llvm-project/clang/test/AST/ByteCode/libcxx/tuple-decompose-for-range.cpp
Timm Baeder 9c7320e5d3
[clang][bytecode] Fix visiting for-range loop variable (#147188)
Make sure we're properly registering DecompositionDecls.
2025-07-06 18:59:24 +02:00

265 lines
9.2 KiB
C++

// RUN: %clang_cc1 -std=c++2c -verify=expected,both %s -fexperimental-new-constant-interpreter
// RUN: %clang_cc1 -std=c++2c -verify=ref,both %s
// both-no-diagnostics
namespace std {
typedef __SIZE_TYPE__ size_t;
}
extern "C++" {
namespace std {
template <typename> struct iterator_traits;
}
}
namespace std {
template <typename _Tp, _Tp __v> struct integral_constant {
static constexpr _Tp value = __v;
};
template <bool __v> using __bool_constant = integral_constant<bool, __v>;
using false_type = __bool_constant<false>;
template <bool, typename _Tp = void> struct enable_if {
using type = _Tp;
};
template <bool> struct __conditional {
template <typename _Tp, typename> using type = _Tp;
};
template <bool _Cond, typename _If, typename _Else>
using __conditional_t =
typename __conditional<_Cond>::template type<_If, _Else>;
template <typename _Tp>
struct is_empty : public __bool_constant<__is_empty(_Tp)> {};
template <typename _Tp, typename _Up>
struct is_same : public __bool_constant<__is_same(_Tp, _Up)> {};
template <typename _Tp> struct remove_cv {
using type = __remove_cv(_Tp);
};
template <typename _Tp> struct tuple_size;
template <typename _Tp, typename _Up = typename remove_cv<_Tp>::type,
typename = typename enable_if<is_same<_Tp, _Up>::value>::type,
size_t = tuple_size<_Tp>::value>
using __enable_if_has_tuple_size = _Tp;
template <typename _Tp>
struct tuple_size<const __enable_if_has_tuple_size<_Tp>>
: public tuple_size<_Tp> {};
template <size_t __i, typename _Tp> struct tuple_element;
template <size_t __i, typename _Tp>
using __tuple_element_t = typename tuple_element<__i, _Tp>::type;
template <size_t __i, typename _Tp> struct tuple_element<__i, const _Tp> {
using type = const __tuple_element_t<__i, _Tp>;
};
template <size_t _Np, typename... _Types> struct _Nth_type {
using type = __type_pack_element<_Np, _Types...>;
};
template <typename _Tp> struct iterator_traits<_Tp *> {
using reference = _Tp &;
};
} // namespace std
extern "C++" {
void *operator new(std::size_t, void *__p);
}
namespace std {
template <typename _Tp, typename... _Args>
constexpr inline void _Construct(_Tp *__p, _Args &&...__args) {
::new (__p) _Tp(__args...);
};
} // namespace std
namespace __gnu_cxx {
template <typename _Iterator, typename _Container> class __normal_iterator {
protected:
_Iterator _M_current;
typedef std::iterator_traits<_Iterator> __traits_type;
public:
typedef _Iterator iterator_type;
typedef typename __traits_type::reference reference;
explicit constexpr __normal_iterator(const _Iterator &__i)
: _M_current(__i) {};
constexpr reference operator*() const { return *_M_current; }
constexpr __normal_iterator &operator++() {
++_M_current;
return *this;
}
constexpr const _Iterator &base() const { return _M_current; }
};
template <typename _Iterator, typename _Container>
constexpr bool
operator==(const __normal_iterator<_Iterator, _Container> &__lhs,
const __normal_iterator<_Iterator, _Container> &__rhs) {
return __lhs.base() == __rhs.base();
}
} // namespace __gnu_cxx
namespace std {
template <typename _Tp> class __new_allocator {};
template <typename _Tp> using __allocator_base = __new_allocator<_Tp>;
template <typename> struct allocator_traits;
template <typename _Tp> class allocator : public __allocator_base<_Tp> {
public:
typedef _Tp value_type;
constexpr _Tp *allocate(size_t __n) {
__n *= sizeof(_Tp);
return static_cast<_Tp *>(::operator new(__n));
}
constexpr void deallocate(_Tp *__p, size_t __n) { ::operator delete(__p); }
};
template <typename _Tp> struct allocator_traits<allocator<_Tp>> {
using allocator_type = allocator<_Tp>;
using pointer = _Tp *;
using size_type = std::size_t;
template <typename _Up> using rebind_alloc = allocator<_Up>;
static constexpr pointer allocate(allocator_type &__a, size_type __n) {
return __a.allocate(__n);
}
static constexpr void deallocate(allocator_type &__a, pointer __p,
size_type __n) {
__a.deallocate(__p, __n);
}
};
} // namespace std
namespace __gnu_cxx {
template <typename _Alloc, typename = typename _Alloc::value_type>
struct __alloc_traits : std::allocator_traits<_Alloc> {
typedef std::allocator_traits<_Alloc> _Base_type;
template <typename _Tp> struct rebind {
typedef typename _Base_type::template rebind_alloc<_Tp> other;
};
};
} // namespace __gnu_cxx
namespace std {
template <typename _InputIterator, typename _ForwardIterator>
constexpr _ForwardIterator __do_uninit_copy(_InputIterator __first,
_InputIterator __last,
_ForwardIterator __result) {
_ForwardIterator __cur = __result;
for (; __first != __last; ++__first, ++__cur)
std::_Construct(&*__cur, *__first);
return __cur;
};
template <typename _InputIterator, typename _ForwardIterator, typename _Tp>
constexpr inline _ForwardIterator
__uninitialized_copy_a(_InputIterator __first, _InputIterator __last,
_ForwardIterator __result, allocator<_Tp> &) {
return std::__do_uninit_copy(__first, __last, __result);
}
template <typename _Tp, typename _Alloc> struct _Vector_base {
typedef
typename __gnu_cxx::__alloc_traits<_Alloc>::template rebind<_Tp>::other
_Tp_alloc_type;
typedef typename __gnu_cxx::__alloc_traits<_Tp_alloc_type>::pointer pointer;
struct _Vector_impl_data {
pointer _M_start;
pointer _M_finish;
pointer _M_end_of_storage;
};
struct _Vector_impl : public _Tp_alloc_type, public _Vector_impl_data {};
public:
typedef _Alloc allocator_type;
constexpr _Tp_alloc_type &_M_get_Tp_allocator() { return this->_M_impl; }
constexpr _Vector_base(const allocator_type &__a) : _M_impl(__a) {}
constexpr ~_Vector_base() {
_M_deallocate(_M_impl._M_start,
_M_impl._M_end_of_storage - _M_impl._M_start);
}
public:
_Vector_impl _M_impl;
constexpr pointer _M_allocate(size_t __n) {
typedef __gnu_cxx::__alloc_traits<_Tp_alloc_type> _Tr;
return __n != 0 ? _Tr::allocate(_M_impl, __n) : pointer();
}
constexpr void _M_deallocate(pointer __p, size_t __n) {
typedef __gnu_cxx::__alloc_traits<_Tp_alloc_type> _Tr;
if (__p)
_Tr::deallocate(_M_impl, __p, __n);
}
protected:
};
template <typename _Tp, typename _Alloc = std::allocator<_Tp>>
class vector : protected _Vector_base<_Tp, _Alloc> {
typedef _Vector_base<_Tp, _Alloc> _Base;
public:
typedef _Tp value_type;
typedef typename _Base::pointer pointer;
typedef __gnu_cxx::__normal_iterator<pointer, vector> iterator;
typedef size_t size_type;
typedef _Alloc allocator_type;
using _Base::_M_get_Tp_allocator;
public:
private:
public:
constexpr vector(_Tp __l, const allocator_type &__a = allocator_type()) : _Base(__a) {
}
constexpr iterator begin() { return iterator(this->_M_impl._M_start); }
constexpr iterator end() { return iterator(this->_M_impl._M_finish); }
protected:
template <typename _Iterator>
constexpr void _M_range_initialize_n(_Iterator __first, _Iterator __last,
size_type __n) {
pointer __start = this->_M_impl._M_start = this->_M_allocate(((__n)));
this->_M_impl._M_end_of_storage = __start + __n;
this->_M_impl._M_finish = std::__uninitialized_copy_a(
__first, __last, __start, _M_get_Tp_allocator());
}
};
template <typename _Tp> struct __is_empty_non_tuple : is_empty<_Tp> {};
template <typename _Tp>
using __empty_not_final =
__conditional_t<__is_final(_Tp), false_type, __is_empty_non_tuple<_Tp>>;
template <size_t _Idx, typename _Head, bool = __empty_not_final<_Head>::value>
struct _Head_base;
template <size_t _Idx, typename _Head> struct _Head_base<_Idx, _Head, false> {
static constexpr const _Head &_M_head(const _Head_base &__b) {
return __b._M_head_impl;
}
_Head _M_head_impl;
};
template <size_t _Idx, typename... _Elements> struct _Tuple_impl;
template <size_t _Idx, typename _Head>
struct _Tuple_impl<_Idx, _Head> : private _Head_base<_Idx, _Head> {
typedef _Head_base<_Idx, _Head> _Base;
static constexpr const _Head &_M_head(const _Tuple_impl &__t) {
return _Base::_M_head(__t);
}
explicit constexpr _Tuple_impl(const _Head &__head) : _Base(__head) {}
protected:
};
template <typename... _Elements>
class tuple : public _Tuple_impl<0, _Elements...> {
using _Inherited = _Tuple_impl<0, _Elements...>;
public:
template <typename = void>
constexpr tuple(const _Elements &...__elements) : _Inherited(__elements...) {}
};
template <typename... _Elements>
struct tuple_size<tuple<_Elements...>>
: public integral_constant<size_t, sizeof...(_Elements)> {};
template <size_t __i, typename... _Types>
struct tuple_element<__i, tuple<_Types...>> {
using type = typename _Nth_type<__i, _Types...>::type;
};
template <size_t __i, typename _Head, typename... _Tail>
constexpr const _Head &
__get_helper(const _Tuple_impl<__i, _Head, _Tail...> &__t) {
return _Tuple_impl<__i, _Head, _Tail...>::_M_head(__t);
};
template <size_t __i, typename... _Elements>
constexpr const int get(const tuple<_Elements...> &&__t) {
return std::__get_helper<__i>(__t);
};
} // namespace std
constexpr int foo() {
std::vector<std::tuple<int>> data_tuples = {{1}};
for (const auto [id] : data_tuples) {
int a = id + 3;
}
return 1;
}
static_assert(foo() == 1);