
Nothing is actually needed in ClangIR to support typedef and type aliases, but the Decl kinds need to be explicitly ignored in the emitDecl handlers to avoid hitting the default NYI errors. This change does that and adds tests.
709 lines
26 KiB
C++
709 lines
26 KiB
C++
//===- CIRGenModule.cpp - Per-Module state for CIR generation -------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This is the internal per-translation-unit state used for CIR translation.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "CIRGenModule.h"
|
|
#include "CIRGenConstantEmitter.h"
|
|
#include "CIRGenFunction.h"
|
|
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/DeclBase.h"
|
|
#include "clang/AST/DeclOpenACC.h"
|
|
#include "clang/AST/GlobalDecl.h"
|
|
#include "clang/Basic/SourceManager.h"
|
|
#include "clang/CIR/Dialect/IR/CIRDialect.h"
|
|
#include "clang/CIR/MissingFeatures.h"
|
|
|
|
#include "mlir/IR/BuiltinOps.h"
|
|
#include "mlir/IR/Location.h"
|
|
#include "mlir/IR/MLIRContext.h"
|
|
#include "mlir/IR/Verifier.h"
|
|
|
|
using namespace clang;
|
|
using namespace clang::CIRGen;
|
|
|
|
CIRGenModule::CIRGenModule(mlir::MLIRContext &mlirContext,
|
|
clang::ASTContext &astContext,
|
|
const clang::CodeGenOptions &cgo,
|
|
DiagnosticsEngine &diags)
|
|
: builder(mlirContext, *this), astContext(astContext),
|
|
langOpts(astContext.getLangOpts()), codeGenOpts(cgo),
|
|
theModule{mlir::ModuleOp::create(mlir::UnknownLoc::get(&mlirContext))},
|
|
diags(diags), target(astContext.getTargetInfo()), genTypes(*this) {
|
|
|
|
// Initialize cached types
|
|
VoidTy = cir::VoidType::get(&getMLIRContext());
|
|
SInt8Ty = cir::IntType::get(&getMLIRContext(), 8, /*isSigned=*/true);
|
|
SInt16Ty = cir::IntType::get(&getMLIRContext(), 16, /*isSigned=*/true);
|
|
SInt32Ty = cir::IntType::get(&getMLIRContext(), 32, /*isSigned=*/true);
|
|
SInt64Ty = cir::IntType::get(&getMLIRContext(), 64, /*isSigned=*/true);
|
|
SInt128Ty = cir::IntType::get(&getMLIRContext(), 128, /*isSigned=*/true);
|
|
UInt8Ty = cir::IntType::get(&getMLIRContext(), 8, /*isSigned=*/false);
|
|
UInt16Ty = cir::IntType::get(&getMLIRContext(), 16, /*isSigned=*/false);
|
|
UInt32Ty = cir::IntType::get(&getMLIRContext(), 32, /*isSigned=*/false);
|
|
UInt64Ty = cir::IntType::get(&getMLIRContext(), 64, /*isSigned=*/false);
|
|
UInt128Ty = cir::IntType::get(&getMLIRContext(), 128, /*isSigned=*/false);
|
|
FP16Ty = cir::FP16Type::get(&getMLIRContext());
|
|
BFloat16Ty = cir::BF16Type::get(&getMLIRContext());
|
|
FloatTy = cir::SingleType::get(&getMLIRContext());
|
|
DoubleTy = cir::DoubleType::get(&getMLIRContext());
|
|
FP80Ty = cir::FP80Type::get(&getMLIRContext());
|
|
FP128Ty = cir::FP128Type::get(&getMLIRContext());
|
|
|
|
PointerAlignInBytes =
|
|
astContext
|
|
.toCharUnitsFromBits(
|
|
astContext.getTargetInfo().getPointerAlign(LangAS::Default))
|
|
.getQuantity();
|
|
|
|
// TODO(CIR): Should be updated once TypeSizeInfoAttr is upstreamed
|
|
const unsigned sizeTypeSize =
|
|
astContext.getTypeSize(astContext.getSignedSizeType());
|
|
PtrDiffTy =
|
|
cir::IntType::get(&getMLIRContext(), sizeTypeSize, /*isSigned=*/true);
|
|
|
|
theModule->setAttr(cir::CIRDialect::getTripleAttrName(),
|
|
builder.getStringAttr(getTriple().str()));
|
|
}
|
|
|
|
CharUnits CIRGenModule::getNaturalTypeAlignment(QualType t,
|
|
LValueBaseInfo *baseInfo) {
|
|
assert(!cir::MissingFeatures::opTBAA());
|
|
|
|
// FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown, but
|
|
// that doesn't return the information we need to compute baseInfo.
|
|
|
|
// Honor alignment typedef attributes even on incomplete types.
|
|
// We also honor them straight for C++ class types, even as pointees;
|
|
// there's an expressivity gap here.
|
|
if (const auto *tt = t->getAs<TypedefType>()) {
|
|
if (unsigned align = tt->getDecl()->getMaxAlignment()) {
|
|
if (baseInfo)
|
|
*baseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
|
|
return astContext.toCharUnitsFromBits(align);
|
|
}
|
|
}
|
|
|
|
// Analyze the base element type, so we don't get confused by incomplete
|
|
// array types.
|
|
t = astContext.getBaseElementType(t);
|
|
|
|
if (t->isIncompleteType()) {
|
|
// We could try to replicate the logic from
|
|
// ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
|
|
// type is incomplete, so it's impossible to test. We could try to reuse
|
|
// getTypeAlignIfKnown, but that doesn't return the information we need
|
|
// to set baseInfo. So just ignore the possibility that the alignment is
|
|
// greater than one.
|
|
if (baseInfo)
|
|
*baseInfo = LValueBaseInfo(AlignmentSource::Type);
|
|
return CharUnits::One();
|
|
}
|
|
|
|
if (baseInfo)
|
|
*baseInfo = LValueBaseInfo(AlignmentSource::Type);
|
|
|
|
CharUnits alignment;
|
|
if (t.getQualifiers().hasUnaligned()) {
|
|
alignment = CharUnits::One();
|
|
} else {
|
|
assert(!cir::MissingFeatures::alignCXXRecordDecl());
|
|
alignment = astContext.getTypeAlignInChars(t);
|
|
}
|
|
|
|
// Cap to the global maximum type alignment unless the alignment
|
|
// was somehow explicit on the type.
|
|
if (unsigned maxAlign = astContext.getLangOpts().MaxTypeAlign) {
|
|
if (alignment.getQuantity() > maxAlign &&
|
|
!astContext.isAlignmentRequired(t))
|
|
alignment = CharUnits::fromQuantity(maxAlign);
|
|
}
|
|
return alignment;
|
|
}
|
|
|
|
const TargetCIRGenInfo &CIRGenModule::getTargetCIRGenInfo() {
|
|
if (theTargetCIRGenInfo)
|
|
return *theTargetCIRGenInfo;
|
|
|
|
const llvm::Triple &triple = getTarget().getTriple();
|
|
switch (triple.getArch()) {
|
|
default:
|
|
assert(!cir::MissingFeatures::targetCIRGenInfoArch());
|
|
|
|
// Currently we just fall through to x86_64.
|
|
[[fallthrough]];
|
|
|
|
case llvm::Triple::x86_64: {
|
|
switch (triple.getOS()) {
|
|
default:
|
|
assert(!cir::MissingFeatures::targetCIRGenInfoOS());
|
|
|
|
// Currently we just fall through to x86_64.
|
|
[[fallthrough]];
|
|
|
|
case llvm::Triple::Linux:
|
|
theTargetCIRGenInfo = createX8664TargetCIRGenInfo(genTypes);
|
|
return *theTargetCIRGenInfo;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
mlir::Location CIRGenModule::getLoc(SourceLocation cLoc) {
|
|
assert(cLoc.isValid() && "expected valid source location");
|
|
const SourceManager &sm = astContext.getSourceManager();
|
|
PresumedLoc pLoc = sm.getPresumedLoc(cLoc);
|
|
StringRef filename = pLoc.getFilename();
|
|
return mlir::FileLineColLoc::get(builder.getStringAttr(filename),
|
|
pLoc.getLine(), pLoc.getColumn());
|
|
}
|
|
|
|
mlir::Location CIRGenModule::getLoc(SourceRange cRange) {
|
|
assert(cRange.isValid() && "expected a valid source range");
|
|
mlir::Location begin = getLoc(cRange.getBegin());
|
|
mlir::Location end = getLoc(cRange.getEnd());
|
|
mlir::Attribute metadata;
|
|
return mlir::FusedLoc::get({begin, end}, metadata, builder.getContext());
|
|
}
|
|
|
|
void CIRGenModule::emitGlobal(clang::GlobalDecl gd) {
|
|
if (const auto *cd = dyn_cast<clang::OpenACCConstructDecl>(gd.getDecl())) {
|
|
emitGlobalOpenACCDecl(cd);
|
|
return;
|
|
}
|
|
|
|
const auto *global = cast<ValueDecl>(gd.getDecl());
|
|
|
|
if (const auto *fd = dyn_cast<FunctionDecl>(global)) {
|
|
// Update deferred annotations with the latest declaration if the function
|
|
// was already used or defined.
|
|
if (fd->hasAttr<AnnotateAttr>())
|
|
errorNYI(fd->getSourceRange(), "deferredAnnotations");
|
|
if (!fd->doesThisDeclarationHaveABody()) {
|
|
if (!fd->doesDeclarationForceExternallyVisibleDefinition())
|
|
return;
|
|
|
|
errorNYI(fd->getSourceRange(),
|
|
"function declaration that forces code gen");
|
|
return;
|
|
}
|
|
} else {
|
|
assert(cast<VarDecl>(global)->isFileVarDecl() &&
|
|
"Cannot emit local var decl as global");
|
|
}
|
|
|
|
// TODO(CIR): Defer emitting some global definitions until later
|
|
emitGlobalDefinition(gd);
|
|
}
|
|
|
|
void CIRGenModule::emitGlobalFunctionDefinition(clang::GlobalDecl gd,
|
|
mlir::Operation *op) {
|
|
auto const *funcDecl = cast<FunctionDecl>(gd.getDecl());
|
|
if (funcDecl->getIdentifier() == nullptr) {
|
|
errorNYI(funcDecl->getSourceRange().getBegin(),
|
|
"function definition with a non-identifier for a name");
|
|
return;
|
|
}
|
|
cir::FuncType funcType =
|
|
cast<cir::FuncType>(convertType(funcDecl->getType()));
|
|
|
|
cir::FuncOp funcOp = dyn_cast_if_present<cir::FuncOp>(op);
|
|
if (!funcOp || funcOp.getFunctionType() != funcType) {
|
|
funcOp = getAddrOfFunction(gd, funcType, /*ForVTable=*/false,
|
|
/*DontDefer=*/true, ForDefinition);
|
|
}
|
|
|
|
CIRGenFunction cgf(*this, builder);
|
|
curCGF = &cgf;
|
|
{
|
|
mlir::OpBuilder::InsertionGuard guard(builder);
|
|
cgf.generateCode(gd, funcOp, funcType);
|
|
}
|
|
curCGF = nullptr;
|
|
}
|
|
|
|
mlir::Operation *CIRGenModule::getGlobalValue(StringRef name) {
|
|
return mlir::SymbolTable::lookupSymbolIn(theModule, name);
|
|
}
|
|
|
|
/// If the specified mangled name is not in the module,
|
|
/// create and return an mlir GlobalOp with the specified type (TODO(cir):
|
|
/// address space).
|
|
///
|
|
/// TODO(cir):
|
|
/// 1. If there is something in the module with the specified name, return
|
|
/// it potentially bitcasted to the right type.
|
|
///
|
|
/// 2. If \p d is non-null, it specifies a decl that correspond to this. This
|
|
/// is used to set the attributes on the global when it is first created.
|
|
///
|
|
/// 3. If \p isForDefinition is true, it is guaranteed that an actual global
|
|
/// with type \p ty will be returned, not conversion of a variable with the same
|
|
/// mangled name but some other type.
|
|
cir::GlobalOp
|
|
CIRGenModule::getOrCreateCIRGlobal(StringRef mangledName, mlir::Type ty,
|
|
LangAS langAS, const VarDecl *d,
|
|
ForDefinition_t isForDefinition) {
|
|
// Lookup the entry, lazily creating it if necessary.
|
|
cir::GlobalOp entry;
|
|
if (mlir::Operation *v = getGlobalValue(mangledName)) {
|
|
if (!isa<cir::GlobalOp>(v))
|
|
errorNYI(d->getSourceRange(), "global with non-GlobalOp type");
|
|
entry = cast<cir::GlobalOp>(v);
|
|
}
|
|
|
|
if (entry) {
|
|
assert(!cir::MissingFeatures::addressSpace());
|
|
assert(!cir::MissingFeatures::opGlobalWeakRef());
|
|
|
|
assert(!cir::MissingFeatures::setDLLStorageClass());
|
|
assert(!cir::MissingFeatures::openMP());
|
|
|
|
if (entry.getSymType() == ty)
|
|
return entry;
|
|
|
|
// If there are two attempts to define the same mangled name, issue an
|
|
// error.
|
|
//
|
|
// TODO(cir): look at mlir::GlobalValue::isDeclaration for all aspects of
|
|
// recognizing the global as a declaration, for now only check if
|
|
// initializer is present.
|
|
if (isForDefinition && !entry.isDeclaration()) {
|
|
errorNYI(d->getSourceRange(), "global with conflicting type");
|
|
}
|
|
|
|
// Address space check removed because it is unnecessary because CIR records
|
|
// address space info in types.
|
|
|
|
// (If global is requested for a definition, we always need to create a new
|
|
// global, not just return a bitcast.)
|
|
if (!isForDefinition)
|
|
return entry;
|
|
}
|
|
|
|
errorNYI(d->getSourceRange(), "reference of undeclared global");
|
|
return {};
|
|
}
|
|
|
|
cir::GlobalOp
|
|
CIRGenModule::getOrCreateCIRGlobal(const VarDecl *d, mlir::Type ty,
|
|
ForDefinition_t isForDefinition) {
|
|
assert(d->hasGlobalStorage() && "Not a global variable");
|
|
QualType astTy = d->getType();
|
|
if (!ty)
|
|
ty = getTypes().convertTypeForMem(astTy);
|
|
|
|
assert(!cir::MissingFeatures::mangledNames());
|
|
return getOrCreateCIRGlobal(d->getIdentifier()->getName(), ty,
|
|
astTy.getAddressSpace(), d, isForDefinition);
|
|
}
|
|
|
|
/// Return the mlir::Value for the address of the given global variable. If
|
|
/// \p ty is non-null and if the global doesn't exist, then it will be created
|
|
/// with the specified type instead of whatever the normal requested type would
|
|
/// be. If \p isForDefinition is true, it is guaranteed that an actual global
|
|
/// with type \p ty will be returned, not conversion of a variable with the same
|
|
/// mangled name but some other type.
|
|
mlir::Value CIRGenModule::getAddrOfGlobalVar(const VarDecl *d, mlir::Type ty,
|
|
ForDefinition_t isForDefinition) {
|
|
assert(d->hasGlobalStorage() && "Not a global variable");
|
|
QualType astTy = d->getType();
|
|
if (!ty)
|
|
ty = getTypes().convertTypeForMem(astTy);
|
|
|
|
assert(!cir::MissingFeatures::opGlobalThreadLocal());
|
|
|
|
cir::GlobalOp g = getOrCreateCIRGlobal(d, ty, isForDefinition);
|
|
mlir::Type ptrTy = builder.getPointerTo(g.getSymType());
|
|
return builder.create<cir::GetGlobalOp>(getLoc(d->getSourceRange()), ptrTy,
|
|
g.getSymName());
|
|
}
|
|
|
|
void CIRGenModule::emitGlobalVarDefinition(const clang::VarDecl *vd,
|
|
bool isTentative) {
|
|
const QualType astTy = vd->getType();
|
|
const mlir::Type type = convertType(vd->getType());
|
|
if (clang::IdentifierInfo *identifier = vd->getIdentifier()) {
|
|
auto varOp = builder.create<cir::GlobalOp>(getLoc(vd->getSourceRange()),
|
|
identifier->getName(), type);
|
|
// TODO(CIR): This code for processing initial values is a placeholder
|
|
// until class ConstantEmitter is upstreamed and the code for processing
|
|
// constant expressions is filled out. Only the most basic handling of
|
|
// certain constant expressions is implemented for now.
|
|
const VarDecl *initDecl;
|
|
const Expr *initExpr = vd->getAnyInitializer(initDecl);
|
|
mlir::Attribute initializer;
|
|
if (initExpr) {
|
|
if (APValue *value = initDecl->evaluateValue()) {
|
|
ConstantEmitter emitter(*this);
|
|
initializer = emitter.tryEmitPrivateForMemory(*value, astTy);
|
|
} else {
|
|
errorNYI(initExpr->getSourceRange(), "non-constant initializer");
|
|
}
|
|
} else {
|
|
initializer = builder.getZeroInitAttr(convertType(astTy));
|
|
}
|
|
|
|
varOp.setInitialValueAttr(initializer);
|
|
|
|
// Set CIR's linkage type as appropriate.
|
|
cir::GlobalLinkageKind linkage =
|
|
getCIRLinkageVarDefinition(vd, /*IsConstant=*/false);
|
|
|
|
// Set CIR linkage and DLL storage class.
|
|
varOp.setLinkage(linkage);
|
|
|
|
if (linkage == cir::GlobalLinkageKind::CommonLinkage)
|
|
errorNYI(initExpr->getSourceRange(), "common linkage");
|
|
|
|
theModule.push_back(varOp);
|
|
} else {
|
|
errorNYI(vd->getSourceRange().getBegin(),
|
|
"variable definition with a non-identifier for a name");
|
|
}
|
|
}
|
|
|
|
void CIRGenModule::emitGlobalDefinition(clang::GlobalDecl gd,
|
|
mlir::Operation *op) {
|
|
const auto *decl = cast<ValueDecl>(gd.getDecl());
|
|
if (const auto *fd = dyn_cast<FunctionDecl>(decl)) {
|
|
// TODO(CIR): Skip generation of CIR for functions with available_externally
|
|
// linkage at -O0.
|
|
|
|
if (const auto *method = dyn_cast<CXXMethodDecl>(decl)) {
|
|
// Make sure to emit the definition(s) before we emit the thunks. This is
|
|
// necessary for the generation of certain thunks.
|
|
(void)method;
|
|
errorNYI(method->getSourceRange(), "member function");
|
|
return;
|
|
}
|
|
|
|
if (fd->isMultiVersion())
|
|
errorNYI(fd->getSourceRange(), "multiversion functions");
|
|
emitGlobalFunctionDefinition(gd, op);
|
|
return;
|
|
}
|
|
|
|
if (const auto *vd = dyn_cast<VarDecl>(decl))
|
|
return emitGlobalVarDefinition(vd, !vd->hasDefinition());
|
|
|
|
llvm_unreachable("Invalid argument to CIRGenModule::emitGlobalDefinition");
|
|
}
|
|
|
|
static bool shouldBeInCOMDAT(CIRGenModule &cgm, const Decl &d) {
|
|
assert(!cir::MissingFeatures::supportComdat());
|
|
|
|
if (d.hasAttr<SelectAnyAttr>())
|
|
return true;
|
|
|
|
GVALinkage linkage;
|
|
if (auto *vd = dyn_cast<VarDecl>(&d))
|
|
linkage = cgm.getASTContext().GetGVALinkageForVariable(vd);
|
|
else
|
|
linkage =
|
|
cgm.getASTContext().GetGVALinkageForFunction(cast<FunctionDecl>(&d));
|
|
|
|
switch (linkage) {
|
|
case clang::GVA_Internal:
|
|
case clang::GVA_AvailableExternally:
|
|
case clang::GVA_StrongExternal:
|
|
return false;
|
|
case clang::GVA_DiscardableODR:
|
|
case clang::GVA_StrongODR:
|
|
return true;
|
|
}
|
|
llvm_unreachable("No such linkage");
|
|
}
|
|
|
|
// TODO(CIR): this could be a common method between LLVM codegen.
|
|
static bool isVarDeclStrongDefinition(const ASTContext &astContext,
|
|
CIRGenModule &cgm, const VarDecl *vd,
|
|
bool noCommon) {
|
|
// Don't give variables common linkage if -fno-common was specified unless it
|
|
// was overridden by a NoCommon attribute.
|
|
if ((noCommon || vd->hasAttr<NoCommonAttr>()) && !vd->hasAttr<CommonAttr>())
|
|
return true;
|
|
|
|
// C11 6.9.2/2:
|
|
// A declaration of an identifier for an object that has file scope without
|
|
// an initializer, and without a storage-class specifier or with the
|
|
// storage-class specifier static, constitutes a tentative definition.
|
|
if (vd->getInit() || vd->hasExternalStorage())
|
|
return true;
|
|
|
|
// A variable cannot be both common and exist in a section.
|
|
if (vd->hasAttr<SectionAttr>())
|
|
return true;
|
|
|
|
// A variable cannot be both common and exist in a section.
|
|
// We don't try to determine which is the right section in the front-end.
|
|
// If no specialized section name is applicable, it will resort to default.
|
|
if (vd->hasAttr<PragmaClangBSSSectionAttr>() ||
|
|
vd->hasAttr<PragmaClangDataSectionAttr>() ||
|
|
vd->hasAttr<PragmaClangRelroSectionAttr>() ||
|
|
vd->hasAttr<PragmaClangRodataSectionAttr>())
|
|
return true;
|
|
|
|
// Thread local vars aren't considered common linkage.
|
|
if (vd->getTLSKind())
|
|
return true;
|
|
|
|
// Tentative definitions marked with WeakImportAttr are true definitions.
|
|
if (vd->hasAttr<WeakImportAttr>())
|
|
return true;
|
|
|
|
// A variable cannot be both common and exist in a comdat.
|
|
if (shouldBeInCOMDAT(cgm, *vd))
|
|
return true;
|
|
|
|
// Declarations with a required alignment do not have common linkage in MSVC
|
|
// mode.
|
|
if (astContext.getTargetInfo().getCXXABI().isMicrosoft()) {
|
|
if (vd->hasAttr<AlignedAttr>())
|
|
return true;
|
|
QualType varType = vd->getType();
|
|
if (astContext.isAlignmentRequired(varType))
|
|
return true;
|
|
|
|
if (const auto *rt = varType->getAs<RecordType>()) {
|
|
const RecordDecl *rd = rt->getDecl();
|
|
for (const FieldDecl *fd : rd->fields()) {
|
|
if (fd->isBitField())
|
|
continue;
|
|
if (fd->hasAttr<AlignedAttr>())
|
|
return true;
|
|
if (astContext.isAlignmentRequired(fd->getType()))
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Microsoft's link.exe doesn't support alignments greater than 32 bytes for
|
|
// common symbols, so symbols with greater alignment requirements cannot be
|
|
// common.
|
|
// Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
|
|
// alignments for common symbols via the aligncomm directive, so this
|
|
// restriction only applies to MSVC environments.
|
|
if (astContext.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
|
|
astContext.getTypeAlignIfKnown(vd->getType()) >
|
|
astContext.toBits(CharUnits::fromQuantity(32)))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
cir::GlobalLinkageKind CIRGenModule::getCIRLinkageForDeclarator(
|
|
const DeclaratorDecl *dd, GVALinkage linkage, bool isConstantVariable) {
|
|
if (linkage == GVA_Internal)
|
|
return cir::GlobalLinkageKind::InternalLinkage;
|
|
|
|
if (dd->hasAttr<WeakAttr>()) {
|
|
if (isConstantVariable)
|
|
return cir::GlobalLinkageKind::WeakODRLinkage;
|
|
return cir::GlobalLinkageKind::WeakAnyLinkage;
|
|
}
|
|
|
|
if (const auto *fd = dd->getAsFunction())
|
|
if (fd->isMultiVersion() && linkage == GVA_AvailableExternally)
|
|
return cir::GlobalLinkageKind::LinkOnceAnyLinkage;
|
|
|
|
// We are guaranteed to have a strong definition somewhere else,
|
|
// so we can use available_externally linkage.
|
|
if (linkage == GVA_AvailableExternally)
|
|
return cir::GlobalLinkageKind::AvailableExternallyLinkage;
|
|
|
|
// Note that Apple's kernel linker doesn't support symbol
|
|
// coalescing, so we need to avoid linkonce and weak linkages there.
|
|
// Normally, this means we just map to internal, but for explicit
|
|
// instantiations we'll map to external.
|
|
|
|
// In C++, the compiler has to emit a definition in every translation unit
|
|
// that references the function. We should use linkonce_odr because
|
|
// a) if all references in this translation unit are optimized away, we
|
|
// don't need to codegen it. b) if the function persists, it needs to be
|
|
// merged with other definitions. c) C++ has the ODR, so we know the
|
|
// definition is dependable.
|
|
if (linkage == GVA_DiscardableODR)
|
|
return !astContext.getLangOpts().AppleKext
|
|
? cir::GlobalLinkageKind::LinkOnceODRLinkage
|
|
: cir::GlobalLinkageKind::InternalLinkage;
|
|
|
|
// An explicit instantiation of a template has weak linkage, since
|
|
// explicit instantiations can occur in multiple translation units
|
|
// and must all be equivalent. However, we are not allowed to
|
|
// throw away these explicit instantiations.
|
|
//
|
|
// CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
|
|
// so say that CUDA templates are either external (for kernels) or internal.
|
|
// This lets llvm perform aggressive inter-procedural optimizations. For
|
|
// -fgpu-rdc case, device function calls across multiple TU's are allowed,
|
|
// therefore we need to follow the normal linkage paradigm.
|
|
if (linkage == GVA_StrongODR) {
|
|
if (getLangOpts().AppleKext)
|
|
return cir::GlobalLinkageKind::ExternalLinkage;
|
|
if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
|
|
!getLangOpts().GPURelocatableDeviceCode)
|
|
return dd->hasAttr<CUDAGlobalAttr>()
|
|
? cir::GlobalLinkageKind::ExternalLinkage
|
|
: cir::GlobalLinkageKind::InternalLinkage;
|
|
return cir::GlobalLinkageKind::WeakODRLinkage;
|
|
}
|
|
|
|
// C++ doesn't have tentative definitions and thus cannot have common
|
|
// linkage.
|
|
if (!getLangOpts().CPlusPlus && isa<VarDecl>(dd) &&
|
|
!isVarDeclStrongDefinition(astContext, *this, cast<VarDecl>(dd),
|
|
getCodeGenOpts().NoCommon)) {
|
|
errorNYI(dd->getBeginLoc(), "common linkage", dd->getDeclKindName());
|
|
return cir::GlobalLinkageKind::CommonLinkage;
|
|
}
|
|
|
|
// selectany symbols are externally visible, so use weak instead of
|
|
// linkonce. MSVC optimizes away references to const selectany globals, so
|
|
// all definitions should be the same and ODR linkage should be used.
|
|
// http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
|
|
if (dd->hasAttr<SelectAnyAttr>())
|
|
return cir::GlobalLinkageKind::WeakODRLinkage;
|
|
|
|
// Otherwise, we have strong external linkage.
|
|
assert(linkage == GVA_StrongExternal);
|
|
return cir::GlobalLinkageKind::ExternalLinkage;
|
|
}
|
|
|
|
cir::GlobalLinkageKind
|
|
CIRGenModule::getCIRLinkageVarDefinition(const VarDecl *vd, bool isConstant) {
|
|
assert(!isConstant && "constant variables NYI");
|
|
GVALinkage linkage = astContext.GetGVALinkageForVariable(vd);
|
|
return getCIRLinkageForDeclarator(vd, linkage, isConstant);
|
|
}
|
|
|
|
// Emit code for a single top level declaration.
|
|
void CIRGenModule::emitTopLevelDecl(Decl *decl) {
|
|
|
|
// Ignore dependent declarations.
|
|
if (decl->isTemplated())
|
|
return;
|
|
|
|
switch (decl->getKind()) {
|
|
default:
|
|
errorNYI(decl->getBeginLoc(), "declaration of kind",
|
|
decl->getDeclKindName());
|
|
break;
|
|
|
|
case Decl::Function: {
|
|
auto *fd = cast<FunctionDecl>(decl);
|
|
// Consteval functions shouldn't be emitted.
|
|
if (!fd->isConsteval())
|
|
emitGlobal(fd);
|
|
break;
|
|
}
|
|
|
|
case Decl::Var: {
|
|
auto *vd = cast<VarDecl>(decl);
|
|
emitGlobal(vd);
|
|
break;
|
|
}
|
|
case Decl::OpenACCRoutine:
|
|
emitGlobalOpenACCDecl(cast<OpenACCRoutineDecl>(decl));
|
|
break;
|
|
case Decl::OpenACCDeclare:
|
|
emitGlobalOpenACCDecl(cast<OpenACCDeclareDecl>(decl));
|
|
break;
|
|
|
|
case Decl::Typedef:
|
|
case Decl::TypeAlias: // using foo = bar; [C++11]
|
|
case Decl::Record:
|
|
case Decl::CXXRecord:
|
|
assert(!cir::MissingFeatures::generateDebugInfo());
|
|
break;
|
|
}
|
|
}
|
|
|
|
cir::FuncOp CIRGenModule::getAddrOfFunction(clang::GlobalDecl gd,
|
|
mlir::Type funcType, bool forVTable,
|
|
bool dontDefer,
|
|
ForDefinition_t isForDefinition) {
|
|
assert(!cast<FunctionDecl>(gd.getDecl())->isConsteval() &&
|
|
"consteval function should never be emitted");
|
|
|
|
if (!funcType) {
|
|
const auto *fd = cast<FunctionDecl>(gd.getDecl());
|
|
funcType = convertType(fd->getType());
|
|
}
|
|
|
|
assert(!cir::MissingFeatures::mangledNames());
|
|
cir::FuncOp func = getOrCreateCIRFunction(
|
|
cast<NamedDecl>(gd.getDecl())->getIdentifier()->getName(), funcType, gd,
|
|
forVTable, dontDefer, /*isThunk=*/false, isForDefinition);
|
|
return func;
|
|
}
|
|
|
|
cir::FuncOp CIRGenModule::getOrCreateCIRFunction(
|
|
StringRef mangledName, mlir::Type funcType, GlobalDecl gd, bool forVTable,
|
|
bool dontDefer, bool isThunk, ForDefinition_t isForDefinition,
|
|
mlir::ArrayAttr extraAttrs) {
|
|
auto *funcDecl = llvm::cast_or_null<FunctionDecl>(gd.getDecl());
|
|
bool invalidLoc = !funcDecl ||
|
|
funcDecl->getSourceRange().getBegin().isInvalid() ||
|
|
funcDecl->getSourceRange().getEnd().isInvalid();
|
|
cir::FuncOp funcOp = createCIRFunction(
|
|
invalidLoc ? theModule->getLoc() : getLoc(funcDecl->getSourceRange()),
|
|
mangledName, mlir::cast<cir::FuncType>(funcType), funcDecl);
|
|
return funcOp;
|
|
}
|
|
|
|
cir::FuncOp
|
|
CIRGenModule::createCIRFunction(mlir::Location loc, StringRef name,
|
|
cir::FuncType funcType,
|
|
const clang::FunctionDecl *funcDecl) {
|
|
cir::FuncOp func;
|
|
{
|
|
mlir::OpBuilder::InsertionGuard guard(builder);
|
|
|
|
// Some global emissions are triggered while emitting a function, e.g.
|
|
// void s() { x.method() }
|
|
//
|
|
// Be sure to insert a new function before a current one.
|
|
CIRGenFunction *cgf = this->curCGF;
|
|
if (cgf)
|
|
builder.setInsertionPoint(cgf->curFn);
|
|
|
|
func = builder.create<cir::FuncOp>(loc, name, funcType);
|
|
|
|
if (!cgf)
|
|
theModule.push_back(func);
|
|
}
|
|
return func;
|
|
}
|
|
|
|
mlir::Type CIRGenModule::convertType(QualType type) {
|
|
return genTypes.convertType(type);
|
|
}
|
|
|
|
bool CIRGenModule::verifyModule() const {
|
|
// Verify the module after we have finished constructing it, this will
|
|
// check the structural properties of the IR and invoke any specific
|
|
// verifiers we have on the CIR operations.
|
|
return mlir::verify(theModule).succeeded();
|
|
}
|
|
|
|
DiagnosticBuilder CIRGenModule::errorNYI(SourceLocation loc,
|
|
llvm::StringRef feature) {
|
|
unsigned diagID = diags.getCustomDiagID(
|
|
DiagnosticsEngine::Error, "ClangIR code gen Not Yet Implemented: %0");
|
|
return diags.Report(loc, diagID) << feature;
|
|
}
|
|
|
|
DiagnosticBuilder CIRGenModule::errorNYI(SourceRange loc,
|
|
llvm::StringRef feature) {
|
|
return errorNYI(loc.getBegin(), feature) << loc;
|
|
}
|