632 lines
26 KiB
C++
632 lines
26 KiB
C++
//===- LoopUtils.cpp ---- Misc utilities for loop transformation ----------===//
|
|
//
|
|
// Copyright 2019 The MLIR Authors.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
// =============================================================================
|
|
//
|
|
// This file implements miscellaneous loop transformation routines.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Transforms/LoopUtils.h"
|
|
|
|
#include "mlir/AffineOps/AffineOps.h"
|
|
#include "mlir/Analysis/AffineAnalysis.h"
|
|
#include "mlir/Analysis/AffineStructures.h"
|
|
#include "mlir/Analysis/LoopAnalysis.h"
|
|
#include "mlir/IR/AffineExpr.h"
|
|
#include "mlir/IR/AffineMap.h"
|
|
#include "mlir/IR/BlockAndValueMapping.h"
|
|
#include "mlir/IR/Builders.h"
|
|
#include "mlir/IR/Instruction.h"
|
|
#include "mlir/StandardOps/Ops.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
#define DEBUG_TYPE "LoopUtils"
|
|
|
|
using namespace mlir;
|
|
|
|
/// Computes the cleanup loop lower bound of the loop being unrolled with
|
|
/// the specified unroll factor; this bound will also be upper bound of the main
|
|
/// part of the unrolled loop. Computes the bound as an AffineMap with its
|
|
/// operands or a null map when the trip count can't be expressed as an affine
|
|
/// expression.
|
|
void mlir::getCleanupLoopLowerBound(OpPointer<AffineForOp> forOp,
|
|
unsigned unrollFactor, AffineMap *map,
|
|
SmallVectorImpl<Value *> *operands,
|
|
FuncBuilder *b) {
|
|
auto lbMap = forOp->getLowerBoundMap();
|
|
|
|
// Single result lower bound map only.
|
|
if (lbMap.getNumResults() != 1) {
|
|
*map = AffineMap();
|
|
return;
|
|
}
|
|
|
|
AffineMap tripCountMap;
|
|
SmallVector<Value *, 4> tripCountOperands;
|
|
buildTripCountMapAndOperands(forOp, &tripCountMap, &tripCountOperands);
|
|
|
|
// Sometimes the trip count cannot be expressed as an affine expression.
|
|
if (!tripCountMap) {
|
|
*map = AffineMap();
|
|
return;
|
|
}
|
|
|
|
unsigned step = forOp->getStep();
|
|
|
|
// We need to get non-const operands; we aren't changing them here.
|
|
auto ncForOp = *reinterpret_cast<OpPointer<AffineForOp> *>(&forOp);
|
|
|
|
SmallVector<Value *, 4> lbOperands(ncForOp->getLowerBoundOperands());
|
|
auto lb = b->create<AffineApplyOp>(ncForOp->getLoc(), lbMap, lbOperands);
|
|
|
|
// For each upper bound expr, get the range.
|
|
// Eg: for %i = lb to min (ub1, ub2),
|
|
// where tripCountExprs yield (tr1, tr2), we create affine.apply's:
|
|
// lb + tr1 - tr1 % ufactor, lb + tr2 - tr2 % ufactor; the results of all
|
|
// these affine.apply's make up the cleanup loop lower bound.
|
|
SmallVector<AffineExpr, 4> bumpExprs(tripCountMap.getNumResults());
|
|
SmallVector<Value *, 4> bumpValues(tripCountMap.getNumResults());
|
|
for (unsigned i = 0, e = tripCountMap.getNumResults(); i < e; i++) {
|
|
auto tripCountExpr = tripCountMap.getResult(i);
|
|
bumpExprs[i] = (tripCountExpr - tripCountExpr % unrollFactor) * step;
|
|
auto bumpMap =
|
|
b->getAffineMap(tripCountMap.getNumDims(), tripCountMap.getNumSymbols(),
|
|
bumpExprs[i], {});
|
|
bumpValues[i] =
|
|
b->create<AffineApplyOp>(forOp->getLoc(), bumpMap, tripCountOperands);
|
|
}
|
|
|
|
SmallVector<AffineExpr, 4> newUbExprs(tripCountMap.getNumResults());
|
|
for (unsigned i = 0, e = bumpExprs.size(); i < e; i++)
|
|
newUbExprs[i] = b->getAffineDimExpr(0) + b->getAffineDimExpr(i + 1);
|
|
|
|
operands->clear();
|
|
operands->push_back(lb);
|
|
operands->append(bumpValues.begin(), bumpValues.end());
|
|
*map = b->getAffineMap(1 + tripCountMap.getNumResults(), 0, newUbExprs, {});
|
|
// Simplify the map + operands.
|
|
fullyComposeAffineMapAndOperands(map, operands);
|
|
*map = simplifyAffineMap(*map);
|
|
canonicalizeMapAndOperands(map, operands);
|
|
// Remove any affine.apply's that became dead from the simplification above.
|
|
for (auto *v : bumpValues) {
|
|
if (v->use_empty()) {
|
|
v->getDefiningInst()->erase();
|
|
}
|
|
}
|
|
if (lb->use_empty())
|
|
lb->erase();
|
|
}
|
|
|
|
/// Promotes the loop body of a forOp to its containing block if the forOp
|
|
/// was known to have a single iteration.
|
|
// TODO(bondhugula): extend this for arbitrary affine bounds.
|
|
LogicalResult mlir::promoteIfSingleIteration(OpPointer<AffineForOp> forOp) {
|
|
Optional<uint64_t> tripCount = getConstantTripCount(forOp);
|
|
if (!tripCount.hasValue() || tripCount.getValue() != 1)
|
|
return failure();
|
|
|
|
// TODO(mlir-team): there is no builder for a max.
|
|
if (forOp->getLowerBoundMap().getNumResults() != 1)
|
|
return failure();
|
|
|
|
// Replaces all IV uses to its single iteration value.
|
|
auto *iv = forOp->getInductionVar();
|
|
Instruction *forInst = forOp->getInstruction();
|
|
if (!iv->use_empty()) {
|
|
if (forOp->hasConstantLowerBound()) {
|
|
auto *mlFunc = forInst->getFunction();
|
|
FuncBuilder topBuilder(mlFunc);
|
|
auto constOp = topBuilder.create<ConstantIndexOp>(
|
|
forOp->getLoc(), forOp->getConstantLowerBound());
|
|
iv->replaceAllUsesWith(constOp);
|
|
} else {
|
|
AffineBound lb = forOp->getLowerBound();
|
|
SmallVector<Value *, 4> lbOperands(lb.operand_begin(), lb.operand_end());
|
|
FuncBuilder builder(forInst->getBlock(), Block::iterator(forInst));
|
|
if (lb.getMap() == builder.getDimIdentityMap()) {
|
|
// No need of generating an affine.apply.
|
|
iv->replaceAllUsesWith(lbOperands[0]);
|
|
} else {
|
|
auto affineApplyOp = builder.create<AffineApplyOp>(
|
|
forInst->getLoc(), lb.getMap(), lbOperands);
|
|
iv->replaceAllUsesWith(affineApplyOp);
|
|
}
|
|
}
|
|
}
|
|
// Move the loop body instructions to the loop's containing block.
|
|
auto *block = forInst->getBlock();
|
|
block->getInstructions().splice(Block::iterator(forInst),
|
|
forOp->getBody()->getInstructions());
|
|
forOp->erase();
|
|
return success();
|
|
}
|
|
|
|
/// Promotes all single iteration for inst's in the Function, i.e., moves
|
|
/// their body into the containing Block.
|
|
void mlir::promoteSingleIterationLoops(Function *f) {
|
|
// Gathers all innermost loops through a post order pruned walk.
|
|
f->walkPostOrder<AffineForOp>(
|
|
[](OpPointer<AffineForOp> forOp) { promoteIfSingleIteration(forOp); });
|
|
}
|
|
|
|
/// Generates a 'for' inst with the specified lower and upper bounds while
|
|
/// generating the right IV remappings for the shifted instructions. The
|
|
/// instruction blocks that go into the loop are specified in instGroupQueue
|
|
/// starting from the specified offset, and in that order; the first element of
|
|
/// the pair specifies the shift applied to that group of instructions; note
|
|
/// that the shift is multiplied by the loop step before being applied. Returns
|
|
/// nullptr if the generated loop simplifies to a single iteration one.
|
|
static OpPointer<AffineForOp>
|
|
generateLoop(AffineMap lbMap, AffineMap ubMap,
|
|
const std::vector<std::pair<uint64_t, ArrayRef<Instruction *>>>
|
|
&instGroupQueue,
|
|
unsigned offset, OpPointer<AffineForOp> srcForInst,
|
|
FuncBuilder *b) {
|
|
SmallVector<Value *, 4> lbOperands(srcForInst->getLowerBoundOperands());
|
|
SmallVector<Value *, 4> ubOperands(srcForInst->getUpperBoundOperands());
|
|
|
|
assert(lbMap.getNumInputs() == lbOperands.size());
|
|
assert(ubMap.getNumInputs() == ubOperands.size());
|
|
|
|
auto loopChunk =
|
|
b->create<AffineForOp>(srcForInst->getLoc(), lbOperands, lbMap,
|
|
ubOperands, ubMap, srcForInst->getStep());
|
|
loopChunk->createBody();
|
|
auto *loopChunkIV = loopChunk->getInductionVar();
|
|
auto *srcIV = srcForInst->getInductionVar();
|
|
|
|
BlockAndValueMapping operandMap;
|
|
|
|
for (auto it = instGroupQueue.begin() + offset, e = instGroupQueue.end();
|
|
it != e; ++it) {
|
|
uint64_t shift = it->first;
|
|
auto insts = it->second;
|
|
// All 'same shift' instructions get added with their operands being
|
|
// remapped to results of cloned instructions, and their IV used remapped.
|
|
// Generate the remapping if the shift is not zero: remappedIV = newIV -
|
|
// shift.
|
|
if (!srcIV->use_empty() && shift != 0) {
|
|
FuncBuilder b(loopChunk->getBody());
|
|
auto ivRemap = b.create<AffineApplyOp>(
|
|
srcForInst->getLoc(),
|
|
b.getSingleDimShiftAffineMap(
|
|
-static_cast<int64_t>(srcForInst->getStep() * shift)),
|
|
loopChunkIV);
|
|
operandMap.map(srcIV, ivRemap);
|
|
} else {
|
|
operandMap.map(srcIV, loopChunkIV);
|
|
}
|
|
for (auto *inst : insts) {
|
|
loopChunk->getBody()->push_back(inst->clone(operandMap, b->getContext()));
|
|
}
|
|
}
|
|
if (succeeded(promoteIfSingleIteration(loopChunk)))
|
|
return OpPointer<AffineForOp>();
|
|
return loopChunk;
|
|
}
|
|
|
|
/// Skew the instructions in the body of a 'for' instruction with the specified
|
|
/// instruction-wise shifts. The shifts are with respect to the original
|
|
/// execution order, and are multiplied by the loop 'step' before being applied.
|
|
/// A shift of zero for each instruction will lead to no change.
|
|
// The skewing of instructions with respect to one another can be used for
|
|
// example to allow overlap of asynchronous operations (such as DMA
|
|
// communication) with computation, or just relative shifting of instructions
|
|
// for better register reuse, locality or parallelism. As such, the shifts are
|
|
// typically expected to be at most of the order of the number of instructions.
|
|
// This method should not be used as a substitute for loop distribution/fission.
|
|
// This method uses an algorithm// in time linear in the number of instructions
|
|
// in the body of the for loop - (using the 'sweep line' paradigm). This method
|
|
// asserts preservation of SSA dominance. A check for that as well as that for
|
|
// memory-based depedence preservation check rests with the users of this
|
|
// method.
|
|
LogicalResult mlir::instBodySkew(OpPointer<AffineForOp> forOp,
|
|
ArrayRef<uint64_t> shifts,
|
|
bool unrollPrologueEpilogue) {
|
|
if (forOp->getBody()->empty())
|
|
return success();
|
|
|
|
// If the trip counts aren't constant, we would need versioning and
|
|
// conditional guards (or context information to prevent such versioning). The
|
|
// better way to pipeline for such loops is to first tile them and extract
|
|
// constant trip count "full tiles" before applying this.
|
|
auto mayBeConstTripCount = getConstantTripCount(forOp);
|
|
if (!mayBeConstTripCount.hasValue()) {
|
|
LLVM_DEBUG(forOp->emitNote("non-constant trip count loop not handled"));
|
|
return success();
|
|
}
|
|
uint64_t tripCount = mayBeConstTripCount.getValue();
|
|
|
|
assert(isInstwiseShiftValid(forOp, shifts) &&
|
|
"shifts will lead to an invalid transformation\n");
|
|
|
|
int64_t step = forOp->getStep();
|
|
|
|
unsigned numChildInsts = forOp->getBody()->getInstructions().size();
|
|
|
|
// Do a linear time (counting) sort for the shifts.
|
|
uint64_t maxShift = 0;
|
|
for (unsigned i = 0; i < numChildInsts; i++) {
|
|
maxShift = std::max(maxShift, shifts[i]);
|
|
}
|
|
// Such large shifts are not the typical use case.
|
|
if (maxShift >= numChildInsts) {
|
|
forOp->emitWarning("not shifting because shifts are unrealistically large");
|
|
return success();
|
|
}
|
|
|
|
// An array of instruction groups sorted by shift amount; each group has all
|
|
// instructions with the same shift in the order in which they appear in the
|
|
// body of the 'for' inst.
|
|
std::vector<std::vector<Instruction *>> sortedInstGroups(maxShift + 1);
|
|
unsigned pos = 0;
|
|
for (auto &inst : *forOp->getBody()) {
|
|
auto shift = shifts[pos++];
|
|
sortedInstGroups[shift].push_back(&inst);
|
|
}
|
|
|
|
// Unless the shifts have a specific pattern (which actually would be the
|
|
// common use case), prologue and epilogue are not meaningfully defined.
|
|
// Nevertheless, if 'unrollPrologueEpilogue' is set, we will treat the first
|
|
// loop generated as the prologue and the last as epilogue and unroll these
|
|
// fully.
|
|
OpPointer<AffineForOp> prologue;
|
|
OpPointer<AffineForOp> epilogue;
|
|
|
|
// Do a sweep over the sorted shifts while storing open groups in a
|
|
// vector, and generating loop portions as necessary during the sweep. A block
|
|
// of instructions is paired with its shift.
|
|
std::vector<std::pair<uint64_t, ArrayRef<Instruction *>>> instGroupQueue;
|
|
|
|
auto origLbMap = forOp->getLowerBoundMap();
|
|
uint64_t lbShift = 0;
|
|
FuncBuilder b(forOp->getInstruction());
|
|
for (uint64_t d = 0, e = sortedInstGroups.size(); d < e; ++d) {
|
|
// If nothing is shifted by d, continue.
|
|
if (sortedInstGroups[d].empty())
|
|
continue;
|
|
if (!instGroupQueue.empty()) {
|
|
assert(d >= 1 &&
|
|
"Queue expected to be empty when the first block is found");
|
|
// The interval for which the loop needs to be generated here is:
|
|
// [lbShift, min(lbShift + tripCount, d)) and the body of the
|
|
// loop needs to have all instructions in instQueue in that order.
|
|
OpPointer<AffineForOp> res;
|
|
if (lbShift + tripCount * step < d * step) {
|
|
res = generateLoop(
|
|
b.getShiftedAffineMap(origLbMap, lbShift),
|
|
b.getShiftedAffineMap(origLbMap, lbShift + tripCount * step),
|
|
instGroupQueue, 0, forOp, &b);
|
|
// Entire loop for the queued inst groups generated, empty it.
|
|
instGroupQueue.clear();
|
|
lbShift += tripCount * step;
|
|
} else {
|
|
res = generateLoop(b.getShiftedAffineMap(origLbMap, lbShift),
|
|
b.getShiftedAffineMap(origLbMap, d), instGroupQueue,
|
|
0, forOp, &b);
|
|
lbShift = d * step;
|
|
}
|
|
if (!prologue && res)
|
|
prologue = res;
|
|
epilogue = res;
|
|
} else {
|
|
// Start of first interval.
|
|
lbShift = d * step;
|
|
}
|
|
// Augment the list of instructions that get into the current open interval.
|
|
instGroupQueue.push_back({d, sortedInstGroups[d]});
|
|
}
|
|
|
|
// Those instructions groups left in the queue now need to be processed (FIFO)
|
|
// and their loops completed.
|
|
for (unsigned i = 0, e = instGroupQueue.size(); i < e; ++i) {
|
|
uint64_t ubShift = (instGroupQueue[i].first + tripCount) * step;
|
|
epilogue = generateLoop(b.getShiftedAffineMap(origLbMap, lbShift),
|
|
b.getShiftedAffineMap(origLbMap, ubShift),
|
|
instGroupQueue, i, forOp, &b);
|
|
lbShift = ubShift;
|
|
if (!prologue)
|
|
prologue = epilogue;
|
|
}
|
|
|
|
// Erase the original for inst.
|
|
forOp->erase();
|
|
|
|
if (unrollPrologueEpilogue && prologue)
|
|
loopUnrollFull(prologue);
|
|
if (unrollPrologueEpilogue && !epilogue &&
|
|
epilogue->getInstruction() != prologue->getInstruction())
|
|
loopUnrollFull(epilogue);
|
|
|
|
return success();
|
|
}
|
|
|
|
/// Unrolls this loop completely.
|
|
LogicalResult mlir::loopUnrollFull(OpPointer<AffineForOp> forOp) {
|
|
Optional<uint64_t> mayBeConstantTripCount = getConstantTripCount(forOp);
|
|
if (mayBeConstantTripCount.hasValue()) {
|
|
uint64_t tripCount = mayBeConstantTripCount.getValue();
|
|
if (tripCount == 1) {
|
|
return promoteIfSingleIteration(forOp);
|
|
}
|
|
return loopUnrollByFactor(forOp, tripCount);
|
|
}
|
|
return failure();
|
|
}
|
|
|
|
/// Unrolls and jams this loop by the specified factor or by the trip count (if
|
|
/// constant) whichever is lower.
|
|
LogicalResult mlir::loopUnrollUpToFactor(OpPointer<AffineForOp> forOp,
|
|
uint64_t unrollFactor) {
|
|
Optional<uint64_t> mayBeConstantTripCount = getConstantTripCount(forOp);
|
|
|
|
if (mayBeConstantTripCount.hasValue() &&
|
|
mayBeConstantTripCount.getValue() < unrollFactor)
|
|
return loopUnrollByFactor(forOp, mayBeConstantTripCount.getValue());
|
|
return loopUnrollByFactor(forOp, unrollFactor);
|
|
}
|
|
|
|
/// Unrolls this loop by the specified factor. Returns success if the loop
|
|
/// is successfully unrolled.
|
|
LogicalResult mlir::loopUnrollByFactor(OpPointer<AffineForOp> forOp,
|
|
uint64_t unrollFactor) {
|
|
assert(unrollFactor >= 1 && "unroll factor should be >= 1");
|
|
|
|
if (unrollFactor == 1)
|
|
return promoteIfSingleIteration(forOp);
|
|
|
|
if (forOp->getBody()->empty())
|
|
return failure();
|
|
|
|
// Loops where the lower bound is a max expression isn't supported for
|
|
// unrolling since the trip count can be expressed as an affine function when
|
|
// both the lower bound and the upper bound are multi-result maps. However,
|
|
// one meaningful way to do such unrolling would be to specialize the loop for
|
|
// the 'hotspot' case and unroll that hotspot.
|
|
if (forOp->getLowerBoundMap().getNumResults() != 1)
|
|
return failure();
|
|
|
|
// If the trip count is lower than the unroll factor, no unrolled body.
|
|
// TODO(bondhugula): option to specify cleanup loop unrolling.
|
|
Optional<uint64_t> mayBeConstantTripCount = getConstantTripCount(forOp);
|
|
if (mayBeConstantTripCount.hasValue() &&
|
|
mayBeConstantTripCount.getValue() < unrollFactor)
|
|
return failure();
|
|
|
|
// Generate the cleanup loop if trip count isn't a multiple of unrollFactor.
|
|
Instruction *forInst = forOp->getInstruction();
|
|
if (getLargestDivisorOfTripCount(forOp) % unrollFactor != 0) {
|
|
FuncBuilder builder(forInst->getBlock(), ++Block::iterator(forInst));
|
|
auto cleanupForInst = builder.clone(*forInst)->cast<AffineForOp>();
|
|
AffineMap cleanupMap;
|
|
SmallVector<Value *, 4> cleanupOperands;
|
|
getCleanupLoopLowerBound(forOp, unrollFactor, &cleanupMap, &cleanupOperands,
|
|
&builder);
|
|
assert(cleanupMap &&
|
|
"cleanup loop lower bound map for single result lower bound maps "
|
|
"can always be determined");
|
|
cleanupForInst->setLowerBound(cleanupOperands, cleanupMap);
|
|
// Promote the loop body up if this has turned into a single iteration loop.
|
|
promoteIfSingleIteration(cleanupForInst);
|
|
|
|
// Adjust upper bound of the original loop; this is the same as the lower
|
|
// bound of the cleanup loop.
|
|
forOp->setUpperBound(cleanupOperands, cleanupMap);
|
|
}
|
|
|
|
// Scale the step of loop being unrolled by unroll factor.
|
|
int64_t step = forOp->getStep();
|
|
forOp->setStep(step * unrollFactor);
|
|
|
|
// Builder to insert unrolled bodies right after the last instruction in the
|
|
// body of 'forOp'.
|
|
FuncBuilder builder(forOp->getBody(), forOp->getBody()->end());
|
|
|
|
// Keep a pointer to the last instruction in the original block so that we
|
|
// know what to clone (since we are doing this in-place).
|
|
Block::iterator srcBlockEnd = std::prev(forOp->getBody()->end());
|
|
|
|
// Unroll the contents of 'forOp' (append unrollFactor-1 additional copies).
|
|
auto *forOpIV = forOp->getInductionVar();
|
|
for (unsigned i = 1; i < unrollFactor; i++) {
|
|
BlockAndValueMapping operandMap;
|
|
|
|
// If the induction variable is used, create a remapping to the value for
|
|
// this unrolled instance.
|
|
if (!forOpIV->use_empty()) {
|
|
// iv' = iv + 1/2/3...unrollFactor-1;
|
|
auto d0 = builder.getAffineDimExpr(0);
|
|
auto bumpMap = builder.getAffineMap(1, 0, {d0 + i * step}, {});
|
|
auto ivUnroll =
|
|
builder.create<AffineApplyOp>(forOp->getLoc(), bumpMap, forOpIV);
|
|
operandMap.map(forOpIV, ivUnroll);
|
|
}
|
|
|
|
// Clone the original body of 'forOp'.
|
|
for (auto it = forOp->getBody()->begin(); it != std::next(srcBlockEnd);
|
|
it++) {
|
|
builder.clone(*it, operandMap);
|
|
}
|
|
}
|
|
|
|
// Promote the loop body up if this has turned into a single iteration loop.
|
|
promoteIfSingleIteration(forOp);
|
|
return success();
|
|
}
|
|
|
|
/// Performs loop interchange on 'forOpA' and 'forOpB', where 'forOpB' is
|
|
/// nested within 'forOpA' as the only instruction in its block.
|
|
void mlir::interchangeLoops(OpPointer<AffineForOp> forOpA,
|
|
OpPointer<AffineForOp> forOpB) {
|
|
auto *forOpAInst = forOpA->getInstruction();
|
|
// 1) Slice forOpA's instruction list (which is just forOpB) just before
|
|
// forOpA (in forOpA's parent's block) this should leave 'forOpA's
|
|
// instruction list empty (because its perfectly nested).
|
|
assert(&*forOpA->getBody()->begin() == forOpB->getInstruction());
|
|
forOpAInst->getBlock()->getInstructions().splice(
|
|
Block::iterator(forOpAInst), forOpA->getBody()->getInstructions());
|
|
// 2) Slice forOpB's instruction list into forOpA's instruction list (this
|
|
// leaves forOpB's instruction list empty).
|
|
forOpA->getBody()->getInstructions().splice(
|
|
forOpA->getBody()->begin(), forOpB->getBody()->getInstructions());
|
|
// 3) Slice forOpA into forOpB's instruction list.
|
|
forOpB->getBody()->getInstructions().splice(
|
|
forOpB->getBody()->begin(), forOpAInst->getBlock()->getInstructions(),
|
|
Block::iterator(forOpAInst));
|
|
}
|
|
|
|
/// Performs a series of loop interchanges to sink 'forOp' 'loopDepth' levels
|
|
/// deeper in the loop nest.
|
|
void mlir::sinkLoop(OpPointer<AffineForOp> forOp, unsigned loopDepth) {
|
|
for (unsigned i = 0; i < loopDepth; ++i) {
|
|
assert(forOp->getBody()->front().isa<AffineForOp>());
|
|
OpPointer<AffineForOp> nextForOp =
|
|
forOp->getBody()->front().cast<AffineForOp>();
|
|
interchangeLoops(forOp, nextForOp);
|
|
}
|
|
}
|
|
|
|
// Factors out common behavior to add a new `iv` (resp. `iv` + `offset`) to the
|
|
// lower (resp. upper) loop bound. When called for both the lower and upper
|
|
// bounds, the resulting IR resembles:
|
|
//
|
|
// ```mlir
|
|
// for %i = max (`iv, ...) to min (`iv` + `offset`) {
|
|
// ...
|
|
// }
|
|
// ```
|
|
static void augmentMapAndBounds(FuncBuilder *b, Value *iv, AffineMap *map,
|
|
SmallVector<Value *, 4> *operands,
|
|
int64_t offset = 0) {
|
|
auto bounds = llvm::to_vector<4>(map->getResults());
|
|
bounds.push_back(b->getAffineDimExpr(map->getNumDims()) + offset);
|
|
operands->insert(operands->begin() + map->getNumDims(), iv);
|
|
*map =
|
|
b->getAffineMap(map->getNumDims() + 1, map->getNumSymbols(), bounds, {});
|
|
canonicalizeMapAndOperands(map, operands);
|
|
}
|
|
|
|
// Clone the original body of `forOp` into the body of `newForOp` while
|
|
// substituting `oldIv` in place of
|
|
// `forOp.getInductionVariable()`.
|
|
// Note: `newForOp` may be nested under `forOp`.
|
|
static void cloneLoopBodyInto(OpPointer<AffineForOp> forOp, Value *oldIv,
|
|
OpPointer<AffineForOp> newForOp) {
|
|
BlockAndValueMapping map;
|
|
map.map(oldIv, newForOp->getInductionVar());
|
|
FuncBuilder b(newForOp->getBody(), newForOp->getBody()->end());
|
|
for (auto it = forOp->getBody()->begin(), end = forOp->getBody()->end();
|
|
it != end; ++it) {
|
|
// Step over newForOp in case it is nested under forOp.
|
|
if (&*it == newForOp->getInstruction()) {
|
|
continue;
|
|
}
|
|
auto *inst = b.clone(*it, map);
|
|
unsigned idx = 0;
|
|
for (auto r : it->getResults()) {
|
|
// Since we do a forward pass over the body, we iteratively augment
|
|
// the `map` with everything we clone.
|
|
map.map(r, inst->getResult(idx++));
|
|
}
|
|
}
|
|
}
|
|
|
|
// Stripmines `forOp` by `factor` and sinks it under each of the `targets`.
|
|
// Stripmine-sink is a primitive building block for generalized tiling of
|
|
// imperfectly nested loops.
|
|
// This transformation is purely mechanical and does not check legality,
|
|
// profitability or even structural correctness. It is the user's
|
|
// responsibility to specify `targets` that are dominated by `forOp`.
|
|
// Returns the new AffineForOps, one per `targets`, nested immediately under
|
|
// each of the `targets`.
|
|
static SmallVector<OpPointer<AffineForOp>, 8>
|
|
stripmineSink(OpPointer<AffineForOp> forOp, uint64_t factor,
|
|
ArrayRef<OpPointer<AffineForOp>> targets) {
|
|
// TODO(ntv): Use cheap structural assertions that targets are nested under
|
|
// forOp and that targets are not nested under each other when DominanceInfo
|
|
// exposes the capability. It seems overkill to construct a whole function
|
|
// dominance tree at this point.
|
|
auto originalStep = forOp->getStep();
|
|
auto scaledStep = originalStep * factor;
|
|
forOp->setStep(scaledStep);
|
|
|
|
auto *forInst = forOp->getInstruction();
|
|
FuncBuilder b(forInst->getBlock(), ++Block::iterator(forInst));
|
|
|
|
// Lower-bound map creation.
|
|
auto lbMap = forOp->getLowerBoundMap();
|
|
SmallVector<Value *, 4> lbOperands(forOp->getLowerBoundOperands());
|
|
augmentMapAndBounds(&b, forOp->getInductionVar(), &lbMap, &lbOperands);
|
|
|
|
// Upper-bound map creation.
|
|
auto ubMap = forOp->getUpperBoundMap();
|
|
SmallVector<Value *, 4> ubOperands(forOp->getUpperBoundOperands());
|
|
augmentMapAndBounds(&b, forOp->getInductionVar(), &ubMap, &ubOperands,
|
|
/*offset=*/scaledStep);
|
|
|
|
SmallVector<OpPointer<AffineForOp>, 8> innerLoops;
|
|
for (auto t : targets) {
|
|
// Insert newForOp at the end of `t`.
|
|
FuncBuilder b(t->getBody(), t->getBody()->end());
|
|
auto newForOp = b.create<AffineForOp>(t->getLoc(), lbOperands, lbMap,
|
|
ubOperands, ubMap, originalStep);
|
|
newForOp->createBody();
|
|
cloneLoopBodyInto(t, forOp->getInductionVar(), newForOp);
|
|
// Remove all instructions from `t` except `newForOp`.
|
|
auto rit = ++newForOp->getInstruction()->getReverseIterator();
|
|
auto re = t->getBody()->rend();
|
|
for (auto &inst : llvm::make_early_inc_range(llvm::make_range(rit, re))) {
|
|
inst.erase();
|
|
}
|
|
innerLoops.push_back(newForOp);
|
|
}
|
|
|
|
return innerLoops;
|
|
}
|
|
|
|
// Stripmines a `forOp` by `factor` and sinks it under a single `target`.
|
|
// Returns the new AffineForOps, nested immediately under `target`.
|
|
OpPointer<AffineForOp> stripmineSink(OpPointer<AffineForOp> forOp,
|
|
uint64_t factor,
|
|
OpPointer<AffineForOp> target) {
|
|
auto res =
|
|
stripmineSink(forOp, factor, ArrayRef<OpPointer<AffineForOp>>{target});
|
|
assert(res.size() == 1 && "Expected 1 inner forOp");
|
|
return res[0];
|
|
}
|
|
|
|
SmallVector<SmallVector<OpPointer<AffineForOp>, 8>, 8>
|
|
mlir::tile(ArrayRef<OpPointer<AffineForOp>> forOps, ArrayRef<uint64_t> sizes,
|
|
ArrayRef<OpPointer<AffineForOp>> targets) {
|
|
SmallVector<SmallVector<OpPointer<AffineForOp>, 8>, 8> res;
|
|
SmallVector<OpPointer<AffineForOp>, 8> currentTargets(targets.begin(),
|
|
targets.end());
|
|
for (auto it : llvm::zip(forOps, sizes)) {
|
|
auto step = stripmineSink(std::get<0>(it), std::get<1>(it), currentTargets);
|
|
res.push_back(step);
|
|
currentTargets = step;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
SmallVector<OpPointer<AffineForOp>, 8>
|
|
mlir::tile(ArrayRef<OpPointer<AffineForOp>> forOps, ArrayRef<uint64_t> sizes,
|
|
OpPointer<AffineForOp> target) {
|
|
return tile(forOps, sizes, ArrayRef<OpPointer<AffineForOp>>{target})[0];
|
|
}
|