
Pointers and GEP are untyped. SPIR-V required structured OpAccessChain. This means the backend will have to determine a good way to retrieve the structured access from an untyped GEP. This is not a trivial problem, and needs to be addressed to have a robust compiler. The issue is other workstreams relies on the access chain deduction to work. So we have 2 options: - pause all dependent work until we have a good chain deduction. - submit this limited fix to we can work on both this and other features in parallel. Choice we want to make is #2: submitting this **knowing this is not a good** fix. It only increase the number of patterns we can work with, thus allowing others to continue working on other parts of the backend. This patch as-is has many limitations: - If cannot robustly determine the depth of the structured access from a GEP. Fixing this would require looking ahead at the full GEP chain. - It cannot always figure out the correct access indices, especially with dynamic indices. This will require frontend collaboration. Because we know this is a temporary hack, this patch only impacts the logical SPIR-V target. Physical SPIR-V, which can rely on pointer cast remains on the old method. Related to #145002
47 lines
2.4 KiB
LLVM
47 lines
2.4 KiB
LLVM
; RUN: llc -verify-machineinstrs -O3 -mtriple=spirv1.6-unknown-vulkan1.3-compute %s -o - | FileCheck %s
|
|
; RUN: %if spirv-tools %{ llc -O3 -mtriple=spirv1.6-unknown-vulkan1.3-compute %s -o - -filetype=obj | spirv-val %}
|
|
|
|
%struct.S1 = type { <4 x i32>, [10 x <4 x float>], <4 x float> }
|
|
%struct.S2 = type { <4 x float>, <4 x i32> }
|
|
|
|
@.str = private unnamed_addr constant [3 x i8] c"In\00", align 1
|
|
|
|
define <4 x float> @main() {
|
|
entry:
|
|
%0 = tail call target("spirv.VulkanBuffer", [0 x %struct.S1], 12, 0) @llvm.spv.resource.handlefrombinding.tspirv.VulkanBuffer_a0s_struct.S1s_12_0t(i32 0, i32 1, i32 1, i32 0, i1 false, ptr nonnull @.str)
|
|
%3 = tail call noundef align 1 dereferenceable(192) ptr addrspace(11) @llvm.spv.resource.getpointer.p11.tspirv.VulkanBuffer_a0s_struct.S1s_12_0t(target("spirv.VulkanBuffer", [0 x %struct.S1], 12, 0) %0, i32 0)
|
|
|
|
; CHECK-DAG: %[[#ulong:]] = OpTypeInt 64 0
|
|
; CHECK-DAG: %[[#ulong_1:]] = OpConstant %[[#ulong]] 1
|
|
; CHECK-DAG: %[[#ulong_3:]] = OpConstant %[[#ulong]] 3
|
|
|
|
; CHECK-DAG: %[[#uint:]] = OpTypeInt 32 0
|
|
; CHECK-DAG: %[[#uint_0:]] = OpConstant %[[#uint]] 0
|
|
; CHECK-DAG: %[[#uint_10:]] = OpConstant %[[#uint]] 10
|
|
|
|
; CHECK-DAG: %[[#float:]] = OpTypeFloat 32
|
|
; CHECK-DAG: %[[#v4f:]] = OpTypeVector %[[#float]] 4
|
|
; CHECK-DAG: %[[#arr_v4f:]] = OpTypeArray %[[#v4f]] %[[#uint_10]]
|
|
; CHECK-DAG: %[[#S1:]] = OpTypeStruct %[[#]] %[[#arr_v4f]] %[[#]]
|
|
; CHECK-DAG: %[[#sb_S1:]] = OpTypePointer StorageBuffer %[[#S1]]
|
|
; CHECK-DAG: %[[#sb_v4f:]] = OpTypePointer StorageBuffer %[[#v4f]]
|
|
|
|
; CHECK: %[[#tmp:]] = OpAccessChain %[[#sb_S1]] %[[#]] %[[#uint_0]] %[[#uint_0]]
|
|
; CHECK: %[[#ptr:]] = OpInBoundsAccessChain %[[#sb_v4f]] %[[#tmp]] %[[#ulong_1]] %[[#ulong_3]]
|
|
; This rewritten GEP combined all constant indices into a single value.
|
|
; We should make sure the correct indices are retrieved.
|
|
%arrayidx.i = getelementptr inbounds nuw i8, ptr addrspace(11) %3, i64 64
|
|
|
|
; CHECK: OpLoad %[[#v4f]] %[[#ptr]]
|
|
%4 = load <4 x float>, ptr addrspace(11) %arrayidx.i, align 1
|
|
|
|
ret <4 x float> %4
|
|
}
|
|
|
|
declare i32 @llvm.spv.flattened.thread.id.in.group()
|
|
declare target("spirv.VulkanBuffer", [0 x %struct.S1], 12, 0) @llvm.spv.resource.handlefrombinding.tspirv.VulkanBuffer_a0s_struct.S1s_12_0t(i32, i32, i32, i32, i1, ptr)
|
|
declare ptr addrspace(11) @llvm.spv.resource.getpointer.p11.tspirv.VulkanBuffer_a0s_struct.S1s_12_0t(target("spirv.VulkanBuffer", [0 x %struct.S1], 12, 0), i32)
|
|
|
|
attributes #0 = { "hlsl.numthreads"="1,1,1" "hlsl.shader"="compute" }
|
|
|