
Summary: The existing isDivergent(Value) methods query whether a value is divergent at its definition. However even if a value is uniform at its definition, a use of it in another basic block can be divergent because of divergent control flow between the def and the use. This patch adds new isDivergent(Use) methods to DivergenceAnalysis, LegacyDivergenceAnalysis and GPUDivergenceAnalysis. This might allow D63953 or other similar workarounds to be removed. Reviewers: alex-t, nhaehnle, arsenm, rtaylor, rampitec, simoll, jingyue Reviewed By: nhaehnle Subscribers: jfb, jvesely, wdng, hiraditya, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D65141 llvm-svn: 367218
584 lines
20 KiB
C++
584 lines
20 KiB
C++
//===-- AMDGPUAtomicOptimizer.cpp -----------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
/// \file
|
|
/// This pass optimizes atomic operations by using a single lane of a wavefront
|
|
/// to perform the atomic operation, thus reducing contention on that memory
|
|
/// location.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "AMDGPU.h"
|
|
#include "AMDGPUSubtarget.h"
|
|
#include "llvm/Analysis/LegacyDivergenceAnalysis.h"
|
|
#include "llvm/CodeGen/TargetPassConfig.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/InstVisitor.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
|
|
#define DEBUG_TYPE "amdgpu-atomic-optimizer"
|
|
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
|
|
enum DPP_CTRL {
|
|
DPP_ROW_SR1 = 0x111,
|
|
DPP_ROW_SR2 = 0x112,
|
|
DPP_ROW_SR3 = 0x113,
|
|
DPP_ROW_SR4 = 0x114,
|
|
DPP_ROW_SR8 = 0x118,
|
|
DPP_WF_SR1 = 0x138,
|
|
DPP_ROW_BCAST15 = 0x142,
|
|
DPP_ROW_BCAST31 = 0x143
|
|
};
|
|
|
|
struct ReplacementInfo {
|
|
Instruction *I;
|
|
AtomicRMWInst::BinOp Op;
|
|
unsigned ValIdx;
|
|
bool ValDivergent;
|
|
};
|
|
|
|
class AMDGPUAtomicOptimizer : public FunctionPass,
|
|
public InstVisitor<AMDGPUAtomicOptimizer> {
|
|
private:
|
|
SmallVector<ReplacementInfo, 8> ToReplace;
|
|
const LegacyDivergenceAnalysis *DA;
|
|
const DataLayout *DL;
|
|
DominatorTree *DT;
|
|
bool HasDPP;
|
|
bool IsPixelShader;
|
|
|
|
void optimizeAtomic(Instruction &I, AtomicRMWInst::BinOp Op, unsigned ValIdx,
|
|
bool ValDivergent) const;
|
|
|
|
public:
|
|
static char ID;
|
|
|
|
AMDGPUAtomicOptimizer() : FunctionPass(ID) {}
|
|
|
|
bool runOnFunction(Function &F) override;
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addPreserved<DominatorTreeWrapperPass>();
|
|
AU.addRequired<LegacyDivergenceAnalysis>();
|
|
AU.addRequired<TargetPassConfig>();
|
|
}
|
|
|
|
void visitAtomicRMWInst(AtomicRMWInst &I);
|
|
void visitIntrinsicInst(IntrinsicInst &I);
|
|
};
|
|
|
|
} // namespace
|
|
|
|
char AMDGPUAtomicOptimizer::ID = 0;
|
|
|
|
char &llvm::AMDGPUAtomicOptimizerID = AMDGPUAtomicOptimizer::ID;
|
|
|
|
bool AMDGPUAtomicOptimizer::runOnFunction(Function &F) {
|
|
if (skipFunction(F)) {
|
|
return false;
|
|
}
|
|
|
|
DA = &getAnalysis<LegacyDivergenceAnalysis>();
|
|
DL = &F.getParent()->getDataLayout();
|
|
DominatorTreeWrapperPass *const DTW =
|
|
getAnalysisIfAvailable<DominatorTreeWrapperPass>();
|
|
DT = DTW ? &DTW->getDomTree() : nullptr;
|
|
const TargetPassConfig &TPC = getAnalysis<TargetPassConfig>();
|
|
const TargetMachine &TM = TPC.getTM<TargetMachine>();
|
|
const GCNSubtarget &ST = TM.getSubtarget<GCNSubtarget>(F);
|
|
HasDPP = ST.hasDPP();
|
|
IsPixelShader = F.getCallingConv() == CallingConv::AMDGPU_PS;
|
|
|
|
visit(F);
|
|
|
|
const bool Changed = !ToReplace.empty();
|
|
|
|
for (ReplacementInfo &Info : ToReplace) {
|
|
optimizeAtomic(*Info.I, Info.Op, Info.ValIdx, Info.ValDivergent);
|
|
}
|
|
|
|
ToReplace.clear();
|
|
|
|
return Changed;
|
|
}
|
|
|
|
void AMDGPUAtomicOptimizer::visitAtomicRMWInst(AtomicRMWInst &I) {
|
|
// Early exit for unhandled address space atomic instructions.
|
|
switch (I.getPointerAddressSpace()) {
|
|
default:
|
|
return;
|
|
case AMDGPUAS::GLOBAL_ADDRESS:
|
|
case AMDGPUAS::LOCAL_ADDRESS:
|
|
break;
|
|
}
|
|
|
|
AtomicRMWInst::BinOp Op = I.getOperation();
|
|
|
|
switch (Op) {
|
|
default:
|
|
return;
|
|
case AtomicRMWInst::Add:
|
|
case AtomicRMWInst::Sub:
|
|
case AtomicRMWInst::And:
|
|
case AtomicRMWInst::Or:
|
|
case AtomicRMWInst::Xor:
|
|
case AtomicRMWInst::Max:
|
|
case AtomicRMWInst::Min:
|
|
case AtomicRMWInst::UMax:
|
|
case AtomicRMWInst::UMin:
|
|
break;
|
|
}
|
|
|
|
const unsigned PtrIdx = 0;
|
|
const unsigned ValIdx = 1;
|
|
|
|
// If the pointer operand is divergent, then each lane is doing an atomic
|
|
// operation on a different address, and we cannot optimize that.
|
|
if (DA->isDivergentUse(&I.getOperandUse(PtrIdx))) {
|
|
return;
|
|
}
|
|
|
|
const bool ValDivergent = DA->isDivergentUse(&I.getOperandUse(ValIdx));
|
|
|
|
// If the value operand is divergent, each lane is contributing a different
|
|
// value to the atomic calculation. We can only optimize divergent values if
|
|
// we have DPP available on our subtarget, and the atomic operation is 32
|
|
// bits.
|
|
if (ValDivergent && (!HasDPP || (DL->getTypeSizeInBits(I.getType()) != 32))) {
|
|
return;
|
|
}
|
|
|
|
// If we get here, we can optimize the atomic using a single wavefront-wide
|
|
// atomic operation to do the calculation for the entire wavefront, so
|
|
// remember the instruction so we can come back to it.
|
|
const ReplacementInfo Info = {&I, Op, ValIdx, ValDivergent};
|
|
|
|
ToReplace.push_back(Info);
|
|
}
|
|
|
|
void AMDGPUAtomicOptimizer::visitIntrinsicInst(IntrinsicInst &I) {
|
|
AtomicRMWInst::BinOp Op;
|
|
|
|
switch (I.getIntrinsicID()) {
|
|
default:
|
|
return;
|
|
case Intrinsic::amdgcn_buffer_atomic_add:
|
|
case Intrinsic::amdgcn_struct_buffer_atomic_add:
|
|
case Intrinsic::amdgcn_raw_buffer_atomic_add:
|
|
Op = AtomicRMWInst::Add;
|
|
break;
|
|
case Intrinsic::amdgcn_buffer_atomic_sub:
|
|
case Intrinsic::amdgcn_struct_buffer_atomic_sub:
|
|
case Intrinsic::amdgcn_raw_buffer_atomic_sub:
|
|
Op = AtomicRMWInst::Sub;
|
|
break;
|
|
case Intrinsic::amdgcn_buffer_atomic_and:
|
|
case Intrinsic::amdgcn_struct_buffer_atomic_and:
|
|
case Intrinsic::amdgcn_raw_buffer_atomic_and:
|
|
Op = AtomicRMWInst::And;
|
|
break;
|
|
case Intrinsic::amdgcn_buffer_atomic_or:
|
|
case Intrinsic::amdgcn_struct_buffer_atomic_or:
|
|
case Intrinsic::amdgcn_raw_buffer_atomic_or:
|
|
Op = AtomicRMWInst::Or;
|
|
break;
|
|
case Intrinsic::amdgcn_buffer_atomic_xor:
|
|
case Intrinsic::amdgcn_struct_buffer_atomic_xor:
|
|
case Intrinsic::amdgcn_raw_buffer_atomic_xor:
|
|
Op = AtomicRMWInst::Xor;
|
|
break;
|
|
case Intrinsic::amdgcn_buffer_atomic_smin:
|
|
case Intrinsic::amdgcn_struct_buffer_atomic_smin:
|
|
case Intrinsic::amdgcn_raw_buffer_atomic_smin:
|
|
Op = AtomicRMWInst::Min;
|
|
break;
|
|
case Intrinsic::amdgcn_buffer_atomic_umin:
|
|
case Intrinsic::amdgcn_struct_buffer_atomic_umin:
|
|
case Intrinsic::amdgcn_raw_buffer_atomic_umin:
|
|
Op = AtomicRMWInst::UMin;
|
|
break;
|
|
case Intrinsic::amdgcn_buffer_atomic_smax:
|
|
case Intrinsic::amdgcn_struct_buffer_atomic_smax:
|
|
case Intrinsic::amdgcn_raw_buffer_atomic_smax:
|
|
Op = AtomicRMWInst::Max;
|
|
break;
|
|
case Intrinsic::amdgcn_buffer_atomic_umax:
|
|
case Intrinsic::amdgcn_struct_buffer_atomic_umax:
|
|
case Intrinsic::amdgcn_raw_buffer_atomic_umax:
|
|
Op = AtomicRMWInst::UMax;
|
|
break;
|
|
}
|
|
|
|
const unsigned ValIdx = 0;
|
|
|
|
const bool ValDivergent = DA->isDivergentUse(&I.getOperandUse(ValIdx));
|
|
|
|
// If the value operand is divergent, each lane is contributing a different
|
|
// value to the atomic calculation. We can only optimize divergent values if
|
|
// we have DPP available on our subtarget, and the atomic operation is 32
|
|
// bits.
|
|
if (ValDivergent && (!HasDPP || (DL->getTypeSizeInBits(I.getType()) != 32))) {
|
|
return;
|
|
}
|
|
|
|
// If any of the other arguments to the intrinsic are divergent, we can't
|
|
// optimize the operation.
|
|
for (unsigned Idx = 1; Idx < I.getNumOperands(); Idx++) {
|
|
if (DA->isDivergentUse(&I.getOperandUse(Idx))) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
// If we get here, we can optimize the atomic using a single wavefront-wide
|
|
// atomic operation to do the calculation for the entire wavefront, so
|
|
// remember the instruction so we can come back to it.
|
|
const ReplacementInfo Info = {&I, Op, ValIdx, ValDivergent};
|
|
|
|
ToReplace.push_back(Info);
|
|
}
|
|
|
|
// Use the builder to create the non-atomic counterpart of the specified
|
|
// atomicrmw binary op.
|
|
static Value *buildNonAtomicBinOp(IRBuilder<> &B, AtomicRMWInst::BinOp Op,
|
|
Value *LHS, Value *RHS) {
|
|
CmpInst::Predicate Pred;
|
|
|
|
switch (Op) {
|
|
default:
|
|
llvm_unreachable("Unhandled atomic op");
|
|
case AtomicRMWInst::Add:
|
|
return B.CreateBinOp(Instruction::Add, LHS, RHS);
|
|
case AtomicRMWInst::Sub:
|
|
return B.CreateBinOp(Instruction::Sub, LHS, RHS);
|
|
case AtomicRMWInst::And:
|
|
return B.CreateBinOp(Instruction::And, LHS, RHS);
|
|
case AtomicRMWInst::Or:
|
|
return B.CreateBinOp(Instruction::Or, LHS, RHS);
|
|
case AtomicRMWInst::Xor:
|
|
return B.CreateBinOp(Instruction::Xor, LHS, RHS);
|
|
|
|
case AtomicRMWInst::Max:
|
|
Pred = CmpInst::ICMP_SGT;
|
|
break;
|
|
case AtomicRMWInst::Min:
|
|
Pred = CmpInst::ICMP_SLT;
|
|
break;
|
|
case AtomicRMWInst::UMax:
|
|
Pred = CmpInst::ICMP_UGT;
|
|
break;
|
|
case AtomicRMWInst::UMin:
|
|
Pred = CmpInst::ICMP_ULT;
|
|
break;
|
|
}
|
|
Value *Cond = B.CreateICmp(Pred, LHS, RHS);
|
|
return B.CreateSelect(Cond, LHS, RHS);
|
|
}
|
|
|
|
static APInt getIdentityValueForAtomicOp(AtomicRMWInst::BinOp Op,
|
|
unsigned BitWidth) {
|
|
switch (Op) {
|
|
default:
|
|
llvm_unreachable("Unhandled atomic op");
|
|
case AtomicRMWInst::Add:
|
|
case AtomicRMWInst::Sub:
|
|
case AtomicRMWInst::Or:
|
|
case AtomicRMWInst::Xor:
|
|
case AtomicRMWInst::UMax:
|
|
return APInt::getMinValue(BitWidth);
|
|
case AtomicRMWInst::And:
|
|
case AtomicRMWInst::UMin:
|
|
return APInt::getMaxValue(BitWidth);
|
|
case AtomicRMWInst::Max:
|
|
return APInt::getSignedMinValue(BitWidth);
|
|
case AtomicRMWInst::Min:
|
|
return APInt::getSignedMaxValue(BitWidth);
|
|
}
|
|
}
|
|
|
|
void AMDGPUAtomicOptimizer::optimizeAtomic(Instruction &I,
|
|
AtomicRMWInst::BinOp Op,
|
|
unsigned ValIdx,
|
|
bool ValDivergent) const {
|
|
// Start building just before the instruction.
|
|
IRBuilder<> B(&I);
|
|
|
|
// If we are in a pixel shader, because of how we have to mask out helper
|
|
// lane invocations, we need to record the entry and exit BB's.
|
|
BasicBlock *PixelEntryBB = nullptr;
|
|
BasicBlock *PixelExitBB = nullptr;
|
|
|
|
// If we're optimizing an atomic within a pixel shader, we need to wrap the
|
|
// entire atomic operation in a helper-lane check. We do not want any helper
|
|
// lanes that are around only for the purposes of derivatives to take part
|
|
// in any cross-lane communication, and we use a branch on whether the lane is
|
|
// live to do this.
|
|
if (IsPixelShader) {
|
|
// Record I's original position as the entry block.
|
|
PixelEntryBB = I.getParent();
|
|
|
|
Value *const Cond = B.CreateIntrinsic(Intrinsic::amdgcn_ps_live, {}, {});
|
|
Instruction *const NonHelperTerminator =
|
|
SplitBlockAndInsertIfThen(Cond, &I, false, nullptr, DT, nullptr);
|
|
|
|
// Record I's new position as the exit block.
|
|
PixelExitBB = I.getParent();
|
|
|
|
I.moveBefore(NonHelperTerminator);
|
|
B.SetInsertPoint(&I);
|
|
}
|
|
|
|
Type *const Ty = I.getType();
|
|
const unsigned TyBitWidth = DL->getTypeSizeInBits(Ty);
|
|
Type *const VecTy = VectorType::get(B.getInt32Ty(), 2);
|
|
|
|
// This is the value in the atomic operation we need to combine in order to
|
|
// reduce the number of atomic operations.
|
|
Value *const V = I.getOperand(ValIdx);
|
|
|
|
// We need to know how many lanes are active within the wavefront, and we do
|
|
// this by doing a ballot of active lanes.
|
|
CallInst *const Ballot = B.CreateIntrinsic(
|
|
Intrinsic::amdgcn_icmp, {B.getInt64Ty(), B.getInt32Ty()},
|
|
{B.getInt32(1), B.getInt32(0), B.getInt32(CmpInst::ICMP_NE)});
|
|
|
|
// We need to know how many lanes are active within the wavefront that are
|
|
// below us. If we counted each lane linearly starting from 0, a lane is
|
|
// below us only if its associated index was less than ours. We do this by
|
|
// using the mbcnt intrinsic.
|
|
Value *const BitCast = B.CreateBitCast(Ballot, VecTy);
|
|
Value *const ExtractLo = B.CreateExtractElement(BitCast, B.getInt32(0));
|
|
Value *const ExtractHi = B.CreateExtractElement(BitCast, B.getInt32(1));
|
|
CallInst *const PartialMbcnt = B.CreateIntrinsic(
|
|
Intrinsic::amdgcn_mbcnt_lo, {}, {ExtractLo, B.getInt32(0)});
|
|
Value *const Mbcnt =
|
|
B.CreateIntCast(B.CreateIntrinsic(Intrinsic::amdgcn_mbcnt_hi, {},
|
|
{ExtractHi, PartialMbcnt}),
|
|
Ty, false);
|
|
|
|
Value *const Identity = B.getInt(getIdentityValueForAtomicOp(Op, TyBitWidth));
|
|
|
|
Value *ExclScan = nullptr;
|
|
Value *NewV = nullptr;
|
|
|
|
// If we have a divergent value in each lane, we need to combine the value
|
|
// using DPP.
|
|
if (ValDivergent) {
|
|
// First we need to set all inactive invocations to the identity value, so
|
|
// that they can correctly contribute to the final result.
|
|
CallInst *const SetInactive =
|
|
B.CreateIntrinsic(Intrinsic::amdgcn_set_inactive, Ty, {V, Identity});
|
|
|
|
ExclScan =
|
|
B.CreateIntrinsic(Intrinsic::amdgcn_update_dpp, Ty,
|
|
{Identity, SetInactive, B.getInt32(DPP_WF_SR1),
|
|
B.getInt32(0xf), B.getInt32(0xf), B.getFalse()});
|
|
|
|
const unsigned Iters = 6;
|
|
const unsigned DPPCtrl[Iters] = {DPP_ROW_SR1, DPP_ROW_SR2,
|
|
DPP_ROW_SR4, DPP_ROW_SR8,
|
|
DPP_ROW_BCAST15, DPP_ROW_BCAST31};
|
|
const unsigned RowMask[Iters] = {0xf, 0xf, 0xf, 0xf, 0xa, 0xc};
|
|
const unsigned BankMask[Iters] = {0xf, 0xf, 0xe, 0xc, 0xf, 0xf};
|
|
|
|
// This loop performs an exclusive scan across the wavefront, with all lanes
|
|
// active (by using the WWM intrinsic).
|
|
for (unsigned Idx = 0; Idx < Iters; Idx++) {
|
|
CallInst *const DPP = B.CreateIntrinsic(
|
|
Intrinsic::amdgcn_update_dpp, Ty,
|
|
{Identity, ExclScan, B.getInt32(DPPCtrl[Idx]),
|
|
B.getInt32(RowMask[Idx]), B.getInt32(BankMask[Idx]), B.getFalse()});
|
|
|
|
ExclScan = buildNonAtomicBinOp(B, Op, ExclScan, DPP);
|
|
}
|
|
|
|
NewV = buildNonAtomicBinOp(B, Op, SetInactive, ExclScan);
|
|
|
|
// Read the value from the last lane, which has accumlated the values of
|
|
// each active lane in the wavefront. This will be our new value which we
|
|
// will provide to the atomic operation.
|
|
if (TyBitWidth == 64) {
|
|
Value *const ExtractLo = B.CreateTrunc(NewV, B.getInt32Ty());
|
|
Value *const ExtractHi =
|
|
B.CreateTrunc(B.CreateLShr(NewV, B.getInt64(32)), B.getInt32Ty());
|
|
CallInst *const ReadLaneLo = B.CreateIntrinsic(
|
|
Intrinsic::amdgcn_readlane, {}, {ExtractLo, B.getInt32(63)});
|
|
CallInst *const ReadLaneHi = B.CreateIntrinsic(
|
|
Intrinsic::amdgcn_readlane, {}, {ExtractHi, B.getInt32(63)});
|
|
Value *const PartialInsert = B.CreateInsertElement(
|
|
UndefValue::get(VecTy), ReadLaneLo, B.getInt32(0));
|
|
Value *const Insert =
|
|
B.CreateInsertElement(PartialInsert, ReadLaneHi, B.getInt32(1));
|
|
NewV = B.CreateBitCast(Insert, Ty);
|
|
} else if (TyBitWidth == 32) {
|
|
NewV = B.CreateIntrinsic(Intrinsic::amdgcn_readlane, {},
|
|
{NewV, B.getInt32(63)});
|
|
} else {
|
|
llvm_unreachable("Unhandled atomic bit width");
|
|
}
|
|
|
|
// Finally mark the readlanes in the WWM section.
|
|
NewV = B.CreateIntrinsic(Intrinsic::amdgcn_wwm, Ty, NewV);
|
|
} else {
|
|
switch (Op) {
|
|
default:
|
|
llvm_unreachable("Unhandled atomic op");
|
|
|
|
case AtomicRMWInst::Add:
|
|
case AtomicRMWInst::Sub: {
|
|
// The new value we will be contributing to the atomic operation is the
|
|
// old value times the number of active lanes.
|
|
Value *const Ctpop = B.CreateIntCast(
|
|
B.CreateUnaryIntrinsic(Intrinsic::ctpop, Ballot), Ty, false);
|
|
NewV = B.CreateMul(V, Ctpop);
|
|
break;
|
|
}
|
|
|
|
case AtomicRMWInst::And:
|
|
case AtomicRMWInst::Or:
|
|
case AtomicRMWInst::Max:
|
|
case AtomicRMWInst::Min:
|
|
case AtomicRMWInst::UMax:
|
|
case AtomicRMWInst::UMin:
|
|
// These operations with a uniform value are idempotent: doing the atomic
|
|
// operation multiple times has the same effect as doing it once.
|
|
NewV = V;
|
|
break;
|
|
|
|
case AtomicRMWInst::Xor:
|
|
// The new value we will be contributing to the atomic operation is the
|
|
// old value times the parity of the number of active lanes.
|
|
Value *const Ctpop = B.CreateIntCast(
|
|
B.CreateUnaryIntrinsic(Intrinsic::ctpop, Ballot), Ty, false);
|
|
NewV = B.CreateMul(V, B.CreateAnd(Ctpop, 1));
|
|
break;
|
|
}
|
|
}
|
|
|
|
// We only want a single lane to enter our new control flow, and we do this
|
|
// by checking if there are any active lanes below us. Only one lane will
|
|
// have 0 active lanes below us, so that will be the only one to progress.
|
|
Value *const Cond = B.CreateICmpEQ(Mbcnt, B.getIntN(TyBitWidth, 0));
|
|
|
|
// Store I's original basic block before we split the block.
|
|
BasicBlock *const EntryBB = I.getParent();
|
|
|
|
// We need to introduce some new control flow to force a single lane to be
|
|
// active. We do this by splitting I's basic block at I, and introducing the
|
|
// new block such that:
|
|
// entry --> single_lane -\
|
|
// \------------------> exit
|
|
Instruction *const SingleLaneTerminator =
|
|
SplitBlockAndInsertIfThen(Cond, &I, false, nullptr, DT, nullptr);
|
|
|
|
// Move the IR builder into single_lane next.
|
|
B.SetInsertPoint(SingleLaneTerminator);
|
|
|
|
// Clone the original atomic operation into single lane, replacing the
|
|
// original value with our newly created one.
|
|
Instruction *const NewI = I.clone();
|
|
B.Insert(NewI);
|
|
NewI->setOperand(ValIdx, NewV);
|
|
|
|
// Move the IR builder into exit next, and start inserting just before the
|
|
// original instruction.
|
|
B.SetInsertPoint(&I);
|
|
|
|
const bool NeedResult = !I.use_empty();
|
|
if (NeedResult) {
|
|
// Create a PHI node to get our new atomic result into the exit block.
|
|
PHINode *const PHI = B.CreatePHI(Ty, 2);
|
|
PHI->addIncoming(UndefValue::get(Ty), EntryBB);
|
|
PHI->addIncoming(NewI, SingleLaneTerminator->getParent());
|
|
|
|
// We need to broadcast the value who was the lowest active lane (the first
|
|
// lane) to all other lanes in the wavefront. We use an intrinsic for this,
|
|
// but have to handle 64-bit broadcasts with two calls to this intrinsic.
|
|
Value *BroadcastI = nullptr;
|
|
|
|
if (TyBitWidth == 64) {
|
|
Value *const ExtractLo = B.CreateTrunc(PHI, B.getInt32Ty());
|
|
Value *const ExtractHi =
|
|
B.CreateTrunc(B.CreateLShr(PHI, B.getInt64(32)), B.getInt32Ty());
|
|
CallInst *const ReadFirstLaneLo =
|
|
B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, ExtractLo);
|
|
CallInst *const ReadFirstLaneHi =
|
|
B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, ExtractHi);
|
|
Value *const PartialInsert = B.CreateInsertElement(
|
|
UndefValue::get(VecTy), ReadFirstLaneLo, B.getInt32(0));
|
|
Value *const Insert =
|
|
B.CreateInsertElement(PartialInsert, ReadFirstLaneHi, B.getInt32(1));
|
|
BroadcastI = B.CreateBitCast(Insert, Ty);
|
|
} else if (TyBitWidth == 32) {
|
|
|
|
BroadcastI = B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, PHI);
|
|
} else {
|
|
llvm_unreachable("Unhandled atomic bit width");
|
|
}
|
|
|
|
// Now that we have the result of our single atomic operation, we need to
|
|
// get our individual lane's slice into the result. We use the lane offset
|
|
// we previously calculated combined with the atomic result value we got
|
|
// from the first lane, to get our lane's index into the atomic result.
|
|
Value *LaneOffset = nullptr;
|
|
if (ValDivergent) {
|
|
LaneOffset = B.CreateIntrinsic(Intrinsic::amdgcn_wwm, Ty, ExclScan);
|
|
} else {
|
|
switch (Op) {
|
|
default:
|
|
llvm_unreachable("Unhandled atomic op");
|
|
case AtomicRMWInst::Add:
|
|
case AtomicRMWInst::Sub:
|
|
LaneOffset = B.CreateMul(V, Mbcnt);
|
|
break;
|
|
case AtomicRMWInst::And:
|
|
case AtomicRMWInst::Or:
|
|
case AtomicRMWInst::Max:
|
|
case AtomicRMWInst::Min:
|
|
case AtomicRMWInst::UMax:
|
|
case AtomicRMWInst::UMin:
|
|
LaneOffset = B.CreateSelect(Cond, Identity, V);
|
|
break;
|
|
case AtomicRMWInst::Xor:
|
|
LaneOffset = B.CreateMul(V, B.CreateAnd(Mbcnt, 1));
|
|
break;
|
|
}
|
|
}
|
|
Value *const Result = buildNonAtomicBinOp(B, Op, BroadcastI, LaneOffset);
|
|
|
|
if (IsPixelShader) {
|
|
// Need a final PHI to reconverge to above the helper lane branch mask.
|
|
B.SetInsertPoint(PixelExitBB->getFirstNonPHI());
|
|
|
|
PHINode *const PHI = B.CreatePHI(Ty, 2);
|
|
PHI->addIncoming(UndefValue::get(Ty), PixelEntryBB);
|
|
PHI->addIncoming(Result, I.getParent());
|
|
I.replaceAllUsesWith(PHI);
|
|
} else {
|
|
// Replace the original atomic instruction with the new one.
|
|
I.replaceAllUsesWith(Result);
|
|
}
|
|
}
|
|
|
|
// And delete the original.
|
|
I.eraseFromParent();
|
|
}
|
|
|
|
INITIALIZE_PASS_BEGIN(AMDGPUAtomicOptimizer, DEBUG_TYPE,
|
|
"AMDGPU atomic optimizations", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
|
|
INITIALIZE_PASS_END(AMDGPUAtomicOptimizer, DEBUG_TYPE,
|
|
"AMDGPU atomic optimizations", false, false)
|
|
|
|
FunctionPass *llvm::createAMDGPUAtomicOptimizerPass() {
|
|
return new AMDGPUAtomicOptimizer();
|
|
}
|