 'catch' too.
auto *EHPad = TryToEHPad.lookup(EndToBegin[&MI]);
assert(EHPad);
auto NextIt =
std::next(WebAssembly::findCatch(EHPad)->getReverseIterator());
if (NextIt != EHPad->rend())
Worklist.push_back(NextIt);
[[fallthrough]];
}
case WebAssembly::END_BLOCK:
case WebAssembly::END_LOOP:
case WebAssembly::DELEGATE:
EndToBegin[&MI]->getOperand(0).setImm(int32_t(RetType));
continue;
default:
// Something other than an `end`. We're done for this BB.
return;
}
}
// We've reached the beginning of a BB. Continue the search in the previous
// BB.
Worklist.push_back(MBB->getPrevNode()->rbegin());
};
while (!Worklist.empty())
Process(Worklist.pop_back_val());
}
// WebAssembly functions end with an end instruction, as if the function body
// were a block.
static void appendEndToFunction(MachineFunction &MF,
const WebAssemblyInstrInfo &TII) {
BuildMI(MF.back(), MF.back().end(),
MF.back().findPrevDebugLoc(MF.back().end()),
TII.get(WebAssembly::END_FUNCTION));
}
/// Insert LOOP/TRY/BLOCK markers at appropriate places.
void WebAssemblyCFGStackify::placeMarkers(MachineFunction &MF) {
// We allocate one more than the number of blocks in the function to
// accommodate for the possible fake block we may insert at the end.
ScopeTops.resize(MF.getNumBlockIDs() + 1);
// Place the LOOP for MBB if MBB is the header of a loop.
for (auto &MBB : MF)
placeLoopMarker(MBB);
const MCAsmInfo *MCAI = MF.getTarget().getMCAsmInfo();
for (auto &MBB : MF) {
if (MBB.isEHPad()) {
// Place the TRY for MBB if MBB is the EH pad of an exception.
if (MCAI->getExceptionHandlingType() == ExceptionHandling::Wasm &&
MF.getFunction().hasPersonalityFn())
placeTryMarker(MBB);
} else {
// Place the BLOCK for MBB if MBB is branched to from above.
placeBlockMarker(MBB);
}
}
// Fix mismatches in unwind destinations induced by linearizing the code.
if (MCAI->getExceptionHandlingType() == ExceptionHandling::Wasm &&
MF.getFunction().hasPersonalityFn()) {
bool Changed = fixCallUnwindMismatches(MF);
Changed |= fixCatchUnwindMismatches(MF);
if (Changed)
recalculateScopeTops(MF);
}
}
unsigned WebAssemblyCFGStackify::getBranchDepth(
const SmallVectorImpl<EndMarkerInfo> &Stack, const MachineBasicBlock *MBB) {
unsigned Depth = 0;
for (auto X : reverse(Stack)) {
if (X.first == MBB)
break;
++Depth;
}
assert(Depth < Stack.size() && "Branch destination should be in scope");
return Depth;
}
unsigned WebAssemblyCFGStackify::getDelegateDepth(
const SmallVectorImpl<EndMarkerInfo> &Stack, const MachineBasicBlock *MBB) {
if (MBB == FakeCallerBB)
return Stack.size();
// Delegate's destination is either a catch or a another delegate BB. When the
// destination is another delegate, we can compute the argument in the same
// way as branches, because the target delegate BB only contains the single
// delegate instruction.
if (!MBB->isEHPad()) // Target is a delegate BB
return getBranchDepth(Stack, MBB);
// When the delegate's destination is a catch BB, we need to use its
// corresponding try's end_try BB because Stack contains each marker's end BB.
// Also we need to check if the end marker instruction matches, because a
// single BB can contain multiple end markers, like this:
// bb:
// END_BLOCK
// END_TRY
// END_BLOCK
// END_TRY
// ...
//
// In case of branches getting the immediate that targets any of these is
// fine, but delegate has to exactly target the correct try.
unsigned Depth = 0;
const MachineInstr *EndTry = BeginToEnd[EHPadToTry[MBB]];
for (auto X : reverse(Stack)) {
if (X.first == EndTry->getParent() && X.second == EndTry)
break;
++Depth;
}
assert(Depth < Stack.size() && "Delegate destination should be in scope");
return Depth;
}
unsigned WebAssemblyCFGStackify::getRethrowDepth(
const SmallVectorImpl<EndMarkerInfo> &Stack,
const SmallVectorImpl<const MachineBasicBlock *> &EHPadStack) {
unsigned Depth = 0;
// In our current implementation, rethrows always rethrow the exception caught
// by the innermost enclosing catch. This means while traversing Stack in the
// reverse direction, when we encounter END_TRY, we should check if the
// END_TRY corresponds to the current innermost EH pad. For example:
// try
// ...
// catch ;; (a)
// try
// rethrow 1 ;; (b)
// catch ;; (c)
// rethrow 0 ;; (d)
// end ;; (e)
// end ;; (f)
//
// When we are at 'rethrow' (d), while reversely traversing Stack the first
// 'end' we encounter is the 'end' (e), which corresponds to the 'catch' (c).
// And 'rethrow' (d) rethrows the exception caught by 'catch' (c), so we stop
// there and the depth should be 0. But when we are at 'rethrow' (b), it
// rethrows the exception caught by 'catch' (a), so when traversing Stack
// reversely, we should skip the 'end' (e) and choose 'end' (f), which
// corresponds to 'catch' (a).
for (auto X : reverse(Stack)) {
const MachineInstr *End = X.second;
if (End->getOpcode() == WebAssembly::END_TRY) {
auto *EHPad = TryToEHPad[EndToBegin[End]];
if (EHPadStack.back() == EHPad)
break;
}
++Depth;
}
assert(Depth < Stack.size() && "Rethrow destination should be in scope");
return Depth;
}
void WebAssemblyCFGStackify::rewriteDepthImmediates(MachineFunction &MF) {
// Now rewrite references to basic blocks to be depth immediates.
SmallVector<EndMarkerInfo, 8> Stack;
SmallVector<const MachineBasicBlock *, 8> EHPadStack;
for (auto &MBB : reverse(MF)) {
for (MachineInstr &MI : llvm::reverse(MBB)) {
switch (MI.getOpcode()) {
case WebAssembly::BLOCK:
case WebAssembly::TRY:
assert(ScopeTops[Stack.back().first->getNumber()]->getNumber() <=
MBB.getNumber() &&
"Block/try marker should be balanced");
Stack.pop_back();
break;
case WebAssembly::LOOP:
assert(Stack.back().first == &MBB && "Loop top should be balanced");
Stack.pop_back();
break;
case WebAssembly::END_BLOCK:
Stack.push_back(std::make_pair(&MBB, &MI));
break;
case WebAssembly::END_TRY: {
// We handle DELEGATE in the default level, because DELEGATE has
// immediate operands to rewrite.
Stack.push_back(std::make_pair(&MBB, &MI));
auto *EHPad = TryToEHPad[EndToBegin[&MI]];
EHPadStack.push_back(EHPad);
break;
}
case WebAssembly::END_LOOP:
Stack.push_back(std::make_pair(EndToBegin[&MI]->getParent(), &MI));
break;
case WebAssembly::CATCH:
case WebAssembly::CATCH_ALL:
EHPadStack.pop_back();
break;
case WebAssembly::RETHROW:
MI.getOperand(0).setImm(getRethrowDepth(Stack, EHPadStack));
break;
default:
if (MI.isTerminator()) {
// Rewrite MBB operands to be depth immediates.
SmallVector<MachineOperand, 4> Ops(MI.operands());
while (MI.getNumOperands() > 0)
MI.removeOperand(MI.getNumOperands() - 1);
for (auto MO : Ops) {
if (MO.isMBB()) {
if (MI.getOpcode() == WebAssembly::DELEGATE)
MO = MachineOperand::CreateImm(
getDelegateDepth(Stack, MO.getMBB()));
else
MO = MachineOperand::CreateImm(
getBranchDepth(Stack, MO.getMBB()));
}
MI.addOperand(MF, MO);
}
}
if (MI.getOpcode() == WebAssembly::DELEGATE)
Stack.push_back(std::make_pair(&MBB, &MI));
break;
}
}
}
assert(Stack.empty() && "Control flow should be balanced");
}
void WebAssemblyCFGStackify::cleanupFunctionData(MachineFunction &MF) {
if (FakeCallerBB)
MF.deleteMachineBasicBlock(FakeCallerBB);
AppendixBB = FakeCallerBB = nullptr;
}
void WebAssemblyCFGStackify::releaseMemory() {
ScopeTops.clear();
BeginToEnd.clear();
EndToBegin.clear();
TryToEHPad.clear();
EHPadToTry.clear();
}
bool WebAssemblyCFGStackify::runOnMachineFunction(MachineFunction &MF) {
LLVM_DEBUG(dbgs() << "********** CFG Stackifying **********\n"
"********** Function: "
<< MF.getName() << '\n');
const MCAsmInfo *MCAI = MF.getTarget().getMCAsmInfo();
releaseMemory();
// Liveness is not tracked for VALUE_STACK physreg.
MF.getRegInfo().invalidateLiveness();
// Place the BLOCK/LOOP/TRY markers to indicate the beginnings of scopes.
placeMarkers(MF);
// Remove unnecessary instructions possibly introduced by try/end_trys.
if (MCAI->getExceptionHandlingType() == ExceptionHandling::Wasm &&
MF.getFunction().hasPersonalityFn())
removeUnnecessaryInstrs(MF);
// Convert MBB operands in terminators to relative depth immediates.
rewriteDepthImmediates(MF);
// Fix up block/loop/try signatures at the end of the function to conform to
// WebAssembly's rules.
fixEndsAtEndOfFunction(MF);
// Add an end instruction at the end of the function body.
const auto &TII = *MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo();
if (!MF.getSubtarget<WebAssemblySubtarget>()
.getTargetTriple()
.isOSBinFormatELF())
appendEndToFunction(MF, TII);
cleanupFunctionData(MF);
MF.getInfo<WebAssemblyFunctionInfo>()->setCFGStackified();
return true;
}