Carlos Alberto Enciso fef5096a8a
[llvm-debuginfo-analyzer][NFC] Move some functionality to LVReader. (#142740)
Hoist out from LVDWARFReader and LVBinaryReader some generic
code, so it can be available to other readers that do not share the
binary format.
2025-06-04 14:35:48 +01:00

553 lines
19 KiB
C++

//===-- LVReader.cpp ------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This implements the LVReader class.
//
//===----------------------------------------------------------------------===//
#include "llvm/DebugInfo/LogicalView/Core/LVReader.h"
#include "llvm/DebugInfo/LogicalView/Core/LVScope.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/FormatAdapters.h"
#include "llvm/Support/FormatVariadic.h"
#include <tuple>
using namespace llvm;
using namespace llvm::logicalview;
#define DEBUG_TYPE "Reader"
// Detect elements that are inserted more than once at different scopes,
// causing a crash on the reader destruction, as the element is already
// deleted from other scope. Helper for CodeView reader.
bool checkIntegrityScopesTree(LVScope *Root) {
using LVDuplicateEntry = std::tuple<LVElement *, LVScope *, LVScope *>;
using LVDuplicate = std::vector<LVDuplicateEntry>;
LVDuplicate Duplicate;
using LVIntegrity = std::map<LVElement *, LVScope *>;
LVIntegrity Integrity;
// Add the given element to the integrity map.
auto AddElement = [&](LVElement *Element, LVScope *Scope) {
LVIntegrity::iterator Iter = Integrity.find(Element);
if (Iter == Integrity.end())
Integrity.emplace(Element, Scope);
else
// We found a duplicate.
Duplicate.emplace_back(Element, Scope, Iter->second);
};
// Recursively add all the elements in the scope.
std::function<void(LVScope * Parent)> TraverseScope = [&](LVScope *Parent) {
auto Traverse = [&](const auto *Set) {
if (Set)
for (const auto &Entry : *Set)
AddElement(Entry, Parent);
};
if (const LVScopes *Scopes = Parent->getScopes()) {
for (LVScope *Scope : *Scopes) {
AddElement(Scope, Parent);
TraverseScope(Scope);
}
}
Traverse(Parent->getSymbols());
Traverse(Parent->getTypes());
Traverse(Parent->getLines());
};
// Start traversing the scopes root and print any duplicates.
TraverseScope(Root);
bool PassIntegrity = true;
if (Duplicate.size()) {
llvm::stable_sort(Duplicate, [](const auto &l, const auto &r) {
return std::get<0>(l)->getID() < std::get<0>(r)->getID();
});
auto PrintIndex = [](unsigned Index) {
if (Index)
dbgs() << format("%8d: ", Index);
else
dbgs() << format("%8c: ", ' ');
};
auto PrintElement = [&](LVElement *Element, unsigned Index = 0) {
PrintIndex(Index);
std::string ElementName(Element->getName());
dbgs() << format("%15s ID=0x%08x '%s'\n", Element->kind(),
Element->getID(), ElementName.c_str());
};
std::string RootName(Root->getName());
dbgs() << formatv("{0}\n", fmt_repeat('=', 72));
dbgs() << format("Root: '%s'\nDuplicated elements: %d\n", RootName.c_str(),
Duplicate.size());
dbgs() << formatv("{0}\n", fmt_repeat('=', 72));
unsigned Index = 0;
for (const LVDuplicateEntry &Entry : Duplicate) {
LVElement *Element;
LVScope *First;
LVScope *Second;
std::tie(Element, First, Second) = Entry;
dbgs() << formatv("\n{0}\n", fmt_repeat('-', 72));
PrintElement(Element, ++Index);
PrintElement(First);
PrintElement(Second);
dbgs() << formatv("{0}\n", fmt_repeat('-', 72));
}
PassIntegrity = false;
}
return PassIntegrity;
}
//===----------------------------------------------------------------------===//
// Class to represent a split context.
//===----------------------------------------------------------------------===//
Error LVSplitContext::createSplitFolder(StringRef Where) {
// The 'location' will represent the root directory for the output created
// by the context. It will contain the different CUs files, that will be
// extracted from a single ELF.
Location = std::string(Where);
// Add a trailing slash, if there is none.
size_t Pos = Location.find_last_of('/');
if (Location.length() != Pos + 1)
Location.append("/");
// Make sure the new directory exists, creating it if necessary.
if (std::error_code EC = llvm::sys::fs::create_directories(Location))
return createStringError(EC, "Error: could not create directory %s",
Location.c_str());
return Error::success();
}
std::error_code LVSplitContext::open(std::string ContextName,
std::string Extension, raw_ostream &OS) {
assert(OutputFile == nullptr && "OutputFile already set.");
// Transforms '/', '\', '.', ':' into '_'.
std::string Name(flattenedFilePath(ContextName));
Name.append(Extension);
// Add the split context location folder name.
if (!Location.empty())
Name.insert(0, Location);
std::error_code EC;
OutputFile = std::make_unique<ToolOutputFile>(Name, EC, sys::fs::OF_None);
if (EC)
return EC;
// Don't remove output file.
OutputFile->keep();
return std::error_code();
}
LVReader *CurrentReader = nullptr;
LVReader &LVReader::getInstance() {
if (CurrentReader)
return *CurrentReader;
outs() << "Invalid instance reader.\n";
llvm_unreachable("Invalid instance reader.");
}
void LVReader::setInstance(LVReader *Reader) { CurrentReader = Reader; }
Error LVReader::createSplitFolder() {
if (OutputSplit) {
// If the '--output=split' was specified, but no '--split-folder'
// option, use the input file as base for the split location.
if (options().getOutputFolder().empty())
options().setOutputFolder(getFilename().str() + "_cus");
SmallString<128> SplitFolder;
SplitFolder = options().getOutputFolder();
sys::fs::make_absolute(SplitFolder);
// Return error if unable to create a split context location.
if (Error Err = SplitContext.createSplitFolder(SplitFolder))
return Err;
OS << "\nSplit View Location: '" << SplitContext.getLocation() << "'\n";
}
return Error::success();
}
// Get the filename for given object.
StringRef LVReader::getFilename(LVObject *Object, size_t Index) const {
// TODO: The current CodeView Reader implementation does not have support
// for multiple compile units. Until we have a proper offset calculation,
// check only in the current compile unit.
if (CompileUnits.size()) {
// Get Compile Unit for the given object.
LVCompileUnits::const_iterator Iter =
std::prev(CompileUnits.lower_bound(Object->getOffset()));
if (Iter != CompileUnits.end())
return Iter->second->getFilename(Index);
}
return CompileUnit ? CompileUnit->getFilename(Index) : StringRef();
}
void LVReader::addSectionRange(LVSectionIndex SectionIndex, LVScope *Scope) {
LVRange *ScopesWithRanges = getSectionRanges(SectionIndex);
ScopesWithRanges->addEntry(Scope);
}
void LVReader::addSectionRange(LVSectionIndex SectionIndex, LVScope *Scope,
LVAddress LowerAddress, LVAddress UpperAddress) {
LVRange *ScopesWithRanges = getSectionRanges(SectionIndex);
ScopesWithRanges->addEntry(Scope, LowerAddress, UpperAddress);
}
LVRange *LVReader::getSectionRanges(LVSectionIndex SectionIndex) {
// Check if we already have a mapping for this section index.
LVSectionRanges::iterator IterSection = SectionRanges.find(SectionIndex);
if (IterSection == SectionRanges.end())
IterSection =
SectionRanges.emplace(SectionIndex, std::make_unique<LVRange>()).first;
LVRange *Range = IterSection->second.get();
assert(Range && "Range is null.");
return Range;
}
LVElement *LVReader::createElement(dwarf::Tag Tag) {
CurrentScope = nullptr;
CurrentSymbol = nullptr;
CurrentType = nullptr;
CurrentRanges.clear();
LLVM_DEBUG(
{ dbgs() << "\n[createElement] " << dwarf::TagString(Tag) << "\n"; });
if (!options().getPrintSymbols()) {
switch (Tag) {
// As the command line options did not specify a request to print
// logical symbols (--print=symbols or --print=all or --print=elements),
// skip its creation.
case dwarf::DW_TAG_formal_parameter:
case dwarf::DW_TAG_unspecified_parameters:
case dwarf::DW_TAG_member:
case dwarf::DW_TAG_variable:
case dwarf::DW_TAG_inheritance:
case dwarf::DW_TAG_constant:
case dwarf::DW_TAG_call_site_parameter:
case dwarf::DW_TAG_GNU_call_site_parameter:
return nullptr;
default:
break;
}
}
switch (Tag) {
// Types.
case dwarf::DW_TAG_base_type:
CurrentType = createType();
CurrentType->setIsBase();
if (options().getAttributeBase())
CurrentType->setIncludeInPrint();
return CurrentType;
case dwarf::DW_TAG_const_type:
CurrentType = createType();
CurrentType->setIsConst();
CurrentType->setName("const");
return CurrentType;
case dwarf::DW_TAG_enumerator:
CurrentType = createTypeEnumerator();
return CurrentType;
case dwarf::DW_TAG_imported_declaration:
CurrentType = createTypeImport();
CurrentType->setIsImportDeclaration();
return CurrentType;
case dwarf::DW_TAG_imported_module:
CurrentType = createTypeImport();
CurrentType->setIsImportModule();
return CurrentType;
case dwarf::DW_TAG_pointer_type:
CurrentType = createType();
CurrentType->setIsPointer();
CurrentType->setName("*");
return CurrentType;
case dwarf::DW_TAG_ptr_to_member_type:
CurrentType = createType();
CurrentType->setIsPointerMember();
CurrentType->setName("*");
return CurrentType;
case dwarf::DW_TAG_reference_type:
CurrentType = createType();
CurrentType->setIsReference();
CurrentType->setName("&");
return CurrentType;
case dwarf::DW_TAG_restrict_type:
CurrentType = createType();
CurrentType->setIsRestrict();
CurrentType->setName("restrict");
return CurrentType;
case dwarf::DW_TAG_rvalue_reference_type:
CurrentType = createType();
CurrentType->setIsRvalueReference();
CurrentType->setName("&&");
return CurrentType;
case dwarf::DW_TAG_subrange_type:
CurrentType = createTypeSubrange();
return CurrentType;
case dwarf::DW_TAG_template_value_parameter:
CurrentType = createTypeParam();
CurrentType->setIsTemplateValueParam();
return CurrentType;
case dwarf::DW_TAG_template_type_parameter:
CurrentType = createTypeParam();
CurrentType->setIsTemplateTypeParam();
return CurrentType;
case dwarf::DW_TAG_GNU_template_template_param:
CurrentType = createTypeParam();
CurrentType->setIsTemplateTemplateParam();
return CurrentType;
case dwarf::DW_TAG_typedef:
CurrentType = createTypeDefinition();
return CurrentType;
case dwarf::DW_TAG_unspecified_type:
CurrentType = createType();
CurrentType->setIsUnspecified();
return CurrentType;
case dwarf::DW_TAG_volatile_type:
CurrentType = createType();
CurrentType->setIsVolatile();
CurrentType->setName("volatile");
return CurrentType;
// Symbols.
case dwarf::DW_TAG_formal_parameter:
CurrentSymbol = createSymbol();
CurrentSymbol->setIsParameter();
return CurrentSymbol;
case dwarf::DW_TAG_unspecified_parameters:
CurrentSymbol = createSymbol();
CurrentSymbol->setIsUnspecified();
CurrentSymbol->setName("...");
return CurrentSymbol;
case dwarf::DW_TAG_member:
CurrentSymbol = createSymbol();
CurrentSymbol->setIsMember();
return CurrentSymbol;
case dwarf::DW_TAG_variable:
CurrentSymbol = createSymbol();
CurrentSymbol->setIsVariable();
return CurrentSymbol;
case dwarf::DW_TAG_inheritance:
CurrentSymbol = createSymbol();
CurrentSymbol->setIsInheritance();
return CurrentSymbol;
case dwarf::DW_TAG_call_site_parameter:
case dwarf::DW_TAG_GNU_call_site_parameter:
CurrentSymbol = createSymbol();
CurrentSymbol->setIsCallSiteParameter();
return CurrentSymbol;
case dwarf::DW_TAG_constant:
CurrentSymbol = createSymbol();
CurrentSymbol->setIsConstant();
return CurrentSymbol;
// Scopes.
case dwarf::DW_TAG_catch_block:
CurrentScope = createScope();
CurrentScope->setIsCatchBlock();
return CurrentScope;
case dwarf::DW_TAG_lexical_block:
CurrentScope = createScope();
CurrentScope->setIsLexicalBlock();
return CurrentScope;
case dwarf::DW_TAG_try_block:
CurrentScope = createScope();
CurrentScope->setIsTryBlock();
return CurrentScope;
case dwarf::DW_TAG_compile_unit:
case dwarf::DW_TAG_skeleton_unit:
CurrentScope = createScopeCompileUnit();
CompileUnit = static_cast<LVScopeCompileUnit *>(CurrentScope);
return CurrentScope;
case dwarf::DW_TAG_inlined_subroutine:
CurrentScope = createScopeFunctionInlined();
return CurrentScope;
case dwarf::DW_TAG_namespace:
CurrentScope = createScopeNamespace();
return CurrentScope;
case dwarf::DW_TAG_template_alias:
CurrentScope = createScopeAlias();
return CurrentScope;
case dwarf::DW_TAG_array_type:
CurrentScope = createScopeArray();
return CurrentScope;
case dwarf::DW_TAG_call_site:
case dwarf::DW_TAG_GNU_call_site:
CurrentScope = createScopeFunction();
CurrentScope->setIsCallSite();
return CurrentScope;
case dwarf::DW_TAG_entry_point:
CurrentScope = createScopeFunction();
CurrentScope->setIsEntryPoint();
return CurrentScope;
case dwarf::DW_TAG_subprogram:
CurrentScope = createScopeFunction();
CurrentScope->setIsSubprogram();
return CurrentScope;
case dwarf::DW_TAG_subroutine_type:
CurrentScope = createScopeFunctionType();
return CurrentScope;
case dwarf::DW_TAG_label:
CurrentScope = createScopeFunction();
CurrentScope->setIsLabel();
return CurrentScope;
case dwarf::DW_TAG_class_type:
CurrentScope = createScopeAggregate();
CurrentScope->setIsClass();
return CurrentScope;
case dwarf::DW_TAG_structure_type:
CurrentScope = createScopeAggregate();
CurrentScope->setIsStructure();
return CurrentScope;
case dwarf::DW_TAG_union_type:
CurrentScope = createScopeAggregate();
CurrentScope->setIsUnion();
return CurrentScope;
case dwarf::DW_TAG_enumeration_type:
CurrentScope = createScopeEnumeration();
return CurrentScope;
case dwarf::DW_TAG_GNU_formal_parameter_pack:
CurrentScope = createScopeFormalPack();
return CurrentScope;
case dwarf::DW_TAG_GNU_template_parameter_pack:
CurrentScope = createScopeTemplatePack();
return CurrentScope;
case dwarf::DW_TAG_module:
CurrentScope = createScopeModule();
return CurrentScope;
default:
// Collect TAGs not implemented.
if (options().getInternalTag() && Tag)
CompileUnit->addDebugTag(Tag, CurrentOffset);
break;
}
LLVM_DEBUG({
dbgs() << "DWARF Tag not implemented: " << dwarf::TagString(Tag) << "\n";
});
return nullptr;
}
// The Reader is the module that creates the logical view using the debug
// information contained in the binary file specified in the command line.
// This is the main entry point for the Reader and performs the following
// steps:
// - Process any patterns collected from the '--select' options.
// - For each compile unit in the debug information:
// * Create the logical elements (scopes, symbols, types, lines).
// * Collect debug ranges and debug locations.
// * Move the collected logical lines to their associated scopes.
// - Once all the compile units have been processed, traverse the scopes
// tree in order to:
// * Calculate symbol coverage.
// * Detect invalid ranges and locations.
// * "resolve" the logical elements. During this pass, the names and
// file information are updated, to reflect any dependency with other
// logical elements.
Error LVReader::doLoad() {
// Set current Reader instance.
setInstance(this);
// Before any scopes creation, process any pattern specified by the
// --select and --select-offsets options.
patterns().addGenericPatterns(options().Select.Generic);
patterns().addOffsetPatterns(options().Select.Offsets);
// Add any specific element printing requests based on the element kind.
patterns().addRequest(options().Select.Elements);
patterns().addRequest(options().Select.Lines);
patterns().addRequest(options().Select.Scopes);
patterns().addRequest(options().Select.Symbols);
patterns().addRequest(options().Select.Types);
// Once we have processed the requests for any particular kind of elements,
// we need to update the report options, in order to have a default value.
patterns().updateReportOptions();
// Delegate the scope tree creation to the specific reader.
if (Error Err = createScopes())
return Err;
if (options().getInternalIntegrity() && !checkIntegrityScopesTree(Root))
return llvm::make_error<StringError>("Duplicated elements in Scopes Tree",
inconvertibleErrorCode());
// Calculate symbol coverage and detect invalid debug locations and ranges.
Root->processRangeInformation();
// As the elements can depend on elements from a different compile unit,
// information such as name and file/line source information needs to be
// updated.
Root->resolveElements();
sortScopes();
return Error::success();
}
// Default handler for a generic reader.
Error LVReader::doPrint() {
// Set current Reader instance.
setInstance(this);
// Check for any '--report' request.
if (options().getReportExecute()) {
// Requested details.
if (options().getReportList())
if (Error Err = printMatchedElements(/*UseMatchedElements=*/true))
return Err;
// Requested only children.
if (options().getReportChildren() && !options().getReportParents())
if (Error Err = printMatchedElements(/*UseMatchedElements=*/false))
return Err;
// Requested (parents) or (parents and children).
if (options().getReportParents() || options().getReportView())
if (Error Err = printScopes())
return Err;
return Error::success();
}
return printScopes();
}
Error LVReader::printScopes() {
if (bool DoPrint =
(options().getPrintExecute() || options().getComparePrint())) {
if (Error Err = createSplitFolder())
return Err;
// Start printing from the root.
bool DoMatch = options().getSelectGenericPattern() ||
options().getSelectGenericKind() ||
options().getSelectOffsetPattern();
return Root->doPrint(OutputSplit, DoMatch, DoPrint, OS);
}
return Error::success();
}
Error LVReader::printMatchedElements(bool UseMatchedElements) {
if (Error Err = createSplitFolder())
return Err;
return Root->doPrintMatches(OutputSplit, OS, UseMatchedElements);
}
void LVReader::print(raw_ostream &OS) const {
OS << "LVReader\n";
LLVM_DEBUG(dbgs() << "PrintReader\n");
}