
Loop peeling is currently performed as part of UnrollLoop(). Outside test scenarios, it is always performed with an unroll count of 1. This means that unrolling doesn't actually do anything apart from performing post-unroll simplification. When testing, it's currently possible to specify both an explicit peel count and an explicit unroll count. This doesn't perform any sensible operation and may result in miscompiles, see https://bugs.llvm.org/show_bug.cgi?id=45939. This patch moves peeling from UnrollLoop() into tryToUnrollLoop(), so that peeling does not also perform a susequent unroll. We only run the post-unroll simplifications. Specifying both an explicit peel count and unroll count is forbidden. In the future, we may want to support both (non-PGO) peeling a loop and unrolling it, but this needs to be done by first performing the peel and then recalculating unrolling heuristics on a now possibly analyzable loop. Differential Revision: https://reviews.llvm.org/D103362
878 lines
34 KiB
C++
878 lines
34 KiB
C++
//===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements some loop unrolling utilities. It does not define any
|
|
// actual pass or policy, but provides a single function to perform loop
|
|
// unrolling.
|
|
//
|
|
// The process of unrolling can produce extraneous basic blocks linked with
|
|
// unconditional branches. This will be corrected in the future.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/ADT/ilist_iterator.h"
|
|
#include "llvm/ADT/iterator_range.h"
|
|
#include "llvm/Analysis/AssumptionCache.h"
|
|
#include "llvm/Analysis/DomTreeUpdater.h"
|
|
#include "llvm/Analysis/InstructionSimplify.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/LoopIterator.h"
|
|
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
|
|
#include "llvm/Analysis/ScalarEvolution.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/CFG.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DebugInfoMetadata.h"
|
|
#include "llvm/IR/DebugLoc.h"
|
|
#include "llvm/IR/DiagnosticInfo.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Metadata.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/Use.h"
|
|
#include "llvm/IR/User.h"
|
|
#include "llvm/IR/ValueHandle.h"
|
|
#include "llvm/IR/ValueMap.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/GenericDomTree.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Transforms/Utils/Cloning.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include "llvm/Transforms/Utils/LoopSimplify.h"
|
|
#include "llvm/Transforms/Utils/LoopUtils.h"
|
|
#include "llvm/Transforms/Utils/SimplifyIndVar.h"
|
|
#include "llvm/Transforms/Utils/UnrollLoop.h"
|
|
#include "llvm/Transforms/Utils/ValueMapper.h"
|
|
#include <algorithm>
|
|
#include <assert.h>
|
|
#include <type_traits>
|
|
#include <vector>
|
|
|
|
namespace llvm {
|
|
class DataLayout;
|
|
class Value;
|
|
} // namespace llvm
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "loop-unroll"
|
|
|
|
// TODO: Should these be here or in LoopUnroll?
|
|
STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
|
|
STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
|
|
STATISTIC(NumUnrolledNotLatch, "Number of loops unrolled without a conditional "
|
|
"latch (completely or otherwise)");
|
|
|
|
static cl::opt<bool>
|
|
UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden,
|
|
cl::desc("Allow runtime unrolled loops to be unrolled "
|
|
"with epilog instead of prolog."));
|
|
|
|
static cl::opt<bool>
|
|
UnrollVerifyDomtree("unroll-verify-domtree", cl::Hidden,
|
|
cl::desc("Verify domtree after unrolling"),
|
|
#ifdef EXPENSIVE_CHECKS
|
|
cl::init(true)
|
|
#else
|
|
cl::init(false)
|
|
#endif
|
|
);
|
|
|
|
/// Check if unrolling created a situation where we need to insert phi nodes to
|
|
/// preserve LCSSA form.
|
|
/// \param Blocks is a vector of basic blocks representing unrolled loop.
|
|
/// \param L is the outer loop.
|
|
/// It's possible that some of the blocks are in L, and some are not. In this
|
|
/// case, if there is a use is outside L, and definition is inside L, we need to
|
|
/// insert a phi-node, otherwise LCSSA will be broken.
|
|
/// The function is just a helper function for llvm::UnrollLoop that returns
|
|
/// true if this situation occurs, indicating that LCSSA needs to be fixed.
|
|
static bool needToInsertPhisForLCSSA(Loop *L,
|
|
const std::vector<BasicBlock *> &Blocks,
|
|
LoopInfo *LI) {
|
|
for (BasicBlock *BB : Blocks) {
|
|
if (LI->getLoopFor(BB) == L)
|
|
continue;
|
|
for (Instruction &I : *BB) {
|
|
for (Use &U : I.operands()) {
|
|
if (const auto *Def = dyn_cast<Instruction>(U)) {
|
|
Loop *DefLoop = LI->getLoopFor(Def->getParent());
|
|
if (!DefLoop)
|
|
continue;
|
|
if (DefLoop->contains(L))
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Adds ClonedBB to LoopInfo, creates a new loop for ClonedBB if necessary
|
|
/// and adds a mapping from the original loop to the new loop to NewLoops.
|
|
/// Returns nullptr if no new loop was created and a pointer to the
|
|
/// original loop OriginalBB was part of otherwise.
|
|
const Loop* llvm::addClonedBlockToLoopInfo(BasicBlock *OriginalBB,
|
|
BasicBlock *ClonedBB, LoopInfo *LI,
|
|
NewLoopsMap &NewLoops) {
|
|
// Figure out which loop New is in.
|
|
const Loop *OldLoop = LI->getLoopFor(OriginalBB);
|
|
assert(OldLoop && "Should (at least) be in the loop being unrolled!");
|
|
|
|
Loop *&NewLoop = NewLoops[OldLoop];
|
|
if (!NewLoop) {
|
|
// Found a new sub-loop.
|
|
assert(OriginalBB == OldLoop->getHeader() &&
|
|
"Header should be first in RPO");
|
|
|
|
NewLoop = LI->AllocateLoop();
|
|
Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop());
|
|
|
|
if (NewLoopParent)
|
|
NewLoopParent->addChildLoop(NewLoop);
|
|
else
|
|
LI->addTopLevelLoop(NewLoop);
|
|
|
|
NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
|
|
return OldLoop;
|
|
} else {
|
|
NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
/// The function chooses which type of unroll (epilog or prolog) is more
|
|
/// profitabale.
|
|
/// Epilog unroll is more profitable when there is PHI that starts from
|
|
/// constant. In this case epilog will leave PHI start from constant,
|
|
/// but prolog will convert it to non-constant.
|
|
///
|
|
/// loop:
|
|
/// PN = PHI [I, Latch], [CI, PreHeader]
|
|
/// I = foo(PN)
|
|
/// ...
|
|
///
|
|
/// Epilog unroll case.
|
|
/// loop:
|
|
/// PN = PHI [I2, Latch], [CI, PreHeader]
|
|
/// I1 = foo(PN)
|
|
/// I2 = foo(I1)
|
|
/// ...
|
|
/// Prolog unroll case.
|
|
/// NewPN = PHI [PrologI, Prolog], [CI, PreHeader]
|
|
/// loop:
|
|
/// PN = PHI [I2, Latch], [NewPN, PreHeader]
|
|
/// I1 = foo(PN)
|
|
/// I2 = foo(I1)
|
|
/// ...
|
|
///
|
|
static bool isEpilogProfitable(Loop *L) {
|
|
BasicBlock *PreHeader = L->getLoopPreheader();
|
|
BasicBlock *Header = L->getHeader();
|
|
assert(PreHeader && Header);
|
|
for (const PHINode &PN : Header->phis()) {
|
|
if (isa<ConstantInt>(PN.getIncomingValueForBlock(PreHeader)))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Perform some cleanup and simplifications on loops after unrolling. It is
|
|
/// useful to simplify the IV's in the new loop, as well as do a quick
|
|
/// simplify/dce pass of the instructions.
|
|
void llvm::simplifyLoopAfterUnroll(Loop *L, bool SimplifyIVs, LoopInfo *LI,
|
|
ScalarEvolution *SE, DominatorTree *DT,
|
|
AssumptionCache *AC,
|
|
const TargetTransformInfo *TTI) {
|
|
// Simplify any new induction variables in the partially unrolled loop.
|
|
if (SE && SimplifyIVs) {
|
|
SmallVector<WeakTrackingVH, 16> DeadInsts;
|
|
simplifyLoopIVs(L, SE, DT, LI, TTI, DeadInsts);
|
|
|
|
// Aggressively clean up dead instructions that simplifyLoopIVs already
|
|
// identified. Any remaining should be cleaned up below.
|
|
while (!DeadInsts.empty()) {
|
|
Value *V = DeadInsts.pop_back_val();
|
|
if (Instruction *Inst = dyn_cast_or_null<Instruction>(V))
|
|
RecursivelyDeleteTriviallyDeadInstructions(Inst);
|
|
}
|
|
}
|
|
|
|
// At this point, the code is well formed. Perform constprop, instsimplify,
|
|
// and dce.
|
|
const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
|
|
SmallVector<WeakTrackingVH, 16> DeadInsts;
|
|
for (BasicBlock *BB : L->getBlocks()) {
|
|
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
|
|
Instruction *Inst = &*I++;
|
|
if (Value *V = SimplifyInstruction(Inst, {DL, nullptr, DT, AC}))
|
|
if (LI->replacementPreservesLCSSAForm(Inst, V))
|
|
Inst->replaceAllUsesWith(V);
|
|
if (isInstructionTriviallyDead(Inst))
|
|
DeadInsts.emplace_back(Inst);
|
|
}
|
|
// We can't do recursive deletion until we're done iterating, as we might
|
|
// have a phi which (potentially indirectly) uses instructions later in
|
|
// the block we're iterating through.
|
|
RecursivelyDeleteTriviallyDeadInstructions(DeadInsts);
|
|
}
|
|
}
|
|
|
|
/// Unroll the given loop by Count. The loop must be in LCSSA form. Unrolling
|
|
/// can only fail when the loop's latch block is not terminated by a conditional
|
|
/// branch instruction. However, if the trip count (and multiple) are not known,
|
|
/// loop unrolling will mostly produce more code that is no faster.
|
|
///
|
|
/// TripCount is an upper bound on the number of times the loop header runs.
|
|
/// Note that the trip count does not need to be exact, it can be any upper
|
|
/// bound on the true trip count.
|
|
///
|
|
/// Similarly, TripMultiple divides the number of times that the LatchBlock may
|
|
/// execute without exiting the loop.
|
|
///
|
|
/// If AllowRuntime is true then UnrollLoop will consider unrolling loops that
|
|
/// have a runtime (i.e. not compile time constant) trip count. Unrolling these
|
|
/// loops require a unroll "prologue" that runs "RuntimeTripCount % Count"
|
|
/// iterations before branching into the unrolled loop. UnrollLoop will not
|
|
/// runtime-unroll the loop if computing RuntimeTripCount will be expensive and
|
|
/// AllowExpensiveTripCount is false.
|
|
///
|
|
/// The LoopInfo Analysis that is passed will be kept consistent.
|
|
///
|
|
/// This utility preserves LoopInfo. It will also preserve ScalarEvolution and
|
|
/// DominatorTree if they are non-null.
|
|
///
|
|
/// If RemainderLoop is non-null, it will receive the remainder loop (if
|
|
/// required and not fully unrolled).
|
|
LoopUnrollResult llvm::UnrollLoop(Loop *L, UnrollLoopOptions ULO, LoopInfo *LI,
|
|
ScalarEvolution *SE, DominatorTree *DT,
|
|
AssumptionCache *AC,
|
|
const TargetTransformInfo *TTI,
|
|
OptimizationRemarkEmitter *ORE,
|
|
bool PreserveLCSSA, Loop **RemainderLoop) {
|
|
assert(DT && "DomTree is required");
|
|
|
|
if (!L->getLoopPreheader()) {
|
|
LLVM_DEBUG(dbgs() << " Can't unroll; loop preheader-insertion failed.\n");
|
|
return LoopUnrollResult::Unmodified;
|
|
}
|
|
|
|
if (!L->getLoopLatch()) {
|
|
LLVM_DEBUG(dbgs() << " Can't unroll; loop exit-block-insertion failed.\n");
|
|
return LoopUnrollResult::Unmodified;
|
|
}
|
|
|
|
// Loops with indirectbr cannot be cloned.
|
|
if (!L->isSafeToClone()) {
|
|
LLVM_DEBUG(dbgs() << " Can't unroll; Loop body cannot be cloned.\n");
|
|
return LoopUnrollResult::Unmodified;
|
|
}
|
|
|
|
if (L->getHeader()->hasAddressTaken()) {
|
|
// The loop-rotate pass can be helpful to avoid this in many cases.
|
|
LLVM_DEBUG(
|
|
dbgs() << " Won't unroll loop: address of header block is taken.\n");
|
|
return LoopUnrollResult::Unmodified;
|
|
}
|
|
|
|
if (ULO.TripCount != 0)
|
|
LLVM_DEBUG(dbgs() << " Trip Count = " << ULO.TripCount << "\n");
|
|
if (ULO.TripMultiple != 1)
|
|
LLVM_DEBUG(dbgs() << " Trip Multiple = " << ULO.TripMultiple << "\n");
|
|
|
|
// Effectively "DCE" unrolled iterations that are beyond the tripcount
|
|
// and will never be executed.
|
|
if (ULO.TripCount != 0 && ULO.Count > ULO.TripCount)
|
|
ULO.Count = ULO.TripCount;
|
|
|
|
// Don't enter the unroll code if there is nothing to do.
|
|
if (ULO.TripCount == 0 && ULO.Count < 2) {
|
|
LLVM_DEBUG(dbgs() << "Won't unroll; almost nothing to do\n");
|
|
return LoopUnrollResult::Unmodified;
|
|
}
|
|
|
|
assert(ULO.Count > 0);
|
|
assert(ULO.TripMultiple > 0);
|
|
assert(ULO.TripCount == 0 || ULO.TripCount % ULO.TripMultiple == 0);
|
|
|
|
// Are we eliminating the loop control altogether? Note that we can know
|
|
// we're eliminating the backedge without knowing exactly which iteration
|
|
// of the unrolled body exits.
|
|
const bool CompletelyUnroll = ULO.Count == ULO.TripCount;
|
|
|
|
// We assume a run-time trip count if the compiler cannot
|
|
// figure out the loop trip count and the unroll-runtime
|
|
// flag is specified.
|
|
bool RuntimeTripCount =
|
|
(ULO.TripCount == 0 && ULO.Count > 0 && ULO.AllowRuntime);
|
|
|
|
// All these values should be taken only after peeling because they might have
|
|
// changed.
|
|
BasicBlock *Preheader = L->getLoopPreheader();
|
|
BasicBlock *Header = L->getHeader();
|
|
BasicBlock *LatchBlock = L->getLoopLatch();
|
|
SmallVector<BasicBlock *, 4> ExitBlocks;
|
|
L->getExitBlocks(ExitBlocks);
|
|
std::vector<BasicBlock *> OriginalLoopBlocks = L->getBlocks();
|
|
|
|
// Go through all exits of L and see if there are any phi-nodes there. We just
|
|
// conservatively assume that they're inserted to preserve LCSSA form, which
|
|
// means that complete unrolling might break this form. We need to either fix
|
|
// it in-place after the transformation, or entirely rebuild LCSSA. TODO: For
|
|
// now we just recompute LCSSA for the outer loop, but it should be possible
|
|
// to fix it in-place.
|
|
bool NeedToFixLCSSA =
|
|
PreserveLCSSA && CompletelyUnroll &&
|
|
any_of(ExitBlocks,
|
|
[](const BasicBlock *BB) { return isa<PHINode>(BB->begin()); });
|
|
|
|
const unsigned MaxTripCount = SE->getSmallConstantMaxTripCount(L);
|
|
const bool MaxOrZero = SE->isBackedgeTakenCountMaxOrZero(L);
|
|
|
|
const bool PreserveOnlyFirst = ULO.Count == MaxTripCount && MaxOrZero;
|
|
|
|
// The current loop unroll pass can unroll loops that have
|
|
// (1) single latch; and
|
|
// (2a) latch is unconditional; or
|
|
// (2b) latch is conditional and is an exiting block
|
|
// FIXME: The implementation can be extended to work with more complicated
|
|
// cases, e.g. loops with multiple latches.
|
|
BranchInst *LatchBI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
|
|
|
|
// A conditional branch which exits the loop, which can be optimized to an
|
|
// unconditional branch in the unrolled loop in some cases.
|
|
BranchInst *ExitingBI = nullptr;
|
|
bool LatchIsExiting = L->isLoopExiting(LatchBlock);
|
|
if (LatchIsExiting)
|
|
ExitingBI = LatchBI;
|
|
else if (BasicBlock *ExitingBlock = L->getExitingBlock())
|
|
ExitingBI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
|
|
if (!LatchBI || (LatchBI->isConditional() && !LatchIsExiting)) {
|
|
LLVM_DEBUG(
|
|
dbgs() << "Can't unroll; a conditional latch must exit the loop");
|
|
return LoopUnrollResult::Unmodified;
|
|
}
|
|
LLVM_DEBUG({
|
|
if (ExitingBI)
|
|
dbgs() << " Exiting Block = " << ExitingBI->getParent()->getName()
|
|
<< "\n";
|
|
else
|
|
dbgs() << " No single exiting block\n";
|
|
});
|
|
|
|
// Warning: ExactTripCount is the exact trip count for the block ending in
|
|
// ExitingBI, not neccessarily an exact exit count *for the loop*. The
|
|
// distinction comes when we have an exiting latch, but the loop exits
|
|
// through another exit first.
|
|
const unsigned ExactTripCount = ExitingBI ?
|
|
SE->getSmallConstantTripCount(L,ExitingBI->getParent()) : 0;
|
|
|
|
// Loops containing convergent instructions must have a count that divides
|
|
// their TripMultiple.
|
|
LLVM_DEBUG(
|
|
{
|
|
bool HasConvergent = false;
|
|
for (auto &BB : L->blocks())
|
|
for (auto &I : *BB)
|
|
if (auto *CB = dyn_cast<CallBase>(&I))
|
|
HasConvergent |= CB->isConvergent();
|
|
assert((!HasConvergent || ULO.TripMultiple % ULO.Count == 0) &&
|
|
"Unroll count must divide trip multiple if loop contains a "
|
|
"convergent operation.");
|
|
});
|
|
|
|
bool EpilogProfitability =
|
|
UnrollRuntimeEpilog.getNumOccurrences() ? UnrollRuntimeEpilog
|
|
: isEpilogProfitable(L);
|
|
|
|
if (RuntimeTripCount && ULO.TripMultiple % ULO.Count != 0 &&
|
|
!UnrollRuntimeLoopRemainder(L, ULO.Count, ULO.AllowExpensiveTripCount,
|
|
EpilogProfitability, ULO.UnrollRemainder,
|
|
ULO.ForgetAllSCEV, LI, SE, DT, AC, TTI,
|
|
PreserveLCSSA, RemainderLoop)) {
|
|
if (ULO.Force)
|
|
RuntimeTripCount = false;
|
|
else {
|
|
LLVM_DEBUG(dbgs() << "Won't unroll; remainder loop could not be "
|
|
"generated when assuming runtime trip count\n");
|
|
return LoopUnrollResult::Unmodified;
|
|
}
|
|
}
|
|
|
|
// If we know the trip count, we know the multiple...
|
|
unsigned BreakoutTrip = 0;
|
|
if (ULO.TripCount != 0) {
|
|
BreakoutTrip = ULO.TripCount % ULO.Count;
|
|
ULO.TripMultiple = 0;
|
|
} else {
|
|
// Figure out what multiple to use.
|
|
BreakoutTrip = ULO.TripMultiple =
|
|
(unsigned)GreatestCommonDivisor64(ULO.Count, ULO.TripMultiple);
|
|
}
|
|
|
|
using namespace ore;
|
|
// Report the unrolling decision.
|
|
if (CompletelyUnroll) {
|
|
LLVM_DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName()
|
|
<< " with trip count " << ULO.TripCount << "!\n");
|
|
if (ORE)
|
|
ORE->emit([&]() {
|
|
return OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(),
|
|
L->getHeader())
|
|
<< "completely unrolled loop with "
|
|
<< NV("UnrollCount", ULO.TripCount) << " iterations";
|
|
});
|
|
} else {
|
|
auto DiagBuilder = [&]() {
|
|
OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(),
|
|
L->getHeader());
|
|
return Diag << "unrolled loop by a factor of "
|
|
<< NV("UnrollCount", ULO.Count);
|
|
};
|
|
|
|
LLVM_DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() << " by "
|
|
<< ULO.Count);
|
|
if (ULO.TripMultiple == 0 || BreakoutTrip != ULO.TripMultiple) {
|
|
LLVM_DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip);
|
|
if (ORE)
|
|
ORE->emit([&]() {
|
|
return DiagBuilder() << " with a breakout at trip "
|
|
<< NV("BreakoutTrip", BreakoutTrip);
|
|
});
|
|
} else if (ULO.TripMultiple != 1) {
|
|
LLVM_DEBUG(dbgs() << " with " << ULO.TripMultiple << " trips per branch");
|
|
if (ORE)
|
|
ORE->emit([&]() {
|
|
return DiagBuilder()
|
|
<< " with " << NV("TripMultiple", ULO.TripMultiple)
|
|
<< " trips per branch";
|
|
});
|
|
} else if (RuntimeTripCount) {
|
|
LLVM_DEBUG(dbgs() << " with run-time trip count");
|
|
if (ORE)
|
|
ORE->emit(
|
|
[&]() { return DiagBuilder() << " with run-time trip count"; });
|
|
}
|
|
LLVM_DEBUG(dbgs() << "!\n");
|
|
}
|
|
|
|
// We are going to make changes to this loop. SCEV may be keeping cached info
|
|
// about it, in particular about backedge taken count. The changes we make
|
|
// are guaranteed to invalidate this information for our loop. It is tempting
|
|
// to only invalidate the loop being unrolled, but it is incorrect as long as
|
|
// all exiting branches from all inner loops have impact on the outer loops,
|
|
// and if something changes inside them then any of outer loops may also
|
|
// change. When we forget outermost loop, we also forget all contained loops
|
|
// and this is what we need here.
|
|
if (SE) {
|
|
if (ULO.ForgetAllSCEV)
|
|
SE->forgetAllLoops();
|
|
else
|
|
SE->forgetTopmostLoop(L);
|
|
}
|
|
|
|
if (!LatchIsExiting)
|
|
++NumUnrolledNotLatch;
|
|
|
|
// For the first iteration of the loop, we should use the precloned values for
|
|
// PHI nodes. Insert associations now.
|
|
ValueToValueMapTy LastValueMap;
|
|
std::vector<PHINode*> OrigPHINode;
|
|
for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
|
|
OrigPHINode.push_back(cast<PHINode>(I));
|
|
}
|
|
|
|
std::vector<BasicBlock *> Headers;
|
|
std::vector<BasicBlock *> ExitingBlocks;
|
|
std::vector<BasicBlock *> Latches;
|
|
Headers.push_back(Header);
|
|
Latches.push_back(LatchBlock);
|
|
if (ExitingBI)
|
|
ExitingBlocks.push_back(ExitingBI->getParent());
|
|
|
|
// The current on-the-fly SSA update requires blocks to be processed in
|
|
// reverse postorder so that LastValueMap contains the correct value at each
|
|
// exit.
|
|
LoopBlocksDFS DFS(L);
|
|
DFS.perform(LI);
|
|
|
|
// Stash the DFS iterators before adding blocks to the loop.
|
|
LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
|
|
LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();
|
|
|
|
std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks();
|
|
|
|
// Loop Unrolling might create new loops. While we do preserve LoopInfo, we
|
|
// might break loop-simplified form for these loops (as they, e.g., would
|
|
// share the same exit blocks). We'll keep track of loops for which we can
|
|
// break this so that later we can re-simplify them.
|
|
SmallSetVector<Loop *, 4> LoopsToSimplify;
|
|
for (Loop *SubLoop : *L)
|
|
LoopsToSimplify.insert(SubLoop);
|
|
|
|
// When a FSDiscriminator is enabled, we don't need to add the multiply
|
|
// factors to the discriminators.
|
|
if (Header->getParent()->isDebugInfoForProfiling() && !EnableFSDiscriminator)
|
|
for (BasicBlock *BB : L->getBlocks())
|
|
for (Instruction &I : *BB)
|
|
if (!isa<DbgInfoIntrinsic>(&I))
|
|
if (const DILocation *DIL = I.getDebugLoc()) {
|
|
auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(ULO.Count);
|
|
if (NewDIL)
|
|
I.setDebugLoc(NewDIL.getValue());
|
|
else
|
|
LLVM_DEBUG(dbgs()
|
|
<< "Failed to create new discriminator: "
|
|
<< DIL->getFilename() << " Line: " << DIL->getLine());
|
|
}
|
|
|
|
// Identify what noalias metadata is inside the loop: if it is inside the
|
|
// loop, the associated metadata must be cloned for each iteration.
|
|
SmallVector<MDNode *, 6> LoopLocalNoAliasDeclScopes;
|
|
identifyNoAliasScopesToClone(L->getBlocks(), LoopLocalNoAliasDeclScopes);
|
|
|
|
for (unsigned It = 1; It != ULO.Count; ++It) {
|
|
SmallVector<BasicBlock *, 8> NewBlocks;
|
|
SmallDenseMap<const Loop *, Loop *, 4> NewLoops;
|
|
NewLoops[L] = L;
|
|
|
|
for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
|
|
ValueToValueMapTy VMap;
|
|
BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
|
|
Header->getParent()->getBasicBlockList().push_back(New);
|
|
|
|
assert((*BB != Header || LI->getLoopFor(*BB) == L) &&
|
|
"Header should not be in a sub-loop");
|
|
// Tell LI about New.
|
|
const Loop *OldLoop = addClonedBlockToLoopInfo(*BB, New, LI, NewLoops);
|
|
if (OldLoop)
|
|
LoopsToSimplify.insert(NewLoops[OldLoop]);
|
|
|
|
if (*BB == Header)
|
|
// Loop over all of the PHI nodes in the block, changing them to use
|
|
// the incoming values from the previous block.
|
|
for (PHINode *OrigPHI : OrigPHINode) {
|
|
PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]);
|
|
Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
|
|
if (Instruction *InValI = dyn_cast<Instruction>(InVal))
|
|
if (It > 1 && L->contains(InValI))
|
|
InVal = LastValueMap[InValI];
|
|
VMap[OrigPHI] = InVal;
|
|
New->getInstList().erase(NewPHI);
|
|
}
|
|
|
|
// Update our running map of newest clones
|
|
LastValueMap[*BB] = New;
|
|
for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
|
|
VI != VE; ++VI)
|
|
LastValueMap[VI->first] = VI->second;
|
|
|
|
// Add phi entries for newly created values to all exit blocks.
|
|
for (BasicBlock *Succ : successors(*BB)) {
|
|
if (L->contains(Succ))
|
|
continue;
|
|
for (PHINode &PHI : Succ->phis()) {
|
|
Value *Incoming = PHI.getIncomingValueForBlock(*BB);
|
|
ValueToValueMapTy::iterator It = LastValueMap.find(Incoming);
|
|
if (It != LastValueMap.end())
|
|
Incoming = It->second;
|
|
PHI.addIncoming(Incoming, New);
|
|
}
|
|
}
|
|
// Keep track of new headers and latches as we create them, so that
|
|
// we can insert the proper branches later.
|
|
if (*BB == Header)
|
|
Headers.push_back(New);
|
|
if (*BB == LatchBlock)
|
|
Latches.push_back(New);
|
|
|
|
// Keep track of the exiting block and its successor block contained in
|
|
// the loop for the current iteration.
|
|
if (ExitingBI)
|
|
if (*BB == ExitingBlocks[0])
|
|
ExitingBlocks.push_back(New);
|
|
|
|
NewBlocks.push_back(New);
|
|
UnrolledLoopBlocks.push_back(New);
|
|
|
|
// Update DomTree: since we just copy the loop body, and each copy has a
|
|
// dedicated entry block (copy of the header block), this header's copy
|
|
// dominates all copied blocks. That means, dominance relations in the
|
|
// copied body are the same as in the original body.
|
|
if (*BB == Header)
|
|
DT->addNewBlock(New, Latches[It - 1]);
|
|
else {
|
|
auto BBDomNode = DT->getNode(*BB);
|
|
auto BBIDom = BBDomNode->getIDom();
|
|
BasicBlock *OriginalBBIDom = BBIDom->getBlock();
|
|
DT->addNewBlock(
|
|
New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)]));
|
|
}
|
|
}
|
|
|
|
// Remap all instructions in the most recent iteration
|
|
remapInstructionsInBlocks(NewBlocks, LastValueMap);
|
|
for (BasicBlock *NewBlock : NewBlocks)
|
|
for (Instruction &I : *NewBlock)
|
|
if (auto *II = dyn_cast<AssumeInst>(&I))
|
|
AC->registerAssumption(II);
|
|
|
|
{
|
|
// Identify what other metadata depends on the cloned version. After
|
|
// cloning, replace the metadata with the corrected version for both
|
|
// memory instructions and noalias intrinsics.
|
|
std::string ext = (Twine("It") + Twine(It)).str();
|
|
cloneAndAdaptNoAliasScopes(LoopLocalNoAliasDeclScopes, NewBlocks,
|
|
Header->getContext(), ext);
|
|
}
|
|
}
|
|
|
|
// Loop over the PHI nodes in the original block, setting incoming values.
|
|
for (PHINode *PN : OrigPHINode) {
|
|
if (CompletelyUnroll) {
|
|
PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
|
|
Header->getInstList().erase(PN);
|
|
} else if (ULO.Count > 1) {
|
|
Value *InVal = PN->removeIncomingValue(LatchBlock, false);
|
|
// If this value was defined in the loop, take the value defined by the
|
|
// last iteration of the loop.
|
|
if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
|
|
if (L->contains(InValI))
|
|
InVal = LastValueMap[InVal];
|
|
}
|
|
assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch");
|
|
PN->addIncoming(InVal, Latches.back());
|
|
}
|
|
}
|
|
|
|
// Connect latches of the unrolled iterations to the headers of the next
|
|
// iteration. Currently they point to the header of the same iteration.
|
|
for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
|
|
unsigned j = (i + 1) % e;
|
|
Latches[i]->getTerminator()->replaceSuccessorWith(Headers[i], Headers[j]);
|
|
}
|
|
|
|
// Update dominators of blocks we might reach through exits.
|
|
// Immediate dominator of such block might change, because we add more
|
|
// routes which can lead to the exit: we can now reach it from the copied
|
|
// iterations too.
|
|
if (ULO.Count > 1) {
|
|
for (auto *BB : OriginalLoopBlocks) {
|
|
auto *BBDomNode = DT->getNode(BB);
|
|
SmallVector<BasicBlock *, 16> ChildrenToUpdate;
|
|
for (auto *ChildDomNode : BBDomNode->children()) {
|
|
auto *ChildBB = ChildDomNode->getBlock();
|
|
if (!L->contains(ChildBB))
|
|
ChildrenToUpdate.push_back(ChildBB);
|
|
}
|
|
// The new idom of the block will be the nearest common dominator
|
|
// of all copies of the previous idom. This is equivalent to the
|
|
// nearest common dominator of the previous idom and the first latch,
|
|
// which dominates all copies of the previous idom.
|
|
BasicBlock *NewIDom = DT->findNearestCommonDominator(BB, LatchBlock);
|
|
for (auto *ChildBB : ChildrenToUpdate)
|
|
DT->changeImmediateDominator(ChildBB, NewIDom);
|
|
}
|
|
}
|
|
|
|
assert(!UnrollVerifyDomtree ||
|
|
DT->verify(DominatorTree::VerificationLevel::Fast));
|
|
|
|
DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
|
|
|
|
if (ExitingBI) {
|
|
auto SetDest = [&](BasicBlock *Src, bool WillExit, bool ExitOnTrue) {
|
|
auto *Term = cast<BranchInst>(Src->getTerminator());
|
|
const unsigned Idx = ExitOnTrue ^ WillExit;
|
|
BasicBlock *Dest = Term->getSuccessor(Idx);
|
|
BasicBlock *DeadSucc = Term->getSuccessor(1-Idx);
|
|
|
|
// Remove predecessors from all non-Dest successors.
|
|
DeadSucc->removePredecessor(Src, /* KeepOneInputPHIs */ true);
|
|
|
|
// Replace the conditional branch with an unconditional one.
|
|
BranchInst::Create(Dest, Term);
|
|
Term->eraseFromParent();
|
|
|
|
DTU.applyUpdates({{DominatorTree::Delete, Src, DeadSucc}});
|
|
};
|
|
|
|
auto WillExit = [&](unsigned i, unsigned j) -> Optional<bool> {
|
|
if (CompletelyUnroll) {
|
|
if (PreserveOnlyFirst) {
|
|
if (i == 0)
|
|
return None;
|
|
return j == 0;
|
|
}
|
|
// Complete (but possibly inexact) unrolling
|
|
if (j == 0)
|
|
return true;
|
|
if (MaxTripCount && j >= MaxTripCount)
|
|
return false;
|
|
// Warning: ExactTripCount is the trip count of the exiting
|
|
// block which ends in ExitingBI, not neccessarily the loop.
|
|
if (ExactTripCount && j != ExactTripCount)
|
|
return false;
|
|
return None;
|
|
}
|
|
|
|
if (RuntimeTripCount && j != 0)
|
|
return false;
|
|
|
|
if (j != BreakoutTrip &&
|
|
(ULO.TripMultiple == 0 || j % ULO.TripMultiple != 0)) {
|
|
// If we know the trip count or a multiple of it, we can safely use an
|
|
// unconditional branch for some iterations.
|
|
return false;
|
|
}
|
|
return None;
|
|
};
|
|
|
|
// Fold branches for iterations where we know that they will exit or not
|
|
// exit.
|
|
bool ExitOnTrue = !L->contains(ExitingBI->getSuccessor(0));
|
|
for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
|
|
// The branch destination.
|
|
unsigned j = (i + 1) % e;
|
|
Optional<bool> KnownWillExit = WillExit(i, j);
|
|
if (!KnownWillExit)
|
|
continue;
|
|
|
|
// TODO: Also fold known-exiting branches for non-latch exits.
|
|
if (*KnownWillExit && !LatchIsExiting)
|
|
continue;
|
|
|
|
SetDest(ExitingBlocks[i], *KnownWillExit, ExitOnTrue);
|
|
}
|
|
}
|
|
|
|
|
|
// When completely unrolling, the last latch becomes unreachable.
|
|
if (!LatchIsExiting && CompletelyUnroll)
|
|
changeToUnreachable(Latches.back()->getTerminator(), /* UseTrap */ false,
|
|
PreserveLCSSA, &DTU);
|
|
|
|
// Merge adjacent basic blocks, if possible.
|
|
for (BasicBlock *Latch : Latches) {
|
|
BranchInst *Term = dyn_cast<BranchInst>(Latch->getTerminator());
|
|
assert((Term ||
|
|
(CompletelyUnroll && !LatchIsExiting && Latch == Latches.back())) &&
|
|
"Need a branch as terminator, except when fully unrolling with "
|
|
"unconditional latch");
|
|
if (Term && Term->isUnconditional()) {
|
|
BasicBlock *Dest = Term->getSuccessor(0);
|
|
BasicBlock *Fold = Dest->getUniquePredecessor();
|
|
if (MergeBlockIntoPredecessor(Dest, &DTU, LI)) {
|
|
// Dest has been folded into Fold. Update our worklists accordingly.
|
|
std::replace(Latches.begin(), Latches.end(), Dest, Fold);
|
|
llvm::erase_value(UnrolledLoopBlocks, Dest);
|
|
}
|
|
}
|
|
}
|
|
// Apply updates to the DomTree.
|
|
DT = &DTU.getDomTree();
|
|
|
|
// At this point, the code is well formed. We now simplify the unrolled loop,
|
|
// doing constant propagation and dead code elimination as we go.
|
|
simplifyLoopAfterUnroll(L, !CompletelyUnroll && ULO.Count > 1, LI, SE, DT, AC,
|
|
TTI);
|
|
|
|
NumCompletelyUnrolled += CompletelyUnroll;
|
|
++NumUnrolled;
|
|
|
|
Loop *OuterL = L->getParentLoop();
|
|
// Update LoopInfo if the loop is completely removed.
|
|
if (CompletelyUnroll)
|
|
LI->erase(L);
|
|
|
|
// After complete unrolling most of the blocks should be contained in OuterL.
|
|
// However, some of them might happen to be out of OuterL (e.g. if they
|
|
// precede a loop exit). In this case we might need to insert PHI nodes in
|
|
// order to preserve LCSSA form.
|
|
// We don't need to check this if we already know that we need to fix LCSSA
|
|
// form.
|
|
// TODO: For now we just recompute LCSSA for the outer loop in this case, but
|
|
// it should be possible to fix it in-place.
|
|
if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA)
|
|
NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI);
|
|
|
|
// Make sure that loop-simplify form is preserved. We want to simplify
|
|
// at least one layer outside of the loop that was unrolled so that any
|
|
// changes to the parent loop exposed by the unrolling are considered.
|
|
if (OuterL) {
|
|
// OuterL includes all loops for which we can break loop-simplify, so
|
|
// it's sufficient to simplify only it (it'll recursively simplify inner
|
|
// loops too).
|
|
if (NeedToFixLCSSA) {
|
|
// LCSSA must be performed on the outermost affected loop. The unrolled
|
|
// loop's last loop latch is guaranteed to be in the outermost loop
|
|
// after LoopInfo's been updated by LoopInfo::erase.
|
|
Loop *LatchLoop = LI->getLoopFor(Latches.back());
|
|
Loop *FixLCSSALoop = OuterL;
|
|
if (!FixLCSSALoop->contains(LatchLoop))
|
|
while (FixLCSSALoop->getParentLoop() != LatchLoop)
|
|
FixLCSSALoop = FixLCSSALoop->getParentLoop();
|
|
|
|
formLCSSARecursively(*FixLCSSALoop, *DT, LI, SE);
|
|
} else if (PreserveLCSSA) {
|
|
assert(OuterL->isLCSSAForm(*DT) &&
|
|
"Loops should be in LCSSA form after loop-unroll.");
|
|
}
|
|
|
|
// TODO: That potentially might be compile-time expensive. We should try
|
|
// to fix the loop-simplified form incrementally.
|
|
simplifyLoop(OuterL, DT, LI, SE, AC, nullptr, PreserveLCSSA);
|
|
} else {
|
|
// Simplify loops for which we might've broken loop-simplify form.
|
|
for (Loop *SubLoop : LoopsToSimplify)
|
|
simplifyLoop(SubLoop, DT, LI, SE, AC, nullptr, PreserveLCSSA);
|
|
}
|
|
|
|
return CompletelyUnroll ? LoopUnrollResult::FullyUnrolled
|
|
: LoopUnrollResult::PartiallyUnrolled;
|
|
}
|
|
|
|
/// Given an llvm.loop loop id metadata node, returns the loop hint metadata
|
|
/// node with the given name (for example, "llvm.loop.unroll.count"). If no
|
|
/// such metadata node exists, then nullptr is returned.
|
|
MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) {
|
|
// First operand should refer to the loop id itself.
|
|
assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
|
|
assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
|
|
|
|
for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
|
|
MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
|
|
if (!MD)
|
|
continue;
|
|
|
|
MDString *S = dyn_cast<MDString>(MD->getOperand(0));
|
|
if (!S)
|
|
continue;
|
|
|
|
if (Name.equals(S->getString()))
|
|
return MD;
|
|
}
|
|
return nullptr;
|
|
}
|