
This patch pushes the computation of the start address of a memref in one place (a method in MemRefDescriptor.) This allows all the (indirect) users of this method to produce the start address in the same way. Thanks to this change, we expose more CSEs opportunities and thanks to that, the backend is able to properly find the `llvm.assume` expression related to the base address as demonstrated in the added test. Differential Revision: https://reviews.llvm.org/D148947
359 lines
14 KiB
C++
359 lines
14 KiB
C++
//===- Pattern.cpp - Conversion pattern to the LLVM dialect ---------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Conversion/LLVMCommon/Pattern.h"
|
|
#include "mlir/Dialect/LLVMIR/FunctionCallUtils.h"
|
|
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
|
|
#include "mlir/Dialect/LLVMIR/LLVMTypes.h"
|
|
#include "mlir/IR/AffineMap.h"
|
|
#include "mlir/IR/BuiltinAttributes.h"
|
|
|
|
using namespace mlir;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ConvertToLLVMPattern
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
ConvertToLLVMPattern::ConvertToLLVMPattern(StringRef rootOpName,
|
|
MLIRContext *context,
|
|
LLVMTypeConverter &typeConverter,
|
|
PatternBenefit benefit)
|
|
: ConversionPattern(typeConverter, rootOpName, benefit, context) {}
|
|
|
|
LLVMTypeConverter *ConvertToLLVMPattern::getTypeConverter() const {
|
|
return static_cast<LLVMTypeConverter *>(
|
|
ConversionPattern::getTypeConverter());
|
|
}
|
|
|
|
LLVM::LLVMDialect &ConvertToLLVMPattern::getDialect() const {
|
|
return *getTypeConverter()->getDialect();
|
|
}
|
|
|
|
Type ConvertToLLVMPattern::getIndexType() const {
|
|
return getTypeConverter()->getIndexType();
|
|
}
|
|
|
|
Type ConvertToLLVMPattern::getIntPtrType(unsigned addressSpace) const {
|
|
return IntegerType::get(&getTypeConverter()->getContext(),
|
|
getTypeConverter()->getPointerBitwidth(addressSpace));
|
|
}
|
|
|
|
Type ConvertToLLVMPattern::getVoidType() const {
|
|
return LLVM::LLVMVoidType::get(&getTypeConverter()->getContext());
|
|
}
|
|
|
|
Type ConvertToLLVMPattern::getVoidPtrType() const {
|
|
return getTypeConverter()->getPointerType(
|
|
IntegerType::get(&getTypeConverter()->getContext(), 8));
|
|
}
|
|
|
|
Value ConvertToLLVMPattern::createIndexAttrConstant(OpBuilder &builder,
|
|
Location loc,
|
|
Type resultType,
|
|
int64_t value) {
|
|
return builder.create<LLVM::ConstantOp>(loc, resultType,
|
|
builder.getIndexAttr(value));
|
|
}
|
|
|
|
Value ConvertToLLVMPattern::createIndexConstant(
|
|
ConversionPatternRewriter &builder, Location loc, uint64_t value) const {
|
|
return createIndexAttrConstant(builder, loc, getIndexType(), value);
|
|
}
|
|
|
|
Value ConvertToLLVMPattern::getStridedElementPtr(
|
|
Location loc, MemRefType type, Value memRefDesc, ValueRange indices,
|
|
ConversionPatternRewriter &rewriter) const {
|
|
|
|
auto [strides, offset] = getStridesAndOffset(type);
|
|
|
|
MemRefDescriptor memRefDescriptor(memRefDesc);
|
|
// Use a canonical representation of the start address so that later
|
|
// optimizations have a longer sequence of instructions to CSE.
|
|
// If we don't do that we would sprinkle the memref.offset in various
|
|
// position of the different address computations.
|
|
Value base =
|
|
memRefDescriptor.bufferPtr(rewriter, loc, *getTypeConverter(), type);
|
|
|
|
Value index;
|
|
for (int i = 0, e = indices.size(); i < e; ++i) {
|
|
Value increment = indices[i];
|
|
if (strides[i] != 1) { // Skip if stride is 1.
|
|
Value stride = ShapedType::isDynamic(strides[i])
|
|
? memRefDescriptor.stride(rewriter, loc, i)
|
|
: createIndexConstant(rewriter, loc, strides[i]);
|
|
increment = rewriter.create<LLVM::MulOp>(loc, increment, stride);
|
|
}
|
|
index =
|
|
index ? rewriter.create<LLVM::AddOp>(loc, index, increment) : increment;
|
|
}
|
|
|
|
Type elementPtrType = memRefDescriptor.getElementPtrType();
|
|
return index ? rewriter.create<LLVM::GEPOp>(
|
|
loc, elementPtrType,
|
|
getTypeConverter()->convertType(type.getElementType()),
|
|
base, index)
|
|
: base;
|
|
}
|
|
|
|
// Check if the MemRefType `type` is supported by the lowering. We currently
|
|
// only support memrefs with identity maps.
|
|
bool ConvertToLLVMPattern::isConvertibleAndHasIdentityMaps(
|
|
MemRefType type) const {
|
|
if (!typeConverter->convertType(type.getElementType()))
|
|
return false;
|
|
return type.getLayout().isIdentity();
|
|
}
|
|
|
|
Type ConvertToLLVMPattern::getElementPtrType(MemRefType type) const {
|
|
auto elementType = type.getElementType();
|
|
auto structElementType = typeConverter->convertType(elementType);
|
|
auto addressSpace = getTypeConverter()->getMemRefAddressSpace(type);
|
|
if (failed(addressSpace))
|
|
return {};
|
|
return getTypeConverter()->getPointerType(structElementType, *addressSpace);
|
|
}
|
|
|
|
void ConvertToLLVMPattern::getMemRefDescriptorSizes(
|
|
Location loc, MemRefType memRefType, ValueRange dynamicSizes,
|
|
ConversionPatternRewriter &rewriter, SmallVectorImpl<Value> &sizes,
|
|
SmallVectorImpl<Value> &strides, Value &sizeBytes) const {
|
|
assert(isConvertibleAndHasIdentityMaps(memRefType) &&
|
|
"layout maps must have been normalized away");
|
|
assert(count(memRefType.getShape(), ShapedType::kDynamic) ==
|
|
static_cast<ssize_t>(dynamicSizes.size()) &&
|
|
"dynamicSizes size doesn't match dynamic sizes count in memref shape");
|
|
|
|
sizes.reserve(memRefType.getRank());
|
|
unsigned dynamicIndex = 0;
|
|
for (int64_t size : memRefType.getShape()) {
|
|
sizes.push_back(size == ShapedType::kDynamic
|
|
? dynamicSizes[dynamicIndex++]
|
|
: createIndexConstant(rewriter, loc, size));
|
|
}
|
|
|
|
// Strides: iterate sizes in reverse order and multiply.
|
|
int64_t stride = 1;
|
|
Value runningStride = createIndexConstant(rewriter, loc, 1);
|
|
strides.resize(memRefType.getRank());
|
|
for (auto i = memRefType.getRank(); i-- > 0;) {
|
|
strides[i] = runningStride;
|
|
|
|
int64_t size = memRefType.getShape()[i];
|
|
if (size == 0)
|
|
continue;
|
|
bool useSizeAsStride = stride == 1;
|
|
if (size == ShapedType::kDynamic)
|
|
stride = ShapedType::kDynamic;
|
|
if (stride != ShapedType::kDynamic)
|
|
stride *= size;
|
|
|
|
if (useSizeAsStride)
|
|
runningStride = sizes[i];
|
|
else if (stride == ShapedType::kDynamic)
|
|
runningStride =
|
|
rewriter.create<LLVM::MulOp>(loc, runningStride, sizes[i]);
|
|
else
|
|
runningStride = createIndexConstant(rewriter, loc, stride);
|
|
}
|
|
|
|
// Buffer size in bytes.
|
|
Type elementType = typeConverter->convertType(memRefType.getElementType());
|
|
Type elementPtrType = getTypeConverter()->getPointerType(elementType);
|
|
Value nullPtr = rewriter.create<LLVM::NullOp>(loc, elementPtrType);
|
|
Value gepPtr = rewriter.create<LLVM::GEPOp>(loc, elementPtrType, elementType,
|
|
nullPtr, runningStride);
|
|
sizeBytes = rewriter.create<LLVM::PtrToIntOp>(loc, getIndexType(), gepPtr);
|
|
}
|
|
|
|
Value ConvertToLLVMPattern::getSizeInBytes(
|
|
Location loc, Type type, ConversionPatternRewriter &rewriter) const {
|
|
// Compute the size of an individual element. This emits the MLIR equivalent
|
|
// of the following sizeof(...) implementation in LLVM IR:
|
|
// %0 = getelementptr %elementType* null, %indexType 1
|
|
// %1 = ptrtoint %elementType* %0 to %indexType
|
|
// which is a common pattern of getting the size of a type in bytes.
|
|
Type llvmType = typeConverter->convertType(type);
|
|
auto convertedPtrType = getTypeConverter()->getPointerType(llvmType);
|
|
auto nullPtr = rewriter.create<LLVM::NullOp>(loc, convertedPtrType);
|
|
auto gep = rewriter.create<LLVM::GEPOp>(loc, convertedPtrType, llvmType,
|
|
nullPtr, ArrayRef<LLVM::GEPArg>{1});
|
|
return rewriter.create<LLVM::PtrToIntOp>(loc, getIndexType(), gep);
|
|
}
|
|
|
|
Value ConvertToLLVMPattern::getNumElements(
|
|
Location loc, ArrayRef<Value> shape,
|
|
ConversionPatternRewriter &rewriter) const {
|
|
// Compute the total number of memref elements.
|
|
Value numElements =
|
|
shape.empty() ? createIndexConstant(rewriter, loc, 1) : shape.front();
|
|
for (unsigned i = 1, e = shape.size(); i < e; ++i)
|
|
numElements = rewriter.create<LLVM::MulOp>(loc, numElements, shape[i]);
|
|
return numElements;
|
|
}
|
|
|
|
/// Creates and populates the memref descriptor struct given all its fields.
|
|
MemRefDescriptor ConvertToLLVMPattern::createMemRefDescriptor(
|
|
Location loc, MemRefType memRefType, Value allocatedPtr, Value alignedPtr,
|
|
ArrayRef<Value> sizes, ArrayRef<Value> strides,
|
|
ConversionPatternRewriter &rewriter) const {
|
|
auto structType = typeConverter->convertType(memRefType);
|
|
auto memRefDescriptor = MemRefDescriptor::undef(rewriter, loc, structType);
|
|
|
|
// Field 1: Allocated pointer, used for malloc/free.
|
|
memRefDescriptor.setAllocatedPtr(rewriter, loc, allocatedPtr);
|
|
|
|
// Field 2: Actual aligned pointer to payload.
|
|
memRefDescriptor.setAlignedPtr(rewriter, loc, alignedPtr);
|
|
|
|
// Field 3: Offset in aligned pointer.
|
|
memRefDescriptor.setOffset(rewriter, loc,
|
|
createIndexConstant(rewriter, loc, 0));
|
|
|
|
// Fields 4: Sizes.
|
|
for (const auto &en : llvm::enumerate(sizes))
|
|
memRefDescriptor.setSize(rewriter, loc, en.index(), en.value());
|
|
|
|
// Field 5: Strides.
|
|
for (const auto &en : llvm::enumerate(strides))
|
|
memRefDescriptor.setStride(rewriter, loc, en.index(), en.value());
|
|
|
|
return memRefDescriptor;
|
|
}
|
|
|
|
LogicalResult ConvertToLLVMPattern::copyUnrankedDescriptors(
|
|
OpBuilder &builder, Location loc, TypeRange origTypes,
|
|
SmallVectorImpl<Value> &operands, bool toDynamic) const {
|
|
assert(origTypes.size() == operands.size() &&
|
|
"expected as may original types as operands");
|
|
|
|
// Find operands of unranked memref type and store them.
|
|
SmallVector<UnrankedMemRefDescriptor> unrankedMemrefs;
|
|
SmallVector<unsigned> unrankedAddressSpaces;
|
|
for (unsigned i = 0, e = operands.size(); i < e; ++i) {
|
|
if (auto memRefType = origTypes[i].dyn_cast<UnrankedMemRefType>()) {
|
|
unrankedMemrefs.emplace_back(operands[i]);
|
|
FailureOr<unsigned> addressSpace =
|
|
getTypeConverter()->getMemRefAddressSpace(memRefType);
|
|
if (failed(addressSpace))
|
|
return failure();
|
|
unrankedAddressSpaces.emplace_back(*addressSpace);
|
|
}
|
|
}
|
|
|
|
if (unrankedMemrefs.empty())
|
|
return success();
|
|
|
|
// Compute allocation sizes.
|
|
SmallVector<Value> sizes;
|
|
UnrankedMemRefDescriptor::computeSizes(builder, loc, *getTypeConverter(),
|
|
unrankedMemrefs, unrankedAddressSpaces,
|
|
sizes);
|
|
|
|
// Get frequently used types.
|
|
MLIRContext *context = builder.getContext();
|
|
auto i1Type = IntegerType::get(context, 1);
|
|
Type indexType = getTypeConverter()->getIndexType();
|
|
|
|
// Find the malloc and free, or declare them if necessary.
|
|
auto module = builder.getInsertionPoint()->getParentOfType<ModuleOp>();
|
|
LLVM::LLVMFuncOp freeFunc, mallocFunc;
|
|
if (toDynamic)
|
|
mallocFunc = LLVM::lookupOrCreateMallocFn(
|
|
module, indexType, getTypeConverter()->useOpaquePointers());
|
|
if (!toDynamic)
|
|
freeFunc = LLVM::lookupOrCreateFreeFn(
|
|
module, getTypeConverter()->useOpaquePointers());
|
|
|
|
// Initialize shared constants.
|
|
Value zero =
|
|
builder.create<LLVM::ConstantOp>(loc, i1Type, builder.getBoolAttr(false));
|
|
|
|
unsigned unrankedMemrefPos = 0;
|
|
for (unsigned i = 0, e = operands.size(); i < e; ++i) {
|
|
Type type = origTypes[i];
|
|
if (!type.isa<UnrankedMemRefType>())
|
|
continue;
|
|
Value allocationSize = sizes[unrankedMemrefPos++];
|
|
UnrankedMemRefDescriptor desc(operands[i]);
|
|
|
|
// Allocate memory, copy, and free the source if necessary.
|
|
Value memory =
|
|
toDynamic
|
|
? builder.create<LLVM::CallOp>(loc, mallocFunc, allocationSize)
|
|
.getResult()
|
|
: builder.create<LLVM::AllocaOp>(loc, getVoidPtrType(),
|
|
IntegerType::get(getContext(), 8),
|
|
allocationSize,
|
|
/*alignment=*/0);
|
|
Value source = desc.memRefDescPtr(builder, loc);
|
|
builder.create<LLVM::MemcpyOp>(loc, memory, source, allocationSize, zero);
|
|
if (!toDynamic)
|
|
builder.create<LLVM::CallOp>(loc, freeFunc, source);
|
|
|
|
// Create a new descriptor. The same descriptor can be returned multiple
|
|
// times, attempting to modify its pointer can lead to memory leaks
|
|
// (allocated twice and overwritten) or double frees (the caller does not
|
|
// know if the descriptor points to the same memory).
|
|
Type descriptorType = getTypeConverter()->convertType(type);
|
|
if (!descriptorType)
|
|
return failure();
|
|
auto updatedDesc =
|
|
UnrankedMemRefDescriptor::undef(builder, loc, descriptorType);
|
|
Value rank = desc.rank(builder, loc);
|
|
updatedDesc.setRank(builder, loc, rank);
|
|
updatedDesc.setMemRefDescPtr(builder, loc, memory);
|
|
|
|
operands[i] = updatedDesc;
|
|
}
|
|
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Detail methods
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Replaces the given operation "op" with a new operation of type "targetOp"
|
|
/// and given operands.
|
|
LogicalResult LLVM::detail::oneToOneRewrite(
|
|
Operation *op, StringRef targetOp, ValueRange operands,
|
|
ArrayRef<NamedAttribute> targetAttrs, LLVMTypeConverter &typeConverter,
|
|
ConversionPatternRewriter &rewriter) {
|
|
unsigned numResults = op->getNumResults();
|
|
|
|
SmallVector<Type> resultTypes;
|
|
if (numResults != 0) {
|
|
resultTypes.push_back(
|
|
typeConverter.packOperationResults(op->getResultTypes()));
|
|
if (!resultTypes.back())
|
|
return failure();
|
|
}
|
|
|
|
// Create the operation through state since we don't know its C++ type.
|
|
Operation *newOp =
|
|
rewriter.create(op->getLoc(), rewriter.getStringAttr(targetOp), operands,
|
|
resultTypes, targetAttrs);
|
|
|
|
// If the operation produced 0 or 1 result, return them immediately.
|
|
if (numResults == 0)
|
|
return rewriter.eraseOp(op), success();
|
|
if (numResults == 1)
|
|
return rewriter.replaceOp(op, newOp->getResult(0)), success();
|
|
|
|
// Otherwise, it had been converted to an operation producing a structure.
|
|
// Extract individual results from the structure and return them as list.
|
|
SmallVector<Value, 4> results;
|
|
results.reserve(numResults);
|
|
for (unsigned i = 0; i < numResults; ++i) {
|
|
results.push_back(rewriter.create<LLVM::ExtractValueOp>(
|
|
op->getLoc(), newOp->getResult(0), i));
|
|
}
|
|
rewriter.replaceOp(op, results);
|
|
return success();
|
|
}
|