llvm-project/llvm/lib/ExecutionEngine/Orc/CompileOnDemandLayer.cpp
Lang Hames c66f89005f [ORC] Rename SearchOrder operations on JITDylib to LinkOrder.
Refering to the link order of a dylib better matches the terminology used in
static compilation. As upcoming patches will increase the number of places where
link order matters (for example when closing JITDylibs) it's better to get this
name change out of the way early.
2020-05-04 16:47:52 -07:00

362 lines
13 KiB
C++

//===----- CompileOnDemandLayer.cpp - Lazily emit IR on first call --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/ExecutionEngine/Orc/CompileOnDemandLayer.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ExecutionEngine/Orc/ExecutionUtils.h"
#include "llvm/IR/Mangler.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/FormatVariadic.h"
using namespace llvm;
using namespace llvm::orc;
static ThreadSafeModule extractSubModule(ThreadSafeModule &TSM,
StringRef Suffix,
GVPredicate ShouldExtract) {
auto DeleteExtractedDefs = [](GlobalValue &GV) {
// Bump the linkage: this global will be provided by the external module.
GV.setLinkage(GlobalValue::ExternalLinkage);
// Delete the definition in the source module.
if (isa<Function>(GV)) {
auto &F = cast<Function>(GV);
F.deleteBody();
F.setPersonalityFn(nullptr);
} else if (isa<GlobalVariable>(GV)) {
cast<GlobalVariable>(GV).setInitializer(nullptr);
} else if (isa<GlobalAlias>(GV)) {
// We need to turn deleted aliases into function or variable decls based
// on the type of their aliasee.
auto &A = cast<GlobalAlias>(GV);
Constant *Aliasee = A.getAliasee();
assert(A.hasName() && "Anonymous alias?");
assert(Aliasee->hasName() && "Anonymous aliasee");
std::string AliasName = std::string(A.getName());
if (isa<Function>(Aliasee)) {
auto *F = cloneFunctionDecl(*A.getParent(), *cast<Function>(Aliasee));
A.replaceAllUsesWith(F);
A.eraseFromParent();
F->setName(AliasName);
} else if (isa<GlobalVariable>(Aliasee)) {
auto *G = cloneGlobalVariableDecl(*A.getParent(),
*cast<GlobalVariable>(Aliasee));
A.replaceAllUsesWith(G);
A.eraseFromParent();
G->setName(AliasName);
} else
llvm_unreachable("Alias to unsupported type");
} else
llvm_unreachable("Unsupported global type");
};
auto NewTSM = cloneToNewContext(TSM, ShouldExtract, DeleteExtractedDefs);
NewTSM.withModuleDo([&](Module &M) {
M.setModuleIdentifier((M.getModuleIdentifier() + Suffix).str());
});
return NewTSM;
}
namespace llvm {
namespace orc {
class PartitioningIRMaterializationUnit : public IRMaterializationUnit {
public:
PartitioningIRMaterializationUnit(ExecutionSession &ES,
const IRSymbolMapper::ManglingOptions &MO,
ThreadSafeModule TSM, VModuleKey K,
CompileOnDemandLayer &Parent)
: IRMaterializationUnit(ES, MO, std::move(TSM), std::move(K)),
Parent(Parent) {}
PartitioningIRMaterializationUnit(
ThreadSafeModule TSM, VModuleKey K, SymbolFlagsMap SymbolFlags,
SymbolStringPtr InitSymbol, SymbolNameToDefinitionMap SymbolToDefinition,
CompileOnDemandLayer &Parent)
: IRMaterializationUnit(std::move(TSM), std::move(K),
std::move(SymbolFlags), std::move(InitSymbol),
std::move(SymbolToDefinition)),
Parent(Parent) {}
private:
void materialize(MaterializationResponsibility R) override {
Parent.emitPartition(std::move(R), std::move(TSM),
std::move(SymbolToDefinition));
}
void discard(const JITDylib &V, const SymbolStringPtr &Name) override {
// All original symbols were materialized by the CODLayer and should be
// final. The function bodies provided by M should never be overridden.
llvm_unreachable("Discard should never be called on an "
"ExtractingIRMaterializationUnit");
}
mutable std::mutex SourceModuleMutex;
CompileOnDemandLayer &Parent;
};
Optional<CompileOnDemandLayer::GlobalValueSet>
CompileOnDemandLayer::compileRequested(GlobalValueSet Requested) {
return std::move(Requested);
}
Optional<CompileOnDemandLayer::GlobalValueSet>
CompileOnDemandLayer::compileWholeModule(GlobalValueSet Requested) {
return None;
}
CompileOnDemandLayer::CompileOnDemandLayer(
ExecutionSession &ES, IRLayer &BaseLayer, LazyCallThroughManager &LCTMgr,
IndirectStubsManagerBuilder BuildIndirectStubsManager)
: IRLayer(ES, BaseLayer.getManglingOptions()), BaseLayer(BaseLayer),
LCTMgr(LCTMgr),
BuildIndirectStubsManager(std::move(BuildIndirectStubsManager)) {}
void CompileOnDemandLayer::setPartitionFunction(PartitionFunction Partition) {
this->Partition = std::move(Partition);
}
void CompileOnDemandLayer::setImplMap(ImplSymbolMap *Imp) {
this->AliaseeImpls = Imp;
}
void CompileOnDemandLayer::emit(MaterializationResponsibility R,
ThreadSafeModule TSM) {
assert(TSM && "Null module");
auto &ES = getExecutionSession();
// Sort the callables and non-callables, build re-exports and lodge the
// actual module with the implementation dylib.
auto &PDR = getPerDylibResources(R.getTargetJITDylib());
SymbolAliasMap NonCallables;
SymbolAliasMap Callables;
TSM.withModuleDo([&](Module &M) {
// First, do some cleanup on the module:
cleanUpModule(M);
});
for (auto &KV : R.getSymbols()) {
auto &Name = KV.first;
auto &Flags = KV.second;
if (Flags.isCallable())
Callables[Name] = SymbolAliasMapEntry(Name, Flags);
else
NonCallables[Name] = SymbolAliasMapEntry(Name, Flags);
}
// Create a partitioning materialization unit and lodge it with the
// implementation dylib.
if (auto Err = PDR.getImplDylib().define(
std::make_unique<PartitioningIRMaterializationUnit>(
ES, *getManglingOptions(), std::move(TSM), R.getVModuleKey(),
*this))) {
ES.reportError(std::move(Err));
R.failMaterialization();
return;
}
if (!NonCallables.empty())
R.replace(reexports(PDR.getImplDylib(), std::move(NonCallables),
JITDylibLookupFlags::MatchAllSymbols));
if (!Callables.empty())
R.replace(lazyReexports(LCTMgr, PDR.getISManager(), PDR.getImplDylib(),
std::move(Callables), AliaseeImpls));
}
CompileOnDemandLayer::PerDylibResources &
CompileOnDemandLayer::getPerDylibResources(JITDylib &TargetD) {
auto I = DylibResources.find(&TargetD);
if (I == DylibResources.end()) {
auto &ImplD =
getExecutionSession().createBareJITDylib(TargetD.getName() + ".impl");
JITDylibSearchOrder NewLinkOrder;
TargetD.withLinkOrderDo([&](const JITDylibSearchOrder &TargetLinkOrder) {
NewLinkOrder = TargetLinkOrder;
});
assert(!NewLinkOrder.empty() && NewLinkOrder.front().first == &TargetD &&
NewLinkOrder.front().second ==
JITDylibLookupFlags::MatchAllSymbols &&
"TargetD must be at the front of its own search order and match "
"non-exported symbol");
NewLinkOrder.insert(std::next(NewLinkOrder.begin()),
{&ImplD, JITDylibLookupFlags::MatchAllSymbols});
ImplD.setLinkOrder(NewLinkOrder, false);
TargetD.setLinkOrder(std::move(NewLinkOrder), false);
PerDylibResources PDR(ImplD, BuildIndirectStubsManager());
I = DylibResources.insert(std::make_pair(&TargetD, std::move(PDR))).first;
}
return I->second;
}
void CompileOnDemandLayer::cleanUpModule(Module &M) {
for (auto &F : M.functions()) {
if (F.isDeclaration())
continue;
if (F.hasAvailableExternallyLinkage()) {
F.deleteBody();
F.setPersonalityFn(nullptr);
continue;
}
}
}
void CompileOnDemandLayer::expandPartition(GlobalValueSet &Partition) {
// Expands the partition to ensure the following rules hold:
// (1) If any alias is in the partition, its aliasee is also in the partition.
// (2) If any aliasee is in the partition, its aliases are also in the
// partiton.
// (3) If any global variable is in the partition then all global variables
// are in the partition.
assert(!Partition.empty() && "Unexpected empty partition");
const Module &M = *(*Partition.begin())->getParent();
bool ContainsGlobalVariables = false;
std::vector<const GlobalValue *> GVsToAdd;
for (auto *GV : Partition)
if (isa<GlobalAlias>(GV))
GVsToAdd.push_back(
cast<GlobalValue>(cast<GlobalAlias>(GV)->getAliasee()));
else if (isa<GlobalVariable>(GV))
ContainsGlobalVariables = true;
for (auto &A : M.aliases())
if (Partition.count(cast<GlobalValue>(A.getAliasee())))
GVsToAdd.push_back(&A);
if (ContainsGlobalVariables)
for (auto &G : M.globals())
GVsToAdd.push_back(&G);
for (auto *GV : GVsToAdd)
Partition.insert(GV);
}
void CompileOnDemandLayer::emitPartition(
MaterializationResponsibility R, ThreadSafeModule TSM,
IRMaterializationUnit::SymbolNameToDefinitionMap Defs) {
// FIXME: Need a 'notify lazy-extracting/emitting' callback to tie the
// extracted module key, extracted module, and source module key
// together. This could be used, for example, to provide a specific
// memory manager instance to the linking layer.
auto &ES = getExecutionSession();
GlobalValueSet RequestedGVs;
for (auto &Name : R.getRequestedSymbols()) {
if (Name == R.getInitializerSymbol())
TSM.withModuleDo([&](Module &M) {
for (auto &GV : getStaticInitGVs(M))
RequestedGVs.insert(&GV);
});
else {
assert(Defs.count(Name) && "No definition for symbol");
RequestedGVs.insert(Defs[Name]);
}
}
/// Perform partitioning with the context lock held, since the partition
/// function is allowed to access the globals to compute the partition.
auto GVsToExtract =
TSM.withModuleDo([&](Module &M) { return Partition(RequestedGVs); });
// Take a 'None' partition to mean the whole module (as opposed to an empty
// partition, which means "materialize nothing"). Emit the whole module
// unmodified to the base layer.
if (GVsToExtract == None) {
Defs.clear();
BaseLayer.emit(std::move(R), std::move(TSM));
return;
}
// If the partition is empty, return the whole module to the symbol table.
if (GVsToExtract->empty()) {
R.replace(std::make_unique<PartitioningIRMaterializationUnit>(
std::move(TSM), R.getVModuleKey(), R.getSymbols(),
R.getInitializerSymbol(), std::move(Defs), *this));
return;
}
// Ok -- we actually need to partition the symbols. Promote the symbol
// linkages/names, expand the partition to include any required symbols
// (i.e. symbols that can't be separated from our partition), and
// then extract the partition.
//
// FIXME: We apply this promotion once per partitioning. It's safe, but
// overkill.
auto ExtractedTSM =
TSM.withModuleDo([&](Module &M) -> Expected<ThreadSafeModule> {
auto PromotedGlobals = PromoteSymbols(M);
if (!PromotedGlobals.empty()) {
MangleAndInterner Mangle(ES, M.getDataLayout());
SymbolFlagsMap SymbolFlags;
IRSymbolMapper::add(ES, *getManglingOptions(),
PromotedGlobals, SymbolFlags);
if (auto Err = R.defineMaterializing(SymbolFlags))
return std::move(Err);
}
expandPartition(*GVsToExtract);
// Submodule name is given by hashing the names of the globals.
std::string SubModuleName;
{
std::vector<const GlobalValue*> HashGVs;
HashGVs.reserve(GVsToExtract->size());
for (auto *GV : *GVsToExtract)
HashGVs.push_back(GV);
llvm::sort(HashGVs, [](const GlobalValue *LHS, const GlobalValue *RHS) {
return LHS->getName() < RHS->getName();
});
hash_code HC(0);
for (auto *GV : HashGVs) {
assert(GV->hasName() && "All GVs to extract should be named by now");
auto GVName = GV->getName();
HC = hash_combine(HC, hash_combine_range(GVName.begin(), GVName.end()));
}
raw_string_ostream(SubModuleName)
<< ".submodule."
<< formatv(sizeof(size_t) == 8 ? "{0:x16}" : "{0:x8}",
static_cast<size_t>(HC))
<< ".ll";
}
// Extract the requested partiton (plus any necessary aliases) and
// put the rest back into the impl dylib.
auto ShouldExtract = [&](const GlobalValue &GV) -> bool {
return GVsToExtract->count(&GV);
};
return extractSubModule(TSM, SubModuleName , ShouldExtract);
});
if (!ExtractedTSM) {
ES.reportError(ExtractedTSM.takeError());
R.failMaterialization();
return;
}
R.replace(std::make_unique<PartitioningIRMaterializationUnit>(
ES, *getManglingOptions(), std::move(TSM), R.getVModuleKey(), *this));
BaseLayer.emit(std::move(R), std::move(*ExtractedTSM));
}
} // end namespace orc
} // end namespace llvm