
We only need to do propagation on use instructions of the original value, rather than the replacing const value which might have lots of irrelavant uses. This is done by caching uses before replacing. Differential Revision: https://reviews.llvm.org/D119815
913 lines
34 KiB
C++
913 lines
34 KiB
C++
//===- FunctionSpecialization.cpp - Function Specialization ---------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This specialises functions with constant parameters. Constant parameters
|
|
// like function pointers and constant globals are propagated to the callee by
|
|
// specializing the function. The main benefit of this pass at the moment is
|
|
// that indirect calls are transformed into direct calls, which provides inline
|
|
// opportunities that the inliner would not have been able to achieve. That's
|
|
// why function specialisation is run before the inliner in the optimisation
|
|
// pipeline; that is by design. Otherwise, we would only benefit from constant
|
|
// passing, which is a valid use-case too, but hasn't been explored much in
|
|
// terms of performance uplifts, cost-model and compile-time impact.
|
|
//
|
|
// Current limitations:
|
|
// - It does not yet handle integer ranges. We do support "literal constants",
|
|
// but that's off by default under an option.
|
|
// - Only 1 argument per function is specialised,
|
|
// - The cost-model could be further looked into (it mainly focuses on inlining
|
|
// benefits),
|
|
// - We are not yet caching analysis results, but profiling and checking where
|
|
// extra compile time is spent didn't suggest this to be a problem.
|
|
//
|
|
// Ideas:
|
|
// - With a function specialization attribute for arguments, we could have
|
|
// a direct way to steer function specialization, avoiding the cost-model,
|
|
// and thus control compile-times / code-size.
|
|
//
|
|
// Todos:
|
|
// - Specializing recursive functions relies on running the transformation a
|
|
// number of times, which is controlled by option
|
|
// `func-specialization-max-iters`. Thus, increasing this value and the
|
|
// number of iterations, will linearly increase the number of times recursive
|
|
// functions get specialized, see also the discussion in
|
|
// https://reviews.llvm.org/D106426 for details. Perhaps there is a
|
|
// compile-time friendlier way to control/limit the number of specialisations
|
|
// for recursive functions.
|
|
// - Don't transform the function if function specialization does not trigger;
|
|
// the SCCPSolver may make IR changes.
|
|
//
|
|
// References:
|
|
// - 2021 LLVM Dev Mtg “Introducing function specialisation, and can we enable
|
|
// it by default?”, https://www.youtube.com/watch?v=zJiCjeXgV5Q
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/AssumptionCache.h"
|
|
#include "llvm/Analysis/CodeMetrics.h"
|
|
#include "llvm/Analysis/DomTreeUpdater.h"
|
|
#include "llvm/Analysis/InlineCost.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/Transforms/Scalar/SCCP.h"
|
|
#include "llvm/Transforms/Utils/Cloning.h"
|
|
#include "llvm/Transforms/Utils/SizeOpts.h"
|
|
#include <cmath>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "function-specialization"
|
|
|
|
STATISTIC(NumFuncSpecialized, "Number of functions specialized");
|
|
|
|
static cl::opt<bool> ForceFunctionSpecialization(
|
|
"force-function-specialization", cl::init(false), cl::Hidden,
|
|
cl::desc("Force function specialization for every call site with a "
|
|
"constant argument"));
|
|
|
|
static cl::opt<unsigned> FuncSpecializationMaxIters(
|
|
"func-specialization-max-iters", cl::Hidden,
|
|
cl::desc("The maximum number of iterations function specialization is run"),
|
|
cl::init(1));
|
|
|
|
static cl::opt<unsigned> MaxClonesThreshold(
|
|
"func-specialization-max-clones", cl::Hidden,
|
|
cl::desc("The maximum number of clones allowed for a single function "
|
|
"specialization"),
|
|
cl::init(3));
|
|
|
|
static cl::opt<unsigned> SmallFunctionThreshold(
|
|
"func-specialization-size-threshold", cl::Hidden,
|
|
cl::desc("Don't specialize functions that have less than this theshold "
|
|
"number of instructions"),
|
|
cl::init(100));
|
|
|
|
static cl::opt<unsigned>
|
|
AvgLoopIterationCount("func-specialization-avg-iters-cost", cl::Hidden,
|
|
cl::desc("Average loop iteration count cost"),
|
|
cl::init(10));
|
|
|
|
static cl::opt<bool> SpecializeOnAddresses(
|
|
"func-specialization-on-address", cl::init(false), cl::Hidden,
|
|
cl::desc("Enable function specialization on the address of global values"));
|
|
|
|
// TODO: This needs checking to see the impact on compile-times, which is why
|
|
// this is off by default for now.
|
|
static cl::opt<bool> EnableSpecializationForLiteralConstant(
|
|
"function-specialization-for-literal-constant", cl::init(false), cl::Hidden,
|
|
cl::desc("Enable specialization of functions that take a literal constant "
|
|
"as an argument."));
|
|
|
|
namespace {
|
|
// Bookkeeping struct to pass data from the analysis and profitability phase
|
|
// to the actual transform helper functions.
|
|
struct ArgInfo {
|
|
Function *Fn; // The function to perform specialisation on.
|
|
Argument *Arg; // The Formal argument being analysed.
|
|
Constant *Const; // A corresponding actual constant argument.
|
|
InstructionCost Gain; // Profitability: Gain = Bonus - Cost.
|
|
|
|
// Flag if this will be a partial specialization, in which case we will need
|
|
// to keep the original function around in addition to the added
|
|
// specializations.
|
|
bool Partial = false;
|
|
|
|
ArgInfo(Function *F, Argument *A, Constant *C, InstructionCost G)
|
|
: Fn(F), Arg(A), Const(C), Gain(G){};
|
|
};
|
|
} // Anonymous namespace
|
|
|
|
using FuncList = SmallVectorImpl<Function *>;
|
|
using ConstList = SmallVectorImpl<Constant *>;
|
|
|
|
// Helper to check if \p LV is either a constant or a constant
|
|
// range with a single element. This should cover exactly the same cases as the
|
|
// old ValueLatticeElement::isConstant() and is intended to be used in the
|
|
// transition to ValueLatticeElement.
|
|
static bool isConstant(const ValueLatticeElement &LV) {
|
|
return LV.isConstant() ||
|
|
(LV.isConstantRange() && LV.getConstantRange().isSingleElement());
|
|
}
|
|
|
|
// Helper to check if \p LV is either overdefined or a constant int.
|
|
static bool isOverdefined(const ValueLatticeElement &LV) {
|
|
return !LV.isUnknownOrUndef() && !isConstant(LV);
|
|
}
|
|
|
|
static Constant *getPromotableAlloca(AllocaInst *Alloca, CallInst *Call) {
|
|
Value *StoreValue = nullptr;
|
|
for (auto *User : Alloca->users()) {
|
|
// We can't use llvm::isAllocaPromotable() as that would fail because of
|
|
// the usage in the CallInst, which is what we check here.
|
|
if (User == Call)
|
|
continue;
|
|
if (auto *Bitcast = dyn_cast<BitCastInst>(User)) {
|
|
if (!Bitcast->hasOneUse() || *Bitcast->user_begin() != Call)
|
|
return nullptr;
|
|
continue;
|
|
}
|
|
|
|
if (auto *Store = dyn_cast<StoreInst>(User)) {
|
|
// This is a duplicate store, bail out.
|
|
if (StoreValue || Store->isVolatile())
|
|
return nullptr;
|
|
StoreValue = Store->getValueOperand();
|
|
continue;
|
|
}
|
|
// Bail if there is any other unknown usage.
|
|
return nullptr;
|
|
}
|
|
return dyn_cast_or_null<Constant>(StoreValue);
|
|
}
|
|
|
|
// A constant stack value is an AllocaInst that has a single constant
|
|
// value stored to it. Return this constant if such an alloca stack value
|
|
// is a function argument.
|
|
static Constant *getConstantStackValue(CallInst *Call, Value *Val,
|
|
SCCPSolver &Solver) {
|
|
if (!Val)
|
|
return nullptr;
|
|
Val = Val->stripPointerCasts();
|
|
if (auto *ConstVal = dyn_cast<ConstantInt>(Val))
|
|
return ConstVal;
|
|
auto *Alloca = dyn_cast<AllocaInst>(Val);
|
|
if (!Alloca || !Alloca->getAllocatedType()->isIntegerTy())
|
|
return nullptr;
|
|
return getPromotableAlloca(Alloca, Call);
|
|
}
|
|
|
|
// To support specializing recursive functions, it is important to propagate
|
|
// constant arguments because after a first iteration of specialisation, a
|
|
// reduced example may look like this:
|
|
//
|
|
// define internal void @RecursiveFn(i32* arg1) {
|
|
// %temp = alloca i32, align 4
|
|
// store i32 2 i32* %temp, align 4
|
|
// call void @RecursiveFn.1(i32* nonnull %temp)
|
|
// ret void
|
|
// }
|
|
//
|
|
// Before a next iteration, we need to propagate the constant like so
|
|
// which allows further specialization in next iterations.
|
|
//
|
|
// @funcspec.arg = internal constant i32 2
|
|
//
|
|
// define internal void @someFunc(i32* arg1) {
|
|
// call void @otherFunc(i32* nonnull @funcspec.arg)
|
|
// ret void
|
|
// }
|
|
//
|
|
static void constantArgPropagation(FuncList &WorkList,
|
|
Module &M, SCCPSolver &Solver) {
|
|
// Iterate over the argument tracked functions see if there
|
|
// are any new constant values for the call instruction via
|
|
// stack variables.
|
|
for (auto *F : WorkList) {
|
|
// TODO: Generalize for any read only arguments.
|
|
if (F->arg_size() != 1)
|
|
continue;
|
|
|
|
auto &Arg = *F->arg_begin();
|
|
if (!Arg.onlyReadsMemory() || !Arg.getType()->isPointerTy())
|
|
continue;
|
|
|
|
for (auto *User : F->users()) {
|
|
auto *Call = dyn_cast<CallInst>(User);
|
|
if (!Call)
|
|
break;
|
|
auto *ArgOp = Call->getArgOperand(0);
|
|
auto *ArgOpType = ArgOp->getType();
|
|
auto *ConstVal = getConstantStackValue(Call, ArgOp, Solver);
|
|
if (!ConstVal)
|
|
break;
|
|
|
|
Value *GV = new GlobalVariable(M, ConstVal->getType(), true,
|
|
GlobalValue::InternalLinkage, ConstVal,
|
|
"funcspec.arg");
|
|
|
|
if (ArgOpType != ConstVal->getType())
|
|
GV = ConstantExpr::getBitCast(cast<Constant>(GV), ArgOp->getType());
|
|
|
|
Call->setArgOperand(0, GV);
|
|
|
|
// Add the changed CallInst to Solver Worklist
|
|
Solver.visitCall(*Call);
|
|
}
|
|
}
|
|
}
|
|
|
|
// ssa_copy intrinsics are introduced by the SCCP solver. These intrinsics
|
|
// interfere with the constantArgPropagation optimization.
|
|
static void removeSSACopy(Function &F) {
|
|
for (BasicBlock &BB : F) {
|
|
for (Instruction &Inst : llvm::make_early_inc_range(BB)) {
|
|
auto *II = dyn_cast<IntrinsicInst>(&Inst);
|
|
if (!II)
|
|
continue;
|
|
if (II->getIntrinsicID() != Intrinsic::ssa_copy)
|
|
continue;
|
|
Inst.replaceAllUsesWith(II->getOperand(0));
|
|
Inst.eraseFromParent();
|
|
}
|
|
}
|
|
}
|
|
|
|
static void removeSSACopy(Module &M) {
|
|
for (Function &F : M)
|
|
removeSSACopy(F);
|
|
}
|
|
|
|
namespace {
|
|
class FunctionSpecializer {
|
|
|
|
/// The IPSCCP Solver.
|
|
SCCPSolver &Solver;
|
|
|
|
/// Analyses used to help determine if a function should be specialized.
|
|
std::function<AssumptionCache &(Function &)> GetAC;
|
|
std::function<TargetTransformInfo &(Function &)> GetTTI;
|
|
std::function<TargetLibraryInfo &(Function &)> GetTLI;
|
|
|
|
SmallPtrSet<Function *, 2> SpecializedFuncs;
|
|
SmallVector<Instruction *> ReplacedWithConstant;
|
|
|
|
public:
|
|
FunctionSpecializer(SCCPSolver &Solver,
|
|
std::function<AssumptionCache &(Function &)> GetAC,
|
|
std::function<TargetTransformInfo &(Function &)> GetTTI,
|
|
std::function<TargetLibraryInfo &(Function &)> GetTLI)
|
|
: Solver(Solver), GetAC(GetAC), GetTTI(GetTTI), GetTLI(GetTLI) {}
|
|
|
|
/// Attempt to specialize functions in the module to enable constant
|
|
/// propagation across function boundaries.
|
|
///
|
|
/// \returns true if at least one function is specialized.
|
|
bool
|
|
specializeFunctions(FuncList &FuncDecls,
|
|
FuncList &CurrentSpecializations) {
|
|
bool Changed = false;
|
|
for (auto *F : FuncDecls) {
|
|
if (!isCandidateFunction(F, CurrentSpecializations))
|
|
continue;
|
|
|
|
auto Cost = getSpecializationCost(F);
|
|
if (!Cost.isValid()) {
|
|
LLVM_DEBUG(
|
|
dbgs() << "FnSpecialization: Invalid specialisation cost.\n");
|
|
continue;
|
|
}
|
|
|
|
auto ConstArgs = calculateGains(F, Cost);
|
|
if (ConstArgs.empty()) {
|
|
LLVM_DEBUG(dbgs() << "FnSpecialization: no possible constants found\n");
|
|
continue;
|
|
}
|
|
|
|
for (auto &CA : ConstArgs) {
|
|
specializeFunction(CA, CurrentSpecializations);
|
|
Changed = true;
|
|
}
|
|
}
|
|
|
|
updateSpecializedFuncs(FuncDecls, CurrentSpecializations);
|
|
NumFuncSpecialized += NbFunctionsSpecialized;
|
|
return Changed;
|
|
}
|
|
|
|
void removeDeadInstructions() {
|
|
for (auto *I : ReplacedWithConstant) {
|
|
LLVM_DEBUG(dbgs() << "FnSpecialization: Removing dead instruction "
|
|
<< *I << "\n");
|
|
I->eraseFromParent();
|
|
}
|
|
ReplacedWithConstant.clear();
|
|
}
|
|
|
|
bool tryToReplaceWithConstant(Value *V) {
|
|
if (!V->getType()->isSingleValueType() || isa<CallBase>(V) ||
|
|
V->user_empty())
|
|
return false;
|
|
|
|
const ValueLatticeElement &IV = Solver.getLatticeValueFor(V);
|
|
if (isOverdefined(IV))
|
|
return false;
|
|
auto *Const =
|
|
isConstant(IV) ? Solver.getConstant(IV) : UndefValue::get(V->getType());
|
|
|
|
LLVM_DEBUG(dbgs() << "FnSpecialization: Replacing " << *V
|
|
<< "\nFnSpecialization: with " << *Const << "\n");
|
|
|
|
// Record uses of V to avoid visiting irrelevant uses of const later.
|
|
SmallVector<Instruction *> UseInsts;
|
|
for (auto *U : V->users())
|
|
if (auto *I = dyn_cast<Instruction>(U))
|
|
if (Solver.isBlockExecutable(I->getParent()))
|
|
UseInsts.push_back(I);
|
|
|
|
V->replaceAllUsesWith(Const);
|
|
|
|
for (auto *I : UseInsts)
|
|
Solver.visit(I);
|
|
|
|
// Remove the instruction from Block and Solver.
|
|
if (auto *I = dyn_cast<Instruction>(V)) {
|
|
if (I->isSafeToRemove()) {
|
|
ReplacedWithConstant.push_back(I);
|
|
Solver.removeLatticeValueFor(I);
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
private:
|
|
// The number of functions specialised, used for collecting statistics and
|
|
// also in the cost model.
|
|
unsigned NbFunctionsSpecialized = 0;
|
|
|
|
/// Clone the function \p F and remove the ssa_copy intrinsics added by
|
|
/// the SCCPSolver in the cloned version.
|
|
Function *cloneCandidateFunction(Function *F) {
|
|
ValueToValueMapTy EmptyMap;
|
|
Function *Clone = CloneFunction(F, EmptyMap);
|
|
removeSSACopy(*Clone);
|
|
return Clone;
|
|
}
|
|
|
|
/// This function decides whether it's worthwhile to specialize function \p F
|
|
/// based on the known constant values its arguments can take on, i.e. it
|
|
/// calculates a gain and returns a list of actual arguments that are deemed
|
|
/// profitable to specialize. Specialization is performed on the first
|
|
/// interesting argument. Specializations based on additional arguments will
|
|
/// be evaluated on following iterations of the main IPSCCP solve loop.
|
|
SmallVector<ArgInfo> calculateGains(Function *F, InstructionCost Cost) {
|
|
SmallVector<ArgInfo> Worklist;
|
|
// Determine if we should specialize the function based on the values the
|
|
// argument can take on. If specialization is not profitable, we continue
|
|
// on to the next argument.
|
|
for (Argument &FormalArg : F->args()) {
|
|
LLVM_DEBUG(dbgs() << "FnSpecialization: Analysing arg: "
|
|
<< FormalArg.getName() << "\n");
|
|
// Determine if this argument is interesting. If we know the argument can
|
|
// take on any constant values, they are collected in Constants. If the
|
|
// argument can only ever equal a constant value in Constants, the
|
|
// function will be completely specialized, and the IsPartial flag will
|
|
// be set to false by isArgumentInteresting (that function only adds
|
|
// values to the Constants list that are deemed profitable).
|
|
bool IsPartial = true;
|
|
SmallVector<Constant *> ActualConstArg;
|
|
if (!isArgumentInteresting(&FormalArg, ActualConstArg, IsPartial)) {
|
|
LLVM_DEBUG(dbgs() << "FnSpecialization: Argument is not interesting\n");
|
|
continue;
|
|
}
|
|
|
|
for (auto *ActualArg : ActualConstArg) {
|
|
InstructionCost Gain =
|
|
ForceFunctionSpecialization
|
|
? 1
|
|
: getSpecializationBonus(&FormalArg, ActualArg) - Cost;
|
|
|
|
if (Gain <= 0)
|
|
continue;
|
|
Worklist.push_back({F, &FormalArg, ActualArg, Gain});
|
|
}
|
|
|
|
if (Worklist.empty())
|
|
continue;
|
|
|
|
// Sort the candidates in descending order.
|
|
llvm::stable_sort(Worklist, [](const ArgInfo &L, const ArgInfo &R) {
|
|
return L.Gain > R.Gain;
|
|
});
|
|
|
|
// Truncate the worklist to 'MaxClonesThreshold' candidates if
|
|
// necessary.
|
|
if (Worklist.size() > MaxClonesThreshold) {
|
|
LLVM_DEBUG(dbgs() << "FnSpecialization: number of candidates exceed "
|
|
<< "the maximum number of clones threshold.\n"
|
|
<< "Truncating worklist to " << MaxClonesThreshold
|
|
<< " candidates.\n");
|
|
Worklist.erase(Worklist.begin() + MaxClonesThreshold,
|
|
Worklist.end());
|
|
}
|
|
|
|
if (IsPartial || Worklist.size() < ActualConstArg.size())
|
|
for (auto &ActualArg : Worklist)
|
|
ActualArg.Partial = true;
|
|
|
|
LLVM_DEBUG(dbgs() << "Sorted list of candidates by gain:\n";
|
|
for (auto &C
|
|
: Worklist) {
|
|
dbgs() << "- Function = " << C.Fn->getName() << ", ";
|
|
dbgs() << "FormalArg = " << C.Arg->getName() << ", ";
|
|
dbgs() << "ActualArg = " << C.Const->getName() << ", ";
|
|
dbgs() << "Gain = " << C.Gain << "\n";
|
|
});
|
|
|
|
// FIXME: Only one argument per function.
|
|
break;
|
|
}
|
|
return Worklist;
|
|
}
|
|
|
|
bool isCandidateFunction(Function *F, FuncList &Specializations) {
|
|
// Do not specialize the cloned function again.
|
|
if (SpecializedFuncs.contains(F))
|
|
return false;
|
|
|
|
// If we're optimizing the function for size, we shouldn't specialize it.
|
|
if (F->hasOptSize() ||
|
|
shouldOptimizeForSize(F, nullptr, nullptr, PGSOQueryType::IRPass))
|
|
return false;
|
|
|
|
// Exit if the function is not executable. There's no point in specializing
|
|
// a dead function.
|
|
if (!Solver.isBlockExecutable(&F->getEntryBlock()))
|
|
return false;
|
|
|
|
// It wastes time to specialize a function which would get inlined finally.
|
|
if (F->hasFnAttribute(Attribute::AlwaysInline))
|
|
return false;
|
|
|
|
LLVM_DEBUG(dbgs() << "FnSpecialization: Try function: " << F->getName()
|
|
<< "\n");
|
|
return true;
|
|
}
|
|
|
|
void specializeFunction(ArgInfo &AI, FuncList &Specializations) {
|
|
Function *Clone = cloneCandidateFunction(AI.Fn);
|
|
Argument *ClonedArg = Clone->getArg(AI.Arg->getArgNo());
|
|
|
|
// Rewrite calls to the function so that they call the clone instead.
|
|
rewriteCallSites(AI.Fn, Clone, *ClonedArg, AI.Const);
|
|
|
|
// Initialize the lattice state of the arguments of the function clone,
|
|
// marking the argument on which we specialized the function constant
|
|
// with the given value.
|
|
Solver.markArgInFuncSpecialization(AI.Fn, ClonedArg, AI.Const);
|
|
|
|
// Mark all the specialized functions
|
|
Specializations.push_back(Clone);
|
|
NbFunctionsSpecialized++;
|
|
|
|
// If the function has been completely specialized, the original function
|
|
// is no longer needed. Mark it unreachable.
|
|
if (!AI.Partial)
|
|
Solver.markFunctionUnreachable(AI.Fn);
|
|
}
|
|
|
|
/// Compute and return the cost of specializing function \p F.
|
|
InstructionCost getSpecializationCost(Function *F) {
|
|
// Compute the code metrics for the function.
|
|
SmallPtrSet<const Value *, 32> EphValues;
|
|
CodeMetrics::collectEphemeralValues(F, &(GetAC)(*F), EphValues);
|
|
CodeMetrics Metrics;
|
|
for (BasicBlock &BB : *F)
|
|
Metrics.analyzeBasicBlock(&BB, (GetTTI)(*F), EphValues);
|
|
|
|
// If the code metrics reveal that we shouldn't duplicate the function, we
|
|
// shouldn't specialize it. Set the specialization cost to Invalid.
|
|
// Or if the lines of codes implies that this function is easy to get
|
|
// inlined so that we shouldn't specialize it.
|
|
if (Metrics.notDuplicatable ||
|
|
(!ForceFunctionSpecialization &&
|
|
Metrics.NumInsts < SmallFunctionThreshold)) {
|
|
InstructionCost C{};
|
|
C.setInvalid();
|
|
return C;
|
|
}
|
|
|
|
// Otherwise, set the specialization cost to be the cost of all the
|
|
// instructions in the function and penalty for specializing more functions.
|
|
unsigned Penalty = NbFunctionsSpecialized + 1;
|
|
return Metrics.NumInsts * InlineConstants::InstrCost * Penalty;
|
|
}
|
|
|
|
InstructionCost getUserBonus(User *U, llvm::TargetTransformInfo &TTI,
|
|
LoopInfo &LI) {
|
|
auto *I = dyn_cast_or_null<Instruction>(U);
|
|
// If not an instruction we do not know how to evaluate.
|
|
// Keep minimum possible cost for now so that it doesnt affect
|
|
// specialization.
|
|
if (!I)
|
|
return std::numeric_limits<unsigned>::min();
|
|
|
|
auto Cost = TTI.getUserCost(U, TargetTransformInfo::TCK_SizeAndLatency);
|
|
|
|
// Traverse recursively if there are more uses.
|
|
// TODO: Any other instructions to be added here?
|
|
if (I->mayReadFromMemory() || I->isCast())
|
|
for (auto *User : I->users())
|
|
Cost += getUserBonus(User, TTI, LI);
|
|
|
|
// Increase the cost if it is inside the loop.
|
|
auto LoopDepth = LI.getLoopDepth(I->getParent());
|
|
Cost *= std::pow((double)AvgLoopIterationCount, LoopDepth);
|
|
return Cost;
|
|
}
|
|
|
|
/// Compute a bonus for replacing argument \p A with constant \p C.
|
|
InstructionCost getSpecializationBonus(Argument *A, Constant *C) {
|
|
Function *F = A->getParent();
|
|
DominatorTree DT(*F);
|
|
LoopInfo LI(DT);
|
|
auto &TTI = (GetTTI)(*F);
|
|
LLVM_DEBUG(dbgs() << "FnSpecialization: Analysing bonus for: " << *A
|
|
<< "\n");
|
|
|
|
InstructionCost TotalCost = 0;
|
|
for (auto *U : A->users()) {
|
|
TotalCost += getUserBonus(U, TTI, LI);
|
|
LLVM_DEBUG(dbgs() << "FnSpecialization: User cost ";
|
|
TotalCost.print(dbgs()); dbgs() << " for: " << *U << "\n");
|
|
}
|
|
|
|
// The below heuristic is only concerned with exposing inlining
|
|
// opportunities via indirect call promotion. If the argument is not a
|
|
// function pointer, give up.
|
|
if (!isa<PointerType>(A->getType()) ||
|
|
!isa<FunctionType>(A->getType()->getPointerElementType()))
|
|
return TotalCost;
|
|
|
|
// Since the argument is a function pointer, its incoming constant values
|
|
// should be functions or constant expressions. The code below attempts to
|
|
// look through cast expressions to find the function that will be called.
|
|
Value *CalledValue = C;
|
|
while (isa<ConstantExpr>(CalledValue) &&
|
|
cast<ConstantExpr>(CalledValue)->isCast())
|
|
CalledValue = cast<User>(CalledValue)->getOperand(0);
|
|
Function *CalledFunction = dyn_cast<Function>(CalledValue);
|
|
if (!CalledFunction)
|
|
return TotalCost;
|
|
|
|
// Get TTI for the called function (used for the inline cost).
|
|
auto &CalleeTTI = (GetTTI)(*CalledFunction);
|
|
|
|
// Look at all the call sites whose called value is the argument.
|
|
// Specializing the function on the argument would allow these indirect
|
|
// calls to be promoted to direct calls. If the indirect call promotion
|
|
// would likely enable the called function to be inlined, specializing is a
|
|
// good idea.
|
|
int Bonus = 0;
|
|
for (User *U : A->users()) {
|
|
if (!isa<CallInst>(U) && !isa<InvokeInst>(U))
|
|
continue;
|
|
auto *CS = cast<CallBase>(U);
|
|
if (CS->getCalledOperand() != A)
|
|
continue;
|
|
|
|
// Get the cost of inlining the called function at this call site. Note
|
|
// that this is only an estimate. The called function may eventually
|
|
// change in a way that leads to it not being inlined here, even though
|
|
// inlining looks profitable now. For example, one of its called
|
|
// functions may be inlined into it, making the called function too large
|
|
// to be inlined into this call site.
|
|
//
|
|
// We apply a boost for performing indirect call promotion by increasing
|
|
// the default threshold by the threshold for indirect calls.
|
|
auto Params = getInlineParams();
|
|
Params.DefaultThreshold += InlineConstants::IndirectCallThreshold;
|
|
InlineCost IC =
|
|
getInlineCost(*CS, CalledFunction, Params, CalleeTTI, GetAC, GetTLI);
|
|
|
|
// We clamp the bonus for this call to be between zero and the default
|
|
// threshold.
|
|
if (IC.isAlways())
|
|
Bonus += Params.DefaultThreshold;
|
|
else if (IC.isVariable() && IC.getCostDelta() > 0)
|
|
Bonus += IC.getCostDelta();
|
|
}
|
|
|
|
return TotalCost + Bonus;
|
|
}
|
|
|
|
/// Determine if we should specialize a function based on the incoming values
|
|
/// of the given argument.
|
|
///
|
|
/// This function implements the goal-directed heuristic. It determines if
|
|
/// specializing the function based on the incoming values of argument \p A
|
|
/// would result in any significant optimization opportunities. If
|
|
/// optimization opportunities exist, the constant values of \p A on which to
|
|
/// specialize the function are collected in \p Constants. If the values in
|
|
/// \p Constants represent the complete set of values that \p A can take on,
|
|
/// the function will be completely specialized, and the \p IsPartial flag is
|
|
/// set to false.
|
|
///
|
|
/// \returns true if the function should be specialized on the given
|
|
/// argument.
|
|
bool isArgumentInteresting(Argument *A, ConstList &Constants,
|
|
bool &IsPartial) {
|
|
// For now, don't attempt to specialize functions based on the values of
|
|
// composite types.
|
|
if (!A->getType()->isSingleValueType() || A->user_empty())
|
|
return false;
|
|
|
|
// If the argument isn't overdefined, there's nothing to do. It should
|
|
// already be constant.
|
|
if (!Solver.getLatticeValueFor(A).isOverdefined()) {
|
|
LLVM_DEBUG(dbgs() << "FnSpecialization: nothing to do, arg is already "
|
|
<< "constant?\n");
|
|
return false;
|
|
}
|
|
|
|
// Collect the constant values that the argument can take on. If the
|
|
// argument can't take on any constant values, we aren't going to
|
|
// specialize the function. While it's possible to specialize the function
|
|
// based on non-constant arguments, there's likely not much benefit to
|
|
// constant propagation in doing so.
|
|
//
|
|
// TODO 1: currently it won't specialize if there are over the threshold of
|
|
// calls using the same argument, e.g foo(a) x 4 and foo(b) x 1, but it
|
|
// might be beneficial to take the occurrences into account in the cost
|
|
// model, so we would need to find the unique constants.
|
|
//
|
|
// TODO 2: this currently does not support constants, i.e. integer ranges.
|
|
//
|
|
IsPartial = !getPossibleConstants(A, Constants);
|
|
LLVM_DEBUG(dbgs() << "FnSpecialization: interesting arg: " << *A << "\n");
|
|
return true;
|
|
}
|
|
|
|
/// Collect in \p Constants all the constant values that argument \p A can
|
|
/// take on.
|
|
///
|
|
/// \returns true if all of the values the argument can take on are constant
|
|
/// (e.g., the argument's parent function cannot be called with an
|
|
/// overdefined value).
|
|
bool getPossibleConstants(Argument *A, ConstList &Constants) {
|
|
Function *F = A->getParent();
|
|
bool AllConstant = true;
|
|
|
|
// Iterate over all the call sites of the argument's parent function.
|
|
for (User *U : F->users()) {
|
|
if (!isa<CallInst>(U) && !isa<InvokeInst>(U))
|
|
continue;
|
|
auto &CS = *cast<CallBase>(U);
|
|
// If the call site has attribute minsize set, that callsite won't be
|
|
// specialized.
|
|
if (CS.hasFnAttr(Attribute::MinSize)) {
|
|
AllConstant = false;
|
|
continue;
|
|
}
|
|
|
|
// If the parent of the call site will never be executed, we don't need
|
|
// to worry about the passed value.
|
|
if (!Solver.isBlockExecutable(CS.getParent()))
|
|
continue;
|
|
|
|
auto *V = CS.getArgOperand(A->getArgNo());
|
|
if (isa<PoisonValue>(V))
|
|
return false;
|
|
|
|
// For now, constant expressions are fine but only if they are function
|
|
// calls.
|
|
if (auto *CE = dyn_cast<ConstantExpr>(V))
|
|
if (!isa<Function>(CE->getOperand(0)))
|
|
return false;
|
|
|
|
// TrackValueOfGlobalVariable only tracks scalar global variables.
|
|
if (auto *GV = dyn_cast<GlobalVariable>(V)) {
|
|
// Check if we want to specialize on the address of non-constant
|
|
// global values.
|
|
if (!GV->isConstant())
|
|
if (!SpecializeOnAddresses)
|
|
return false;
|
|
|
|
if (!GV->getValueType()->isSingleValueType())
|
|
return false;
|
|
}
|
|
|
|
if (isa<Constant>(V) && (Solver.getLatticeValueFor(V).isConstant() ||
|
|
EnableSpecializationForLiteralConstant))
|
|
Constants.push_back(cast<Constant>(V));
|
|
else
|
|
AllConstant = false;
|
|
}
|
|
|
|
// If the argument can only take on constant values, AllConstant will be
|
|
// true.
|
|
return AllConstant;
|
|
}
|
|
|
|
/// Rewrite calls to function \p F to call function \p Clone instead.
|
|
///
|
|
/// This function modifies calls to function \p F whose argument at index \p
|
|
/// ArgNo is equal to constant \p C. The calls are rewritten to call function
|
|
/// \p Clone instead.
|
|
///
|
|
/// Callsites that have been marked with the MinSize function attribute won't
|
|
/// be specialized and rewritten.
|
|
void rewriteCallSites(Function *F, Function *Clone, Argument &Arg,
|
|
Constant *C) {
|
|
unsigned ArgNo = Arg.getArgNo();
|
|
SmallVector<CallBase *, 4> CallSitesToRewrite;
|
|
for (auto *U : F->users()) {
|
|
if (!isa<CallInst>(U) && !isa<InvokeInst>(U))
|
|
continue;
|
|
auto &CS = *cast<CallBase>(U);
|
|
if (!CS.getCalledFunction() || CS.getCalledFunction() != F)
|
|
continue;
|
|
CallSitesToRewrite.push_back(&CS);
|
|
}
|
|
for (auto *CS : CallSitesToRewrite) {
|
|
if ((CS->getFunction() == Clone && CS->getArgOperand(ArgNo) == &Arg) ||
|
|
CS->getArgOperand(ArgNo) == C) {
|
|
CS->setCalledFunction(Clone);
|
|
Solver.markOverdefined(CS);
|
|
}
|
|
}
|
|
}
|
|
|
|
void updateSpecializedFuncs(FuncList &FuncDecls,
|
|
FuncList &CurrentSpecializations) {
|
|
for (auto *SpecializedFunc : CurrentSpecializations) {
|
|
SpecializedFuncs.insert(SpecializedFunc);
|
|
|
|
// Initialize the state of the newly created functions, marking them
|
|
// argument-tracked and executable.
|
|
if (SpecializedFunc->hasExactDefinition() &&
|
|
!SpecializedFunc->hasFnAttribute(Attribute::Naked))
|
|
Solver.addTrackedFunction(SpecializedFunc);
|
|
|
|
Solver.addArgumentTrackedFunction(SpecializedFunc);
|
|
FuncDecls.push_back(SpecializedFunc);
|
|
Solver.markBlockExecutable(&SpecializedFunc->front());
|
|
|
|
// Replace the function arguments for the specialized functions.
|
|
for (Argument &Arg : SpecializedFunc->args())
|
|
if (!Arg.use_empty() && tryToReplaceWithConstant(&Arg))
|
|
LLVM_DEBUG(dbgs() << "FnSpecialization: Replaced constant argument: "
|
|
<< Arg.getName() << "\n");
|
|
}
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
bool llvm::runFunctionSpecialization(
|
|
Module &M, const DataLayout &DL,
|
|
std::function<TargetLibraryInfo &(Function &)> GetTLI,
|
|
std::function<TargetTransformInfo &(Function &)> GetTTI,
|
|
std::function<AssumptionCache &(Function &)> GetAC,
|
|
function_ref<AnalysisResultsForFn(Function &)> GetAnalysis) {
|
|
SCCPSolver Solver(DL, GetTLI, M.getContext());
|
|
FunctionSpecializer FS(Solver, GetAC, GetTTI, GetTLI);
|
|
bool Changed = false;
|
|
|
|
// Loop over all functions, marking arguments to those with their addresses
|
|
// taken or that are external as overdefined.
|
|
for (Function &F : M) {
|
|
if (F.isDeclaration())
|
|
continue;
|
|
if (F.hasFnAttribute(Attribute::NoDuplicate))
|
|
continue;
|
|
|
|
LLVM_DEBUG(dbgs() << "\nFnSpecialization: Analysing decl: " << F.getName()
|
|
<< "\n");
|
|
Solver.addAnalysis(F, GetAnalysis(F));
|
|
|
|
// Determine if we can track the function's arguments. If so, add the
|
|
// function to the solver's set of argument-tracked functions.
|
|
if (canTrackArgumentsInterprocedurally(&F)) {
|
|
LLVM_DEBUG(dbgs() << "FnSpecialization: Can track arguments\n");
|
|
Solver.addArgumentTrackedFunction(&F);
|
|
continue;
|
|
} else {
|
|
LLVM_DEBUG(dbgs() << "FnSpecialization: Can't track arguments!\n"
|
|
<< "FnSpecialization: Doesn't have local linkage, or "
|
|
<< "has its address taken\n");
|
|
}
|
|
|
|
// Assume the function is called.
|
|
Solver.markBlockExecutable(&F.front());
|
|
|
|
// Assume nothing about the incoming arguments.
|
|
for (Argument &AI : F.args())
|
|
Solver.markOverdefined(&AI);
|
|
}
|
|
|
|
// Determine if we can track any of the module's global variables. If so, add
|
|
// the global variables we can track to the solver's set of tracked global
|
|
// variables.
|
|
for (GlobalVariable &G : M.globals()) {
|
|
G.removeDeadConstantUsers();
|
|
if (canTrackGlobalVariableInterprocedurally(&G))
|
|
Solver.trackValueOfGlobalVariable(&G);
|
|
}
|
|
|
|
auto &TrackedFuncs = Solver.getArgumentTrackedFunctions();
|
|
SmallVector<Function *, 16> FuncDecls(TrackedFuncs.begin(),
|
|
TrackedFuncs.end());
|
|
|
|
// No tracked functions, so nothing to do: don't run the solver and remove
|
|
// the ssa_copy intrinsics that may have been introduced.
|
|
if (TrackedFuncs.empty()) {
|
|
removeSSACopy(M);
|
|
return false;
|
|
}
|
|
|
|
// Solve for constants.
|
|
auto RunSCCPSolver = [&](auto &WorkList) {
|
|
bool ResolvedUndefs = true;
|
|
|
|
while (ResolvedUndefs) {
|
|
// Not running the solver unnecessary is checked in regression test
|
|
// nothing-to-do.ll, so if this debug message is changed, this regression
|
|
// test needs updating too.
|
|
LLVM_DEBUG(dbgs() << "FnSpecialization: Running solver\n");
|
|
|
|
Solver.solve();
|
|
LLVM_DEBUG(dbgs() << "FnSpecialization: Resolving undefs\n");
|
|
ResolvedUndefs = false;
|
|
for (Function *F : WorkList)
|
|
if (Solver.resolvedUndefsIn(*F))
|
|
ResolvedUndefs = true;
|
|
}
|
|
|
|
for (auto *F : WorkList) {
|
|
for (BasicBlock &BB : *F) {
|
|
if (!Solver.isBlockExecutable(&BB))
|
|
continue;
|
|
// FIXME: The solver may make changes to the function here, so set
|
|
// Changed, even if later function specialization does not trigger.
|
|
for (auto &I : make_early_inc_range(BB))
|
|
Changed |= FS.tryToReplaceWithConstant(&I);
|
|
}
|
|
}
|
|
};
|
|
|
|
#ifndef NDEBUG
|
|
LLVM_DEBUG(dbgs() << "FnSpecialization: Worklist fn decls:\n");
|
|
for (auto *F : FuncDecls)
|
|
LLVM_DEBUG(dbgs() << "FnSpecialization: *) " << F->getName() << "\n");
|
|
#endif
|
|
|
|
// Initially resolve the constants in all the argument tracked functions.
|
|
RunSCCPSolver(FuncDecls);
|
|
|
|
SmallVector<Function *, 2> CurrentSpecializations;
|
|
unsigned I = 0;
|
|
while (FuncSpecializationMaxIters != I++ &&
|
|
FS.specializeFunctions(FuncDecls, CurrentSpecializations)) {
|
|
|
|
// Run the solver for the specialized functions.
|
|
RunSCCPSolver(CurrentSpecializations);
|
|
|
|
// Replace some unresolved constant arguments.
|
|
constantArgPropagation(FuncDecls, M, Solver);
|
|
|
|
CurrentSpecializations.clear();
|
|
Changed = true;
|
|
}
|
|
|
|
// Clean up the IR by removing dead instructions and ssa_copy intrinsics.
|
|
FS.removeDeadInstructions();
|
|
removeSSACopy(M);
|
|
return Changed;
|
|
}
|