
This gives a rough estimate of whether using pushes instead of movs is profitable, in terms of size. We go over all calls in the MachineFunction and compute: a) For each callsite that can not use pushes, the penalty of not having a reserved call frame. b) For each callsite that can use pushes, the gain of actually replacing the movs with pushes (and the potential penalty of having to readjust the stack). Differential Revision: http://reviews.llvm.org/D7561 llvm-svn: 228915
489 lines
17 KiB
C++
489 lines
17 KiB
C++
//===----- X86CallFrameOptimization.cpp - Optimize x86 call sequences -----===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines a pass that optimizes call sequences on x86.
|
|
// Currently, it converts movs of function parameters onto the stack into
|
|
// pushes. This is beneficial for two main reasons:
|
|
// 1) The push instruction encoding is much smaller than an esp-relative mov
|
|
// 2) It is possible to push memory arguments directly. So, if the
|
|
// the transformation is preformed pre-reg-alloc, it can help relieve
|
|
// register pressure.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include <algorithm>
|
|
|
|
#include "X86.h"
|
|
#include "X86InstrInfo.h"
|
|
#include "X86Subtarget.h"
|
|
#include "X86MachineFunctionInfo.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "x86-cf-opt"
|
|
|
|
static cl::opt<bool>
|
|
NoX86CFOpt("no-x86-call-frame-opt",
|
|
cl::desc("Avoid optimizing x86 call frames for size"),
|
|
cl::init(false), cl::Hidden);
|
|
|
|
namespace {
|
|
class X86CallFrameOptimization : public MachineFunctionPass {
|
|
public:
|
|
X86CallFrameOptimization() : MachineFunctionPass(ID) {}
|
|
|
|
bool runOnMachineFunction(MachineFunction &MF) override;
|
|
|
|
private:
|
|
// Information we know about a particular call site
|
|
struct CallContext {
|
|
CallContext()
|
|
: Call(nullptr), SPCopy(nullptr), ExpectedDist(0),
|
|
MovVector(4, nullptr), NoStackParams(false), UsePush(false){};
|
|
|
|
// Actuall call instruction
|
|
MachineInstr *Call;
|
|
|
|
// A copy of the stack pointer
|
|
MachineInstr *SPCopy;
|
|
|
|
// The total displacement of all passed parameters
|
|
int64_t ExpectedDist;
|
|
|
|
// The sequence of movs used to pass the parameters
|
|
SmallVector<MachineInstr *, 4> MovVector;
|
|
|
|
// True if this call site has no stack parameters
|
|
bool NoStackParams;
|
|
|
|
// True of this callsite can use push instructions
|
|
bool UsePush;
|
|
};
|
|
|
|
typedef DenseMap<MachineInstr *, CallContext> ContextMap;
|
|
|
|
bool isLegal(MachineFunction &MF);
|
|
|
|
bool isProfitable(MachineFunction &MF, ContextMap &CallSeqMap);
|
|
|
|
void collectCallInfo(MachineFunction &MF, MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator I, CallContext &Context);
|
|
|
|
bool adjustCallSequence(MachineFunction &MF, MachineBasicBlock::iterator I,
|
|
const CallContext &Context);
|
|
|
|
MachineInstr *canFoldIntoRegPush(MachineBasicBlock::iterator FrameSetup,
|
|
unsigned Reg);
|
|
|
|
const char *getPassName() const override { return "X86 Optimize Call Frame"; }
|
|
|
|
const TargetInstrInfo *TII;
|
|
const TargetFrameLowering *TFL;
|
|
const MachineRegisterInfo *MRI;
|
|
static char ID;
|
|
};
|
|
|
|
char X86CallFrameOptimization::ID = 0;
|
|
}
|
|
|
|
FunctionPass *llvm::createX86CallFrameOptimization() {
|
|
return new X86CallFrameOptimization();
|
|
}
|
|
|
|
// This checks whether the transformation is legal.
|
|
// Also returns false in cases where it's potentially legal, but
|
|
// we don't even want to try.
|
|
bool X86CallFrameOptimization::isLegal(MachineFunction &MF) {
|
|
if (NoX86CFOpt.getValue())
|
|
return false;
|
|
|
|
// We currently only support call sequences where *all* parameters.
|
|
// are passed on the stack.
|
|
// No point in running this in 64-bit mode, since some arguments are
|
|
// passed in-register in all common calling conventions, so the pattern
|
|
// we're looking for will never match.
|
|
const X86Subtarget &STI = MF.getTarget().getSubtarget<X86Subtarget>();
|
|
if (STI.is64Bit())
|
|
return false;
|
|
|
|
// You would expect straight-line code between call-frame setup and
|
|
// call-frame destroy. You would be wrong. There are circumstances (e.g.
|
|
// CMOV_GR8 expansion of a select that feeds a function call!) where we can
|
|
// end up with the setup and the destroy in different basic blocks.
|
|
// This is bad, and breaks SP adjustment.
|
|
// So, check that all of the frames in the function are closed inside
|
|
// the same block, and, for good measure, that there are no nested frames.
|
|
int FrameSetupOpcode = TII->getCallFrameSetupOpcode();
|
|
int FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
|
|
for (MachineBasicBlock &BB : MF) {
|
|
bool InsideFrameSequence = false;
|
|
for (MachineInstr &MI : BB) {
|
|
if (MI.getOpcode() == FrameSetupOpcode) {
|
|
if (InsideFrameSequence)
|
|
return false;
|
|
InsideFrameSequence = true;
|
|
} else if (MI.getOpcode() == FrameDestroyOpcode) {
|
|
if (!InsideFrameSequence)
|
|
return false;
|
|
InsideFrameSequence = false;
|
|
}
|
|
}
|
|
|
|
if (InsideFrameSequence)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Check whether this trasnformation is profitable for a particular
|
|
// function - in terms of code size.
|
|
bool X86CallFrameOptimization::isProfitable(MachineFunction &MF,
|
|
ContextMap &CallSeqMap) {
|
|
// This transformation is always a win when we do not expect to have
|
|
// a reserved call frame. Under other circumstances, it may be either
|
|
// a win or a loss, and requires a heuristic.
|
|
bool CannotReserveFrame = MF.getFrameInfo()->hasVarSizedObjects();
|
|
if (CannotReserveFrame)
|
|
return true;
|
|
|
|
// Don't do this when not optimizing for size.
|
|
AttributeSet FnAttrs = MF.getFunction()->getAttributes();
|
|
bool OptForSize =
|
|
FnAttrs.hasAttribute(AttributeSet::FunctionIndex,
|
|
Attribute::OptimizeForSize) ||
|
|
FnAttrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::MinSize);
|
|
|
|
if (!OptForSize)
|
|
return false;
|
|
|
|
|
|
unsigned StackAlign = TFL->getStackAlignment();
|
|
|
|
int64_t Advantage = 0;
|
|
for (auto CC : CallSeqMap) {
|
|
// Call sites where no parameters are passed on the stack
|
|
// do not affect the cost, since there needs to be no
|
|
// stack adjustment.
|
|
if (CC.second.NoStackParams)
|
|
continue;
|
|
|
|
if (!CC.second.UsePush) {
|
|
// If we don't use pushes for a particular call site,
|
|
// we pay for not having a reserved call frame with an
|
|
// additional sub/add esp pair. The cost is ~3 bytes per instruction,
|
|
// depending on the size of the constant.
|
|
// TODO: Callee-pop functions should have a smaller penalty, because
|
|
// an add is needed even with a reserved call frame.
|
|
Advantage -= 6;
|
|
} else {
|
|
// We can use pushes. First, account for the fixed costs.
|
|
// We'll need a add after the call.
|
|
Advantage -= 3;
|
|
// If we have to realign the stack, we'll also need and sub before
|
|
if (CC.second.ExpectedDist % StackAlign)
|
|
Advantage -= 3;
|
|
// Now, for each push, we save ~3 bytes. For small constants, we actually,
|
|
// save more (up to 5 bytes), but 3 should be a good approximation.
|
|
Advantage += (CC.second.ExpectedDist / 4) * 3;
|
|
}
|
|
}
|
|
|
|
return (Advantage >= 0);
|
|
}
|
|
|
|
|
|
bool X86CallFrameOptimization::runOnMachineFunction(MachineFunction &MF) {
|
|
TII = MF.getSubtarget().getInstrInfo();
|
|
TFL = MF.getSubtarget().getFrameLowering();
|
|
MRI = &MF.getRegInfo();
|
|
|
|
if (!isLegal(MF))
|
|
return false;
|
|
|
|
int FrameSetupOpcode = TII->getCallFrameSetupOpcode();
|
|
|
|
bool Changed = false;
|
|
|
|
ContextMap CallSeqMap;
|
|
|
|
for (MachineFunction::iterator BB = MF.begin(), E = MF.end(); BB != E; ++BB)
|
|
for (MachineBasicBlock::iterator I = BB->begin(); I != BB->end(); ++I)
|
|
if (I->getOpcode() == FrameSetupOpcode) {
|
|
CallContext &Context = CallSeqMap[I];
|
|
collectCallInfo(MF, *BB, I, Context);
|
|
}
|
|
|
|
if (!isProfitable(MF, CallSeqMap))
|
|
return false;
|
|
|
|
for (auto CC : CallSeqMap)
|
|
if (CC.second.UsePush)
|
|
Changed |= adjustCallSequence(MF, CC.first, CC.second);
|
|
|
|
return Changed;
|
|
}
|
|
|
|
void X86CallFrameOptimization::collectCallInfo(MachineFunction &MF,
|
|
MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator I,
|
|
CallContext &Context) {
|
|
// Check that this particular call sequence is amenable to the
|
|
// transformation.
|
|
const X86RegisterInfo &RegInfo = *static_cast<const X86RegisterInfo *>(
|
|
MF.getSubtarget().getRegisterInfo());
|
|
unsigned StackPtr = RegInfo.getStackRegister();
|
|
int FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
|
|
|
|
// We expect to enter this at the beginning of a call sequence
|
|
assert(I->getOpcode() == TII->getCallFrameSetupOpcode());
|
|
MachineBasicBlock::iterator FrameSetup = I++;
|
|
|
|
// How much do we adjust the stack? This puts an upper bound on
|
|
// the number of parameters actually passed on it.
|
|
unsigned int MaxAdjust = FrameSetup->getOperand(0).getImm() / 4;
|
|
|
|
// A zero adjustment means no stack parameters
|
|
if (!MaxAdjust) {
|
|
Context.NoStackParams = true;
|
|
return;
|
|
}
|
|
|
|
// For globals in PIC mode, we can have some LEAs here.
|
|
// Ignore them, they don't bother us.
|
|
// TODO: Extend this to something that covers more cases.
|
|
while (I->getOpcode() == X86::LEA32r)
|
|
++I;
|
|
|
|
// We expect a copy instruction here.
|
|
// TODO: The copy instruction is a lowering artifact.
|
|
// We should also support a copy-less version, where the stack
|
|
// pointer is used directly.
|
|
if (!I->isCopy() || !I->getOperand(0).isReg())
|
|
return;
|
|
Context.SPCopy = I++;
|
|
StackPtr = Context.SPCopy->getOperand(0).getReg();
|
|
|
|
// Scan the call setup sequence for the pattern we're looking for.
|
|
// We only handle a simple case - a sequence of MOV32mi or MOV32mr
|
|
// instructions, that push a sequence of 32-bit values onto the stack, with
|
|
// no gaps between them.
|
|
if (MaxAdjust > 4)
|
|
Context.MovVector.resize(MaxAdjust, nullptr);
|
|
|
|
do {
|
|
int Opcode = I->getOpcode();
|
|
if (Opcode != X86::MOV32mi && Opcode != X86::MOV32mr)
|
|
break;
|
|
|
|
// We only want movs of the form:
|
|
// movl imm/r32, k(%esp)
|
|
// If we run into something else, bail.
|
|
// Note that AddrBaseReg may, counter to its name, not be a register,
|
|
// but rather a frame index.
|
|
// TODO: Support the fi case. This should probably work now that we
|
|
// have the infrastructure to track the stack pointer within a call
|
|
// sequence.
|
|
if (!I->getOperand(X86::AddrBaseReg).isReg() ||
|
|
(I->getOperand(X86::AddrBaseReg).getReg() != StackPtr) ||
|
|
!I->getOperand(X86::AddrScaleAmt).isImm() ||
|
|
(I->getOperand(X86::AddrScaleAmt).getImm() != 1) ||
|
|
(I->getOperand(X86::AddrIndexReg).getReg() != X86::NoRegister) ||
|
|
(I->getOperand(X86::AddrSegmentReg).getReg() != X86::NoRegister) ||
|
|
!I->getOperand(X86::AddrDisp).isImm())
|
|
return;
|
|
|
|
int64_t StackDisp = I->getOperand(X86::AddrDisp).getImm();
|
|
assert(StackDisp >= 0 &&
|
|
"Negative stack displacement when passing parameters");
|
|
|
|
// We really don't want to consider the unaligned case.
|
|
if (StackDisp % 4)
|
|
return;
|
|
StackDisp /= 4;
|
|
|
|
assert((size_t)StackDisp < Context.MovVector.size() &&
|
|
"Function call has more parameters than the stack is adjusted for.");
|
|
|
|
// If the same stack slot is being filled twice, something's fishy.
|
|
if (Context.MovVector[StackDisp] != nullptr)
|
|
return;
|
|
Context.MovVector[StackDisp] = I;
|
|
|
|
++I;
|
|
} while (I != MBB.end());
|
|
|
|
// We now expect the end of the sequence - a call and a stack adjust.
|
|
if (I == MBB.end())
|
|
return;
|
|
|
|
// For PCrel calls, we expect an additional COPY of the basereg.
|
|
// If we find one, skip it.
|
|
if (I->isCopy()) {
|
|
if (I->getOperand(1).getReg() ==
|
|
MF.getInfo<X86MachineFunctionInfo>()->getGlobalBaseReg())
|
|
++I;
|
|
else
|
|
return;
|
|
}
|
|
|
|
if (!I->isCall())
|
|
return;
|
|
|
|
Context.Call = I;
|
|
if ((++I)->getOpcode() != FrameDestroyOpcode)
|
|
return;
|
|
|
|
// Now, go through the vector, and see that we don't have any gaps,
|
|
// but only a series of 32-bit MOVs.
|
|
auto MMI = Context.MovVector.begin(), MME = Context.MovVector.end();
|
|
for (; MMI != MME; ++MMI, Context.ExpectedDist += 4)
|
|
if (*MMI == nullptr)
|
|
break;
|
|
|
|
// If the call had no parameters, do nothing
|
|
if (MMI == Context.MovVector.begin())
|
|
return;
|
|
|
|
// We are either at the last parameter, or a gap.
|
|
// Make sure it's not a gap
|
|
for (; MMI != MME; ++MMI)
|
|
if (*MMI != nullptr)
|
|
return;
|
|
|
|
Context.UsePush = true;
|
|
return;
|
|
}
|
|
|
|
bool X86CallFrameOptimization::adjustCallSequence(MachineFunction &MF,
|
|
MachineBasicBlock::iterator I,
|
|
const CallContext &Context) {
|
|
// Ok, we can in fact do the transformation for this call.
|
|
// Do not remove the FrameSetup instruction, but adjust the parameters.
|
|
// PEI will end up finalizing the handling of this.
|
|
MachineBasicBlock::iterator FrameSetup = I;
|
|
MachineBasicBlock &MBB = *(I->getParent());
|
|
FrameSetup->getOperand(1).setImm(Context.ExpectedDist);
|
|
|
|
DebugLoc DL = I->getDebugLoc();
|
|
// Now, iterate through the vector in reverse order, and replace the movs
|
|
// with pushes. MOVmi/MOVmr doesn't have any defs, so no need to
|
|
// replace uses.
|
|
for (int Idx = (Context.ExpectedDist / 4) - 1; Idx >= 0; --Idx) {
|
|
MachineBasicBlock::iterator MOV = *Context.MovVector[Idx];
|
|
MachineOperand PushOp = MOV->getOperand(X86::AddrNumOperands);
|
|
if (MOV->getOpcode() == X86::MOV32mi) {
|
|
unsigned PushOpcode = X86::PUSHi32;
|
|
// If the operand is a small (8-bit) immediate, we can use a
|
|
// PUSH instruction with a shorter encoding.
|
|
// Note that isImm() may fail even though this is a MOVmi, because
|
|
// the operand can also be a symbol.
|
|
if (PushOp.isImm()) {
|
|
int64_t Val = PushOp.getImm();
|
|
if (isInt<8>(Val))
|
|
PushOpcode = X86::PUSH32i8;
|
|
}
|
|
BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode)).addOperand(PushOp);
|
|
} else {
|
|
unsigned int Reg = PushOp.getReg();
|
|
|
|
// If PUSHrmm is not slow on this target, try to fold the source of the
|
|
// push into the instruction.
|
|
const X86Subtarget &ST = MF.getTarget().getSubtarget<X86Subtarget>();
|
|
bool SlowPUSHrmm = ST.isAtom() || ST.isSLM();
|
|
|
|
// Check that this is legal to fold. Right now, we're extremely
|
|
// conservative about that.
|
|
MachineInstr *DefMov = nullptr;
|
|
if (!SlowPUSHrmm && (DefMov = canFoldIntoRegPush(FrameSetup, Reg))) {
|
|
MachineInstr *Push =
|
|
BuildMI(MBB, Context.Call, DL, TII->get(X86::PUSH32rmm));
|
|
|
|
unsigned NumOps = DefMov->getDesc().getNumOperands();
|
|
for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i)
|
|
Push->addOperand(DefMov->getOperand(i));
|
|
|
|
DefMov->eraseFromParent();
|
|
} else {
|
|
BuildMI(MBB, Context.Call, DL, TII->get(X86::PUSH32r))
|
|
.addReg(Reg)
|
|
.getInstr();
|
|
}
|
|
}
|
|
|
|
MBB.erase(MOV);
|
|
}
|
|
|
|
// The stack-pointer copy is no longer used in the call sequences.
|
|
// There should not be any other users, but we can't commit to that, so:
|
|
if (MRI->use_empty(Context.SPCopy->getOperand(0).getReg()))
|
|
Context.SPCopy->eraseFromParent();
|
|
|
|
// Once we've done this, we need to make sure PEI doesn't assume a reserved
|
|
// frame.
|
|
X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
|
|
FuncInfo->setHasPushSequences(true);
|
|
|
|
return true;
|
|
}
|
|
|
|
MachineInstr *X86CallFrameOptimization::canFoldIntoRegPush(
|
|
MachineBasicBlock::iterator FrameSetup, unsigned Reg) {
|
|
// Do an extremely restricted form of load folding.
|
|
// ISel will often create patterns like:
|
|
// movl 4(%edi), %eax
|
|
// movl 8(%edi), %ecx
|
|
// movl 12(%edi), %edx
|
|
// movl %edx, 8(%esp)
|
|
// movl %ecx, 4(%esp)
|
|
// movl %eax, (%esp)
|
|
// call
|
|
// Get rid of those with prejudice.
|
|
if (!TargetRegisterInfo::isVirtualRegister(Reg))
|
|
return nullptr;
|
|
|
|
// Make sure this is the only use of Reg.
|
|
if (!MRI->hasOneNonDBGUse(Reg))
|
|
return nullptr;
|
|
|
|
MachineBasicBlock::iterator DefMI = MRI->getVRegDef(Reg);
|
|
|
|
// Make sure the def is a MOV from memory.
|
|
// If the def is an another block, give up.
|
|
if (DefMI->getOpcode() != X86::MOV32rm ||
|
|
DefMI->getParent() != FrameSetup->getParent())
|
|
return nullptr;
|
|
|
|
// Be careful with movs that load from a stack slot, since it may get
|
|
// resolved incorrectly.
|
|
// TODO: Again, we already have the infrastructure, so this should work.
|
|
if (!DefMI->getOperand(1).isReg())
|
|
return nullptr;
|
|
|
|
// Now, make sure everything else up until the ADJCALLSTACK is a sequence
|
|
// of MOVs. To be less conservative would require duplicating a lot of the
|
|
// logic from PeepholeOptimizer.
|
|
// FIXME: A possibly better approach would be to teach the PeepholeOptimizer
|
|
// to be smarter about folding into pushes.
|
|
for (auto I = DefMI; I != FrameSetup; ++I)
|
|
if (I->getOpcode() != X86::MOV32rm)
|
|
return nullptr;
|
|
|
|
return DefMI;
|
|
}
|