
While not needed for most applications, some tools such as [MUST](https://www.i12.rwth-aachen.de/cms/i12/forschung/forschungsschwerpunkte/lehrstuhl-fuer-hochleistungsrechnen/~nrbe/must/) depend on the instrumentation being present. MUST uses the ThreadSanitizer annotation interface to detect data races in MPI programs, where the capture tracking is detrimental as it has no bearing on MPI data races, leading to missed races.
830 lines
34 KiB
C++
830 lines
34 KiB
C++
//===-- ThreadSanitizer.cpp - race detector -------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file is a part of ThreadSanitizer, a race detector.
|
|
//
|
|
// The tool is under development, for the details about previous versions see
|
|
// http://code.google.com/p/data-race-test
|
|
//
|
|
// The instrumentation phase is quite simple:
|
|
// - Insert calls to run-time library before every memory access.
|
|
// - Optimizations may apply to avoid instrumenting some of the accesses.
|
|
// - Insert calls at function entry/exit.
|
|
// The rest is handled by the run-time library.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Instrumentation/ThreadSanitizer.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/Analysis/CaptureTracking.h"
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/Metadata.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/ProfileData/InstrProf.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/Utils/EscapeEnumerator.h"
|
|
#include "llvm/Transforms/Utils/Instrumentation.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include "llvm/Transforms/Utils/ModuleUtils.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "tsan"
|
|
|
|
static cl::opt<bool> ClInstrumentMemoryAccesses(
|
|
"tsan-instrument-memory-accesses", cl::init(true),
|
|
cl::desc("Instrument memory accesses"), cl::Hidden);
|
|
static cl::opt<bool>
|
|
ClInstrumentFuncEntryExit("tsan-instrument-func-entry-exit", cl::init(true),
|
|
cl::desc("Instrument function entry and exit"),
|
|
cl::Hidden);
|
|
static cl::opt<bool> ClHandleCxxExceptions(
|
|
"tsan-handle-cxx-exceptions", cl::init(true),
|
|
cl::desc("Handle C++ exceptions (insert cleanup blocks for unwinding)"),
|
|
cl::Hidden);
|
|
static cl::opt<bool> ClInstrumentAtomics("tsan-instrument-atomics",
|
|
cl::init(true),
|
|
cl::desc("Instrument atomics"),
|
|
cl::Hidden);
|
|
static cl::opt<bool> ClInstrumentMemIntrinsics(
|
|
"tsan-instrument-memintrinsics", cl::init(true),
|
|
cl::desc("Instrument memintrinsics (memset/memcpy/memmove)"), cl::Hidden);
|
|
static cl::opt<bool> ClDistinguishVolatile(
|
|
"tsan-distinguish-volatile", cl::init(false),
|
|
cl::desc("Emit special instrumentation for accesses to volatiles"),
|
|
cl::Hidden);
|
|
static cl::opt<bool> ClInstrumentReadBeforeWrite(
|
|
"tsan-instrument-read-before-write", cl::init(false),
|
|
cl::desc("Do not eliminate read instrumentation for read-before-writes"),
|
|
cl::Hidden);
|
|
static cl::opt<bool> ClCompoundReadBeforeWrite(
|
|
"tsan-compound-read-before-write", cl::init(false),
|
|
cl::desc("Emit special compound instrumentation for reads-before-writes"),
|
|
cl::Hidden);
|
|
static cl::opt<bool>
|
|
ClOmitNonCaptured("tsan-omit-by-pointer-capturing", cl::init(true),
|
|
cl::desc("Omit accesses due to pointer capturing"),
|
|
cl::Hidden);
|
|
|
|
STATISTIC(NumInstrumentedReads, "Number of instrumented reads");
|
|
STATISTIC(NumInstrumentedWrites, "Number of instrumented writes");
|
|
STATISTIC(NumOmittedReadsBeforeWrite,
|
|
"Number of reads ignored due to following writes");
|
|
STATISTIC(NumAccessesWithBadSize, "Number of accesses with bad size");
|
|
STATISTIC(NumInstrumentedVtableWrites, "Number of vtable ptr writes");
|
|
STATISTIC(NumInstrumentedVtableReads, "Number of vtable ptr reads");
|
|
STATISTIC(NumOmittedReadsFromConstantGlobals,
|
|
"Number of reads from constant globals");
|
|
STATISTIC(NumOmittedReadsFromVtable, "Number of vtable reads");
|
|
STATISTIC(NumOmittedNonCaptured, "Number of accesses ignored due to capturing");
|
|
|
|
const char kTsanModuleCtorName[] = "tsan.module_ctor";
|
|
const char kTsanInitName[] = "__tsan_init";
|
|
|
|
namespace {
|
|
|
|
/// ThreadSanitizer: instrument the code in module to find races.
|
|
///
|
|
/// Instantiating ThreadSanitizer inserts the tsan runtime library API function
|
|
/// declarations into the module if they don't exist already. Instantiating
|
|
/// ensures the __tsan_init function is in the list of global constructors for
|
|
/// the module.
|
|
struct ThreadSanitizer {
|
|
ThreadSanitizer() {
|
|
// Check options and warn user.
|
|
if (ClInstrumentReadBeforeWrite && ClCompoundReadBeforeWrite) {
|
|
errs()
|
|
<< "warning: Option -tsan-compound-read-before-write has no effect "
|
|
"when -tsan-instrument-read-before-write is set.\n";
|
|
}
|
|
}
|
|
|
|
bool sanitizeFunction(Function &F, const TargetLibraryInfo &TLI);
|
|
|
|
private:
|
|
// Internal Instruction wrapper that contains more information about the
|
|
// Instruction from prior analysis.
|
|
struct InstructionInfo {
|
|
// Instrumentation emitted for this instruction is for a compounded set of
|
|
// read and write operations in the same basic block.
|
|
static constexpr unsigned kCompoundRW = (1U << 0);
|
|
|
|
explicit InstructionInfo(Instruction *Inst) : Inst(Inst) {}
|
|
|
|
Instruction *Inst;
|
|
unsigned Flags = 0;
|
|
};
|
|
|
|
void initialize(Module &M, const TargetLibraryInfo &TLI);
|
|
bool instrumentLoadOrStore(const InstructionInfo &II, const DataLayout &DL);
|
|
bool instrumentAtomic(Instruction *I, const DataLayout &DL);
|
|
bool instrumentMemIntrinsic(Instruction *I);
|
|
void chooseInstructionsToInstrument(SmallVectorImpl<Instruction *> &Local,
|
|
SmallVectorImpl<InstructionInfo> &All,
|
|
const DataLayout &DL);
|
|
bool addrPointsToConstantData(Value *Addr);
|
|
int getMemoryAccessFuncIndex(Type *OrigTy, Value *Addr, const DataLayout &DL);
|
|
void InsertRuntimeIgnores(Function &F);
|
|
|
|
Type *IntptrTy;
|
|
FunctionCallee TsanFuncEntry;
|
|
FunctionCallee TsanFuncExit;
|
|
FunctionCallee TsanIgnoreBegin;
|
|
FunctionCallee TsanIgnoreEnd;
|
|
// Accesses sizes are powers of two: 1, 2, 4, 8, 16.
|
|
static const size_t kNumberOfAccessSizes = 5;
|
|
FunctionCallee TsanRead[kNumberOfAccessSizes];
|
|
FunctionCallee TsanWrite[kNumberOfAccessSizes];
|
|
FunctionCallee TsanUnalignedRead[kNumberOfAccessSizes];
|
|
FunctionCallee TsanUnalignedWrite[kNumberOfAccessSizes];
|
|
FunctionCallee TsanVolatileRead[kNumberOfAccessSizes];
|
|
FunctionCallee TsanVolatileWrite[kNumberOfAccessSizes];
|
|
FunctionCallee TsanUnalignedVolatileRead[kNumberOfAccessSizes];
|
|
FunctionCallee TsanUnalignedVolatileWrite[kNumberOfAccessSizes];
|
|
FunctionCallee TsanCompoundRW[kNumberOfAccessSizes];
|
|
FunctionCallee TsanUnalignedCompoundRW[kNumberOfAccessSizes];
|
|
FunctionCallee TsanAtomicLoad[kNumberOfAccessSizes];
|
|
FunctionCallee TsanAtomicStore[kNumberOfAccessSizes];
|
|
FunctionCallee TsanAtomicRMW[AtomicRMWInst::LAST_BINOP + 1]
|
|
[kNumberOfAccessSizes];
|
|
FunctionCallee TsanAtomicCAS[kNumberOfAccessSizes];
|
|
FunctionCallee TsanAtomicThreadFence;
|
|
FunctionCallee TsanAtomicSignalFence;
|
|
FunctionCallee TsanVptrUpdate;
|
|
FunctionCallee TsanVptrLoad;
|
|
FunctionCallee MemmoveFn, MemcpyFn, MemsetFn;
|
|
};
|
|
|
|
void insertModuleCtor(Module &M) {
|
|
getOrCreateSanitizerCtorAndInitFunctions(
|
|
M, kTsanModuleCtorName, kTsanInitName, /*InitArgTypes=*/{},
|
|
/*InitArgs=*/{},
|
|
// This callback is invoked when the functions are created the first
|
|
// time. Hook them into the global ctors list in that case:
|
|
[&](Function *Ctor, FunctionCallee) { appendToGlobalCtors(M, Ctor, 0); });
|
|
}
|
|
} // namespace
|
|
|
|
PreservedAnalyses ThreadSanitizerPass::run(Function &F,
|
|
FunctionAnalysisManager &FAM) {
|
|
ThreadSanitizer TSan;
|
|
if (TSan.sanitizeFunction(F, FAM.getResult<TargetLibraryAnalysis>(F)))
|
|
return PreservedAnalyses::none();
|
|
return PreservedAnalyses::all();
|
|
}
|
|
|
|
PreservedAnalyses ModuleThreadSanitizerPass::run(Module &M,
|
|
ModuleAnalysisManager &MAM) {
|
|
// Return early if nosanitize_thread module flag is present for the module.
|
|
if (checkIfAlreadyInstrumented(M, "nosanitize_thread"))
|
|
return PreservedAnalyses::all();
|
|
insertModuleCtor(M);
|
|
return PreservedAnalyses::none();
|
|
}
|
|
void ThreadSanitizer::initialize(Module &M, const TargetLibraryInfo &TLI) {
|
|
const DataLayout &DL = M.getDataLayout();
|
|
LLVMContext &Ctx = M.getContext();
|
|
IntptrTy = DL.getIntPtrType(Ctx);
|
|
|
|
IRBuilder<> IRB(Ctx);
|
|
AttributeList Attr;
|
|
Attr = Attr.addFnAttribute(Ctx, Attribute::NoUnwind);
|
|
// Initialize the callbacks.
|
|
TsanFuncEntry = M.getOrInsertFunction("__tsan_func_entry", Attr,
|
|
IRB.getVoidTy(), IRB.getPtrTy());
|
|
TsanFuncExit =
|
|
M.getOrInsertFunction("__tsan_func_exit", Attr, IRB.getVoidTy());
|
|
TsanIgnoreBegin = M.getOrInsertFunction("__tsan_ignore_thread_begin", Attr,
|
|
IRB.getVoidTy());
|
|
TsanIgnoreEnd =
|
|
M.getOrInsertFunction("__tsan_ignore_thread_end", Attr, IRB.getVoidTy());
|
|
IntegerType *OrdTy = IRB.getInt32Ty();
|
|
for (size_t i = 0; i < kNumberOfAccessSizes; ++i) {
|
|
const unsigned ByteSize = 1U << i;
|
|
const unsigned BitSize = ByteSize * 8;
|
|
std::string ByteSizeStr = utostr(ByteSize);
|
|
std::string BitSizeStr = utostr(BitSize);
|
|
SmallString<32> ReadName("__tsan_read" + ByteSizeStr);
|
|
TsanRead[i] = M.getOrInsertFunction(ReadName, Attr, IRB.getVoidTy(),
|
|
IRB.getPtrTy());
|
|
|
|
SmallString<32> WriteName("__tsan_write" + ByteSizeStr);
|
|
TsanWrite[i] = M.getOrInsertFunction(WriteName, Attr, IRB.getVoidTy(),
|
|
IRB.getPtrTy());
|
|
|
|
SmallString<64> UnalignedReadName("__tsan_unaligned_read" + ByteSizeStr);
|
|
TsanUnalignedRead[i] = M.getOrInsertFunction(
|
|
UnalignedReadName, Attr, IRB.getVoidTy(), IRB.getPtrTy());
|
|
|
|
SmallString<64> UnalignedWriteName("__tsan_unaligned_write" + ByteSizeStr);
|
|
TsanUnalignedWrite[i] = M.getOrInsertFunction(
|
|
UnalignedWriteName, Attr, IRB.getVoidTy(), IRB.getPtrTy());
|
|
|
|
SmallString<64> VolatileReadName("__tsan_volatile_read" + ByteSizeStr);
|
|
TsanVolatileRead[i] = M.getOrInsertFunction(
|
|
VolatileReadName, Attr, IRB.getVoidTy(), IRB.getPtrTy());
|
|
|
|
SmallString<64> VolatileWriteName("__tsan_volatile_write" + ByteSizeStr);
|
|
TsanVolatileWrite[i] = M.getOrInsertFunction(
|
|
VolatileWriteName, Attr, IRB.getVoidTy(), IRB.getPtrTy());
|
|
|
|
SmallString<64> UnalignedVolatileReadName("__tsan_unaligned_volatile_read" +
|
|
ByteSizeStr);
|
|
TsanUnalignedVolatileRead[i] = M.getOrInsertFunction(
|
|
UnalignedVolatileReadName, Attr, IRB.getVoidTy(), IRB.getPtrTy());
|
|
|
|
SmallString<64> UnalignedVolatileWriteName(
|
|
"__tsan_unaligned_volatile_write" + ByteSizeStr);
|
|
TsanUnalignedVolatileWrite[i] = M.getOrInsertFunction(
|
|
UnalignedVolatileWriteName, Attr, IRB.getVoidTy(), IRB.getPtrTy());
|
|
|
|
SmallString<64> CompoundRWName("__tsan_read_write" + ByteSizeStr);
|
|
TsanCompoundRW[i] = M.getOrInsertFunction(
|
|
CompoundRWName, Attr, IRB.getVoidTy(), IRB.getPtrTy());
|
|
|
|
SmallString<64> UnalignedCompoundRWName("__tsan_unaligned_read_write" +
|
|
ByteSizeStr);
|
|
TsanUnalignedCompoundRW[i] = M.getOrInsertFunction(
|
|
UnalignedCompoundRWName, Attr, IRB.getVoidTy(), IRB.getPtrTy());
|
|
|
|
Type *Ty = Type::getIntNTy(Ctx, BitSize);
|
|
Type *PtrTy = PointerType::get(Ctx, 0);
|
|
SmallString<32> AtomicLoadName("__tsan_atomic" + BitSizeStr + "_load");
|
|
TsanAtomicLoad[i] =
|
|
M.getOrInsertFunction(AtomicLoadName,
|
|
TLI.getAttrList(&Ctx, {1}, /*Signed=*/true,
|
|
/*Ret=*/BitSize <= 32, Attr),
|
|
Ty, PtrTy, OrdTy);
|
|
|
|
// Args of type Ty need extension only when BitSize is 32 or less.
|
|
using Idxs = std::vector<unsigned>;
|
|
Idxs Idxs2Or12 ((BitSize <= 32) ? Idxs({1, 2}) : Idxs({2}));
|
|
Idxs Idxs34Or1234((BitSize <= 32) ? Idxs({1, 2, 3, 4}) : Idxs({3, 4}));
|
|
SmallString<32> AtomicStoreName("__tsan_atomic" + BitSizeStr + "_store");
|
|
TsanAtomicStore[i] = M.getOrInsertFunction(
|
|
AtomicStoreName,
|
|
TLI.getAttrList(&Ctx, Idxs2Or12, /*Signed=*/true, /*Ret=*/false, Attr),
|
|
IRB.getVoidTy(), PtrTy, Ty, OrdTy);
|
|
|
|
for (unsigned Op = AtomicRMWInst::FIRST_BINOP;
|
|
Op <= AtomicRMWInst::LAST_BINOP; ++Op) {
|
|
TsanAtomicRMW[Op][i] = nullptr;
|
|
const char *NamePart = nullptr;
|
|
if (Op == AtomicRMWInst::Xchg)
|
|
NamePart = "_exchange";
|
|
else if (Op == AtomicRMWInst::Add)
|
|
NamePart = "_fetch_add";
|
|
else if (Op == AtomicRMWInst::Sub)
|
|
NamePart = "_fetch_sub";
|
|
else if (Op == AtomicRMWInst::And)
|
|
NamePart = "_fetch_and";
|
|
else if (Op == AtomicRMWInst::Or)
|
|
NamePart = "_fetch_or";
|
|
else if (Op == AtomicRMWInst::Xor)
|
|
NamePart = "_fetch_xor";
|
|
else if (Op == AtomicRMWInst::Nand)
|
|
NamePart = "_fetch_nand";
|
|
else
|
|
continue;
|
|
SmallString<32> RMWName("__tsan_atomic" + itostr(BitSize) + NamePart);
|
|
TsanAtomicRMW[Op][i] = M.getOrInsertFunction(
|
|
RMWName,
|
|
TLI.getAttrList(&Ctx, Idxs2Or12, /*Signed=*/true,
|
|
/*Ret=*/BitSize <= 32, Attr),
|
|
Ty, PtrTy, Ty, OrdTy);
|
|
}
|
|
|
|
SmallString<32> AtomicCASName("__tsan_atomic" + BitSizeStr +
|
|
"_compare_exchange_val");
|
|
TsanAtomicCAS[i] = M.getOrInsertFunction(
|
|
AtomicCASName,
|
|
TLI.getAttrList(&Ctx, Idxs34Or1234, /*Signed=*/true,
|
|
/*Ret=*/BitSize <= 32, Attr),
|
|
Ty, PtrTy, Ty, Ty, OrdTy, OrdTy);
|
|
}
|
|
TsanVptrUpdate =
|
|
M.getOrInsertFunction("__tsan_vptr_update", Attr, IRB.getVoidTy(),
|
|
IRB.getPtrTy(), IRB.getPtrTy());
|
|
TsanVptrLoad = M.getOrInsertFunction("__tsan_vptr_read", Attr,
|
|
IRB.getVoidTy(), IRB.getPtrTy());
|
|
TsanAtomicThreadFence = M.getOrInsertFunction(
|
|
"__tsan_atomic_thread_fence",
|
|
TLI.getAttrList(&Ctx, {0}, /*Signed=*/true, /*Ret=*/false, Attr),
|
|
IRB.getVoidTy(), OrdTy);
|
|
|
|
TsanAtomicSignalFence = M.getOrInsertFunction(
|
|
"__tsan_atomic_signal_fence",
|
|
TLI.getAttrList(&Ctx, {0}, /*Signed=*/true, /*Ret=*/false, Attr),
|
|
IRB.getVoidTy(), OrdTy);
|
|
|
|
MemmoveFn =
|
|
M.getOrInsertFunction("__tsan_memmove", Attr, IRB.getPtrTy(),
|
|
IRB.getPtrTy(), IRB.getPtrTy(), IntptrTy);
|
|
MemcpyFn =
|
|
M.getOrInsertFunction("__tsan_memcpy", Attr, IRB.getPtrTy(),
|
|
IRB.getPtrTy(), IRB.getPtrTy(), IntptrTy);
|
|
MemsetFn = M.getOrInsertFunction(
|
|
"__tsan_memset",
|
|
TLI.getAttrList(&Ctx, {1}, /*Signed=*/true, /*Ret=*/false, Attr),
|
|
IRB.getPtrTy(), IRB.getPtrTy(), IRB.getInt32Ty(), IntptrTy);
|
|
}
|
|
|
|
static bool isVtableAccess(Instruction *I) {
|
|
if (MDNode *Tag = I->getMetadata(LLVMContext::MD_tbaa))
|
|
return Tag->isTBAAVtableAccess();
|
|
return false;
|
|
}
|
|
|
|
// Do not instrument known races/"benign races" that come from compiler
|
|
// instrumentatin. The user has no way of suppressing them.
|
|
static bool shouldInstrumentReadWriteFromAddress(const Module *M, Value *Addr) {
|
|
// Peel off GEPs and BitCasts.
|
|
Addr = Addr->stripInBoundsOffsets();
|
|
|
|
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
|
|
if (GV->hasSection()) {
|
|
StringRef SectionName = GV->getSection();
|
|
// Check if the global is in the PGO counters section.
|
|
auto OF = M->getTargetTriple().getObjectFormat();
|
|
if (SectionName.ends_with(
|
|
getInstrProfSectionName(IPSK_cnts, OF, /*AddSegmentInfo=*/false)))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Do not instrument accesses from different address spaces; we cannot deal
|
|
// with them.
|
|
if (Addr) {
|
|
Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType());
|
|
if (PtrTy->getPointerAddressSpace() != 0)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool ThreadSanitizer::addrPointsToConstantData(Value *Addr) {
|
|
// If this is a GEP, just analyze its pointer operand.
|
|
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Addr))
|
|
Addr = GEP->getPointerOperand();
|
|
|
|
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
|
|
if (GV->isConstant()) {
|
|
// Reads from constant globals can not race with any writes.
|
|
NumOmittedReadsFromConstantGlobals++;
|
|
return true;
|
|
}
|
|
} else if (LoadInst *L = dyn_cast<LoadInst>(Addr)) {
|
|
if (isVtableAccess(L)) {
|
|
// Reads from a vtable pointer can not race with any writes.
|
|
NumOmittedReadsFromVtable++;
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Instrumenting some of the accesses may be proven redundant.
|
|
// Currently handled:
|
|
// - read-before-write (within same BB, no calls between)
|
|
// - not captured variables
|
|
//
|
|
// We do not handle some of the patterns that should not survive
|
|
// after the classic compiler optimizations.
|
|
// E.g. two reads from the same temp should be eliminated by CSE,
|
|
// two writes should be eliminated by DSE, etc.
|
|
//
|
|
// 'Local' is a vector of insns within the same BB (no calls between).
|
|
// 'All' is a vector of insns that will be instrumented.
|
|
void ThreadSanitizer::chooseInstructionsToInstrument(
|
|
SmallVectorImpl<Instruction *> &Local,
|
|
SmallVectorImpl<InstructionInfo> &All, const DataLayout &DL) {
|
|
DenseMap<Value *, size_t> WriteTargets; // Map of addresses to index in All
|
|
// Iterate from the end.
|
|
for (Instruction *I : reverse(Local)) {
|
|
const bool IsWrite = isa<StoreInst>(*I);
|
|
Value *Addr = IsWrite ? cast<StoreInst>(I)->getPointerOperand()
|
|
: cast<LoadInst>(I)->getPointerOperand();
|
|
|
|
if (!shouldInstrumentReadWriteFromAddress(I->getModule(), Addr))
|
|
continue;
|
|
|
|
if (!IsWrite) {
|
|
const auto WriteEntry = WriteTargets.find(Addr);
|
|
if (!ClInstrumentReadBeforeWrite && WriteEntry != WriteTargets.end()) {
|
|
auto &WI = All[WriteEntry->second];
|
|
// If we distinguish volatile accesses and if either the read or write
|
|
// is volatile, do not omit any instrumentation.
|
|
const bool AnyVolatile =
|
|
ClDistinguishVolatile && (cast<LoadInst>(I)->isVolatile() ||
|
|
cast<StoreInst>(WI.Inst)->isVolatile());
|
|
if (!AnyVolatile) {
|
|
// We will write to this temp, so no reason to analyze the read.
|
|
// Mark the write instruction as compound.
|
|
WI.Flags |= InstructionInfo::kCompoundRW;
|
|
NumOmittedReadsBeforeWrite++;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (addrPointsToConstantData(Addr)) {
|
|
// Addr points to some constant data -- it can not race with any writes.
|
|
continue;
|
|
}
|
|
}
|
|
|
|
const AllocaInst *AI = findAllocaForValue(Addr);
|
|
// Instead of Addr, we should check whether its base pointer is captured.
|
|
if (AI && !PointerMayBeCaptured(AI, /*ReturnCaptures=*/true) &&
|
|
ClOmitNonCaptured) {
|
|
// The variable is addressable but not captured, so it cannot be
|
|
// referenced from a different thread and participate in a data race
|
|
// (see llvm/Analysis/CaptureTracking.h for details).
|
|
NumOmittedNonCaptured++;
|
|
continue;
|
|
}
|
|
|
|
// Instrument this instruction.
|
|
All.emplace_back(I);
|
|
if (IsWrite) {
|
|
// For read-before-write and compound instrumentation we only need one
|
|
// write target, and we can override any previous entry if it exists.
|
|
WriteTargets[Addr] = All.size() - 1;
|
|
}
|
|
}
|
|
Local.clear();
|
|
}
|
|
|
|
static bool isTsanAtomic(const Instruction *I) {
|
|
// TODO: Ask TTI whether synchronization scope is between threads.
|
|
auto SSID = getAtomicSyncScopeID(I);
|
|
if (!SSID)
|
|
return false;
|
|
if (isa<LoadInst>(I) || isa<StoreInst>(I))
|
|
return *SSID != SyncScope::SingleThread;
|
|
return true;
|
|
}
|
|
|
|
void ThreadSanitizer::InsertRuntimeIgnores(Function &F) {
|
|
InstrumentationIRBuilder IRB(&F.getEntryBlock(),
|
|
F.getEntryBlock().getFirstNonPHIIt());
|
|
IRB.CreateCall(TsanIgnoreBegin);
|
|
EscapeEnumerator EE(F, "tsan_ignore_cleanup", ClHandleCxxExceptions);
|
|
while (IRBuilder<> *AtExit = EE.Next()) {
|
|
InstrumentationIRBuilder::ensureDebugInfo(*AtExit, F);
|
|
AtExit->CreateCall(TsanIgnoreEnd);
|
|
}
|
|
}
|
|
|
|
bool ThreadSanitizer::sanitizeFunction(Function &F,
|
|
const TargetLibraryInfo &TLI) {
|
|
// This is required to prevent instrumenting call to __tsan_init from within
|
|
// the module constructor.
|
|
if (F.getName() == kTsanModuleCtorName)
|
|
return false;
|
|
// Naked functions can not have prologue/epilogue
|
|
// (__tsan_func_entry/__tsan_func_exit) generated, so don't instrument them at
|
|
// all.
|
|
if (F.hasFnAttribute(Attribute::Naked))
|
|
return false;
|
|
|
|
// __attribute__(disable_sanitizer_instrumentation) prevents all kinds of
|
|
// instrumentation.
|
|
if (F.hasFnAttribute(Attribute::DisableSanitizerInstrumentation))
|
|
return false;
|
|
|
|
initialize(*F.getParent(), TLI);
|
|
SmallVector<InstructionInfo, 8> AllLoadsAndStores;
|
|
SmallVector<Instruction*, 8> LocalLoadsAndStores;
|
|
SmallVector<Instruction*, 8> AtomicAccesses;
|
|
SmallVector<Instruction*, 8> MemIntrinCalls;
|
|
bool Res = false;
|
|
bool HasCalls = false;
|
|
bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeThread);
|
|
const DataLayout &DL = F.getDataLayout();
|
|
|
|
// Traverse all instructions, collect loads/stores/returns, check for calls.
|
|
for (auto &BB : F) {
|
|
for (auto &Inst : BB) {
|
|
// Skip instructions inserted by another instrumentation.
|
|
if (Inst.hasMetadata(LLVMContext::MD_nosanitize))
|
|
continue;
|
|
if (isTsanAtomic(&Inst))
|
|
AtomicAccesses.push_back(&Inst);
|
|
else if (isa<LoadInst>(Inst) || isa<StoreInst>(Inst))
|
|
LocalLoadsAndStores.push_back(&Inst);
|
|
else if (isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) {
|
|
if (CallInst *CI = dyn_cast<CallInst>(&Inst))
|
|
maybeMarkSanitizerLibraryCallNoBuiltin(CI, &TLI);
|
|
if (isa<MemIntrinsic>(Inst))
|
|
MemIntrinCalls.push_back(&Inst);
|
|
HasCalls = true;
|
|
chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores,
|
|
DL);
|
|
}
|
|
}
|
|
chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores, DL);
|
|
}
|
|
|
|
// We have collected all loads and stores.
|
|
// FIXME: many of these accesses do not need to be checked for races
|
|
// (e.g. variables that do not escape, etc).
|
|
|
|
// Instrument memory accesses only if we want to report bugs in the function.
|
|
if (ClInstrumentMemoryAccesses && SanitizeFunction)
|
|
for (const auto &II : AllLoadsAndStores) {
|
|
Res |= instrumentLoadOrStore(II, DL);
|
|
}
|
|
|
|
// Instrument atomic memory accesses in any case (they can be used to
|
|
// implement synchronization).
|
|
if (ClInstrumentAtomics)
|
|
for (auto *Inst : AtomicAccesses) {
|
|
Res |= instrumentAtomic(Inst, DL);
|
|
}
|
|
|
|
if (ClInstrumentMemIntrinsics && SanitizeFunction)
|
|
for (auto *Inst : MemIntrinCalls) {
|
|
Res |= instrumentMemIntrinsic(Inst);
|
|
}
|
|
|
|
if (F.hasFnAttribute("sanitize_thread_no_checking_at_run_time")) {
|
|
assert(!F.hasFnAttribute(Attribute::SanitizeThread));
|
|
if (HasCalls)
|
|
InsertRuntimeIgnores(F);
|
|
}
|
|
|
|
// Instrument function entry/exit points if there were instrumented accesses.
|
|
if ((Res || HasCalls) && ClInstrumentFuncEntryExit) {
|
|
InstrumentationIRBuilder IRB(&F.getEntryBlock(),
|
|
F.getEntryBlock().getFirstNonPHIIt());
|
|
Value *ReturnAddress =
|
|
IRB.CreateIntrinsic(Intrinsic::returnaddress, IRB.getInt32(0));
|
|
IRB.CreateCall(TsanFuncEntry, ReturnAddress);
|
|
|
|
EscapeEnumerator EE(F, "tsan_cleanup", ClHandleCxxExceptions);
|
|
while (IRBuilder<> *AtExit = EE.Next()) {
|
|
InstrumentationIRBuilder::ensureDebugInfo(*AtExit, F);
|
|
AtExit->CreateCall(TsanFuncExit, {});
|
|
}
|
|
Res = true;
|
|
}
|
|
return Res;
|
|
}
|
|
|
|
bool ThreadSanitizer::instrumentLoadOrStore(const InstructionInfo &II,
|
|
const DataLayout &DL) {
|
|
InstrumentationIRBuilder IRB(II.Inst);
|
|
const bool IsWrite = isa<StoreInst>(*II.Inst);
|
|
Value *Addr = IsWrite ? cast<StoreInst>(II.Inst)->getPointerOperand()
|
|
: cast<LoadInst>(II.Inst)->getPointerOperand();
|
|
Type *OrigTy = getLoadStoreType(II.Inst);
|
|
|
|
// swifterror memory addresses are mem2reg promoted by instruction selection.
|
|
// As such they cannot have regular uses like an instrumentation function and
|
|
// it makes no sense to track them as memory.
|
|
if (Addr->isSwiftError())
|
|
return false;
|
|
|
|
int Idx = getMemoryAccessFuncIndex(OrigTy, Addr, DL);
|
|
if (Idx < 0)
|
|
return false;
|
|
if (IsWrite && isVtableAccess(II.Inst)) {
|
|
LLVM_DEBUG(dbgs() << " VPTR : " << *II.Inst << "\n");
|
|
Value *StoredValue = cast<StoreInst>(II.Inst)->getValueOperand();
|
|
// StoredValue may be a vector type if we are storing several vptrs at once.
|
|
// In this case, just take the first element of the vector since this is
|
|
// enough to find vptr races.
|
|
if (isa<VectorType>(StoredValue->getType()))
|
|
StoredValue = IRB.CreateExtractElement(
|
|
StoredValue, ConstantInt::get(IRB.getInt32Ty(), 0));
|
|
if (StoredValue->getType()->isIntegerTy())
|
|
StoredValue = IRB.CreateIntToPtr(StoredValue, IRB.getPtrTy());
|
|
// Call TsanVptrUpdate.
|
|
IRB.CreateCall(TsanVptrUpdate, {Addr, StoredValue});
|
|
NumInstrumentedVtableWrites++;
|
|
return true;
|
|
}
|
|
if (!IsWrite && isVtableAccess(II.Inst)) {
|
|
IRB.CreateCall(TsanVptrLoad, Addr);
|
|
NumInstrumentedVtableReads++;
|
|
return true;
|
|
}
|
|
|
|
const Align Alignment = IsWrite ? cast<StoreInst>(II.Inst)->getAlign()
|
|
: cast<LoadInst>(II.Inst)->getAlign();
|
|
const bool IsCompoundRW =
|
|
ClCompoundReadBeforeWrite && (II.Flags & InstructionInfo::kCompoundRW);
|
|
const bool IsVolatile = ClDistinguishVolatile &&
|
|
(IsWrite ? cast<StoreInst>(II.Inst)->isVolatile()
|
|
: cast<LoadInst>(II.Inst)->isVolatile());
|
|
assert((!IsVolatile || !IsCompoundRW) && "Compound volatile invalid!");
|
|
|
|
const uint32_t TypeSize = DL.getTypeStoreSizeInBits(OrigTy);
|
|
FunctionCallee OnAccessFunc = nullptr;
|
|
if (Alignment >= Align(8) || (Alignment.value() % (TypeSize / 8)) == 0) {
|
|
if (IsCompoundRW)
|
|
OnAccessFunc = TsanCompoundRW[Idx];
|
|
else if (IsVolatile)
|
|
OnAccessFunc = IsWrite ? TsanVolatileWrite[Idx] : TsanVolatileRead[Idx];
|
|
else
|
|
OnAccessFunc = IsWrite ? TsanWrite[Idx] : TsanRead[Idx];
|
|
} else {
|
|
if (IsCompoundRW)
|
|
OnAccessFunc = TsanUnalignedCompoundRW[Idx];
|
|
else if (IsVolatile)
|
|
OnAccessFunc = IsWrite ? TsanUnalignedVolatileWrite[Idx]
|
|
: TsanUnalignedVolatileRead[Idx];
|
|
else
|
|
OnAccessFunc = IsWrite ? TsanUnalignedWrite[Idx] : TsanUnalignedRead[Idx];
|
|
}
|
|
IRB.CreateCall(OnAccessFunc, Addr);
|
|
if (IsCompoundRW || IsWrite)
|
|
NumInstrumentedWrites++;
|
|
if (IsCompoundRW || !IsWrite)
|
|
NumInstrumentedReads++;
|
|
return true;
|
|
}
|
|
|
|
static ConstantInt *createOrdering(IRBuilder<> *IRB, AtomicOrdering ord) {
|
|
uint32_t v = 0;
|
|
switch (ord) {
|
|
case AtomicOrdering::NotAtomic:
|
|
llvm_unreachable("unexpected atomic ordering!");
|
|
case AtomicOrdering::Unordered: [[fallthrough]];
|
|
case AtomicOrdering::Monotonic: v = 0; break;
|
|
// Not specified yet:
|
|
// case AtomicOrdering::Consume: v = 1; break;
|
|
case AtomicOrdering::Acquire: v = 2; break;
|
|
case AtomicOrdering::Release: v = 3; break;
|
|
case AtomicOrdering::AcquireRelease: v = 4; break;
|
|
case AtomicOrdering::SequentiallyConsistent: v = 5; break;
|
|
}
|
|
return IRB->getInt32(v);
|
|
}
|
|
|
|
// If a memset intrinsic gets inlined by the code gen, we will miss races on it.
|
|
// So, we either need to ensure the intrinsic is not inlined, or instrument it.
|
|
// We do not instrument memset/memmove/memcpy intrinsics (too complicated),
|
|
// instead we simply replace them with regular function calls, which are then
|
|
// intercepted by the run-time.
|
|
// Since tsan is running after everyone else, the calls should not be
|
|
// replaced back with intrinsics. If that becomes wrong at some point,
|
|
// we will need to call e.g. __tsan_memset to avoid the intrinsics.
|
|
bool ThreadSanitizer::instrumentMemIntrinsic(Instruction *I) {
|
|
InstrumentationIRBuilder IRB(I);
|
|
if (MemSetInst *M = dyn_cast<MemSetInst>(I)) {
|
|
Value *Cast1 = IRB.CreateIntCast(M->getArgOperand(1), IRB.getInt32Ty(), false);
|
|
Value *Cast2 = IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false);
|
|
IRB.CreateCall(
|
|
MemsetFn,
|
|
{M->getArgOperand(0),
|
|
Cast1,
|
|
Cast2});
|
|
I->eraseFromParent();
|
|
} else if (MemTransferInst *M = dyn_cast<MemTransferInst>(I)) {
|
|
IRB.CreateCall(
|
|
isa<MemCpyInst>(M) ? MemcpyFn : MemmoveFn,
|
|
{M->getArgOperand(0),
|
|
M->getArgOperand(1),
|
|
IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false)});
|
|
I->eraseFromParent();
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Both llvm and ThreadSanitizer atomic operations are based on C++11/C1x
|
|
// standards. For background see C++11 standard. A slightly older, publicly
|
|
// available draft of the standard (not entirely up-to-date, but close enough
|
|
// for casual browsing) is available here:
|
|
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
|
|
// The following page contains more background information:
|
|
// http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/
|
|
|
|
bool ThreadSanitizer::instrumentAtomic(Instruction *I, const DataLayout &DL) {
|
|
InstrumentationIRBuilder IRB(I);
|
|
if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
|
|
Value *Addr = LI->getPointerOperand();
|
|
Type *OrigTy = LI->getType();
|
|
int Idx = getMemoryAccessFuncIndex(OrigTy, Addr, DL);
|
|
if (Idx < 0)
|
|
return false;
|
|
Value *Args[] = {Addr,
|
|
createOrdering(&IRB, LI->getOrdering())};
|
|
Value *C = IRB.CreateCall(TsanAtomicLoad[Idx], Args);
|
|
Value *Cast = IRB.CreateBitOrPointerCast(C, OrigTy);
|
|
I->replaceAllUsesWith(Cast);
|
|
I->eraseFromParent();
|
|
} else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
|
|
Value *Addr = SI->getPointerOperand();
|
|
int Idx =
|
|
getMemoryAccessFuncIndex(SI->getValueOperand()->getType(), Addr, DL);
|
|
if (Idx < 0)
|
|
return false;
|
|
const unsigned ByteSize = 1U << Idx;
|
|
const unsigned BitSize = ByteSize * 8;
|
|
Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
|
|
Value *Args[] = {Addr,
|
|
IRB.CreateBitOrPointerCast(SI->getValueOperand(), Ty),
|
|
createOrdering(&IRB, SI->getOrdering())};
|
|
IRB.CreateCall(TsanAtomicStore[Idx], Args);
|
|
SI->eraseFromParent();
|
|
} else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) {
|
|
Value *Addr = RMWI->getPointerOperand();
|
|
int Idx =
|
|
getMemoryAccessFuncIndex(RMWI->getValOperand()->getType(), Addr, DL);
|
|
if (Idx < 0)
|
|
return false;
|
|
FunctionCallee F = TsanAtomicRMW[RMWI->getOperation()][Idx];
|
|
if (!F)
|
|
return false;
|
|
const unsigned ByteSize = 1U << Idx;
|
|
const unsigned BitSize = ByteSize * 8;
|
|
Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
|
|
Value *Val = RMWI->getValOperand();
|
|
Value *Args[] = {Addr, IRB.CreateBitOrPointerCast(Val, Ty),
|
|
createOrdering(&IRB, RMWI->getOrdering())};
|
|
Value *C = IRB.CreateCall(F, Args);
|
|
I->replaceAllUsesWith(IRB.CreateBitOrPointerCast(C, Val->getType()));
|
|
I->eraseFromParent();
|
|
} else if (AtomicCmpXchgInst *CASI = dyn_cast<AtomicCmpXchgInst>(I)) {
|
|
Value *Addr = CASI->getPointerOperand();
|
|
Type *OrigOldValTy = CASI->getNewValOperand()->getType();
|
|
int Idx = getMemoryAccessFuncIndex(OrigOldValTy, Addr, DL);
|
|
if (Idx < 0)
|
|
return false;
|
|
const unsigned ByteSize = 1U << Idx;
|
|
const unsigned BitSize = ByteSize * 8;
|
|
Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
|
|
Value *CmpOperand =
|
|
IRB.CreateBitOrPointerCast(CASI->getCompareOperand(), Ty);
|
|
Value *NewOperand =
|
|
IRB.CreateBitOrPointerCast(CASI->getNewValOperand(), Ty);
|
|
Value *Args[] = {Addr,
|
|
CmpOperand,
|
|
NewOperand,
|
|
createOrdering(&IRB, CASI->getSuccessOrdering()),
|
|
createOrdering(&IRB, CASI->getFailureOrdering())};
|
|
CallInst *C = IRB.CreateCall(TsanAtomicCAS[Idx], Args);
|
|
Value *Success = IRB.CreateICmpEQ(C, CmpOperand);
|
|
Value *OldVal = C;
|
|
if (Ty != OrigOldValTy) {
|
|
// The value is a pointer, so we need to cast the return value.
|
|
OldVal = IRB.CreateIntToPtr(C, OrigOldValTy);
|
|
}
|
|
|
|
Value *Res =
|
|
IRB.CreateInsertValue(PoisonValue::get(CASI->getType()), OldVal, 0);
|
|
Res = IRB.CreateInsertValue(Res, Success, 1);
|
|
|
|
I->replaceAllUsesWith(Res);
|
|
I->eraseFromParent();
|
|
} else if (FenceInst *FI = dyn_cast<FenceInst>(I)) {
|
|
Value *Args[] = {createOrdering(&IRB, FI->getOrdering())};
|
|
FunctionCallee F = FI->getSyncScopeID() == SyncScope::SingleThread
|
|
? TsanAtomicSignalFence
|
|
: TsanAtomicThreadFence;
|
|
IRB.CreateCall(F, Args);
|
|
FI->eraseFromParent();
|
|
}
|
|
return true;
|
|
}
|
|
|
|
int ThreadSanitizer::getMemoryAccessFuncIndex(Type *OrigTy, Value *Addr,
|
|
const DataLayout &DL) {
|
|
assert(OrigTy->isSized());
|
|
if (OrigTy->isScalableTy()) {
|
|
// FIXME: support vscale.
|
|
return -1;
|
|
}
|
|
uint32_t TypeSize = DL.getTypeStoreSizeInBits(OrigTy);
|
|
if (TypeSize != 8 && TypeSize != 16 &&
|
|
TypeSize != 32 && TypeSize != 64 && TypeSize != 128) {
|
|
NumAccessesWithBadSize++;
|
|
// Ignore all unusual sizes.
|
|
return -1;
|
|
}
|
|
size_t Idx = llvm::countr_zero(TypeSize / 8);
|
|
assert(Idx < kNumberOfAccessSizes);
|
|
return Idx;
|
|
}
|