
There are several type traits that produce a boolean value or type based on the well-formedness of some expression (more precisely, the immediate context, i.e. for example excluding nested template instantiation): * `__is_constructible` and variants, * `__is_convertible` and variants, * `__is_assignable` and variants, * `__reference_{binds_to,{constructs,converts}_from}_temporary`, * `__is_trivially_equality_comparable`, * `__builtin_common_type`. (It should be noted that the standard doesn't always base this on the immediate context being well-formed: for `std::common_type` it's based on whether some expression "denotes a valid type." But I assume that's an editorial issue and means the same thing.) Errors in the immediate context are suppressed, instead the type traits return another value or produce a different type if the expression is not well-formed. This is achieved using an `SFINAETrap` with `AccessCheckingSFINAE` set to true. If the type trait is used outside of an SFINAE context, errors are discarded because in that case the `SFINAETrap` sets `InNonInstantiationSFINAEContext`, which makes `isSFINAEContext` return an `optional(nullptr)`, which causes the errors to be discarded in `EmitDiagnostic`. However, in an SFINAE context this doesn't happen, and errors are added to `SuppressedDiagnostics` in the `TemplateDeductionInfo` returned by `isSFINAEContext`. Once we're done with deducing template arguments and have decided which template is going to be instantiated, the errors corresponding to the chosen template are then emitted. At this point we get errors from those type traits that we wouldn't have seen if used with the same arguments outside of an SFINAE context. That doesn't seem right. So what we want to do is always set `InNonInstantiationSFINAEContext` when evaluating these well-formed-testing type traits, regardless of whether we're in an SFINAE context or not. This should only affect the immediate context, as nested contexts add a new `CodeSynthesisContext` that resets `InNonInstantiationSFINAEContext` for the time it's active. Going through uses of `SFINAETrap` with `AccessCheckingSFINAE` = `true`, it occurred to me that all of them want this behavior and we can just use this parameter to decide whether to use a non-instantiation context. The uses are precisely the type traits mentioned above plus the `TentativeAnalysisScope`, where I think it is also fine. (Though I think we don't do tentative analysis in SFINAE contexts anyway.) Because the parameter no longer just sets `AccessCheckingSFINAE` in Sema but also `InNonInstantiationSFINAEContext`, I think it should be renamed (along with uses, which also point the reviewer to the affected places). Since we're testing for validity of some expression, `ForValidityCheck` seems to be a good name. The added tests should more or less correspond to the users of `SFINAETrap` with `AccessCheckingSFINAE` = `true`. I added a test for errors outside of the immediate context for only one type trait, because it requires some setup and is relatively noisy. We put the `ForValidityCheck` condition first because it's constant in all uses and this would then allow the compiler to prune the call to `isSFINAEContext` when true. Fixes #132044.
C language Family Front-end
Welcome to Clang.
This is a compiler front-end for the C family of languages (C, C++ and Objective-C) which is built as part of the LLVM compiler infrastructure project.
Unlike many other compiler frontends, Clang is useful for a number of things beyond just compiling code: we intend for Clang to be host to a number of different source-level tools. One example of this is the Clang Static Analyzer.
If you're interested in more (including how to build Clang) it is best to read the relevant websites. Here are some pointers:
-
Information on Clang: http://clang.llvm.org/
-
Building and using Clang: http://clang.llvm.org/get_started.html
-
Clang Static Analyzer: http://clang-analyzer.llvm.org/
-
Information on the LLVM project: http://llvm.org/
-
If you have questions or comments about Clang, a great place to discuss them is on the Clang forums:
-
If you find a bug in Clang, please file it in the LLVM bug tracker: