
Instead, represent the mask as out-of-line data in the instruction. This should be more efficient in the places that currently use getShuffleVector(), and paves the way for further changes to add new shuffles for scalable vectors. This doesn't change the syntax in textual IR. And I don't currently plan to change the bitcode encoding in this patch, although we'll probably need to do something once we extend shufflevector for scalable types. I expect that once this is finished, we can then replace the raw "mask" with something more appropriate for scalable vectors. Not sure exactly what this looks like at the moment, but there are a few different ways we could handle it. Maybe we could try to describe specific shuffles. Or maybe we could define it in terms of a function to convert a fixed-length array into an appropriate scalable vector, using a "step", or something like that. Differential Revision: https://reviews.llvm.org/D72467
679 lines
23 KiB
C++
679 lines
23 KiB
C++
//===- MVETailPredication.cpp - MVE Tail Predication ----------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
/// \file
|
|
/// Armv8.1m introduced MVE, M-Profile Vector Extension, and low-overhead
|
|
/// branches to help accelerate DSP applications. These two extensions can be
|
|
/// combined to provide implicit vector predication within a low-overhead loop.
|
|
/// The HardwareLoops pass inserts intrinsics identifying loops that the
|
|
/// backend will attempt to convert into a low-overhead loop. The vectorizer is
|
|
/// responsible for generating a vectorized loop in which the lanes are
|
|
/// predicated upon the iteration counter. This pass looks at these predicated
|
|
/// vector loops, that are targets for low-overhead loops, and prepares it for
|
|
/// code generation. Once the vectorizer has produced a masked loop, there's a
|
|
/// couple of final forms:
|
|
/// - A tail-predicated loop, with implicit predication.
|
|
/// - A loop containing multiple VCPT instructions, predicating multiple VPT
|
|
/// blocks of instructions operating on different vector types.
|
|
///
|
|
/// This pass inserts the inserts the VCTP intrinsic to represent the effect of
|
|
/// tail predication. This will be picked up by the ARM Low-overhead loop pass,
|
|
/// which performs the final transformation to a DLSTP or WLSTP tail-predicated
|
|
/// loop.
|
|
|
|
#include "ARM.h"
|
|
#include "ARMSubtarget.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/LoopPass.h"
|
|
#include "llvm/Analysis/ScalarEvolution.h"
|
|
#include "llvm/Analysis/ScalarEvolutionExpander.h"
|
|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/CodeGen/TargetPassConfig.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicsARM.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Transforms/Utils/LoopUtils.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "mve-tail-predication"
|
|
#define DESC "Transform predicated vector loops to use MVE tail predication"
|
|
|
|
cl::opt<bool>
|
|
DisableTailPredication("disable-mve-tail-predication", cl::Hidden,
|
|
cl::init(true),
|
|
cl::desc("Disable MVE Tail Predication"));
|
|
namespace {
|
|
|
|
// Bookkeeping for pattern matching the loop trip count and the number of
|
|
// elements processed by the loop.
|
|
struct TripCountPattern {
|
|
// The Predicate used by the masked loads/stores, i.e. an icmp instruction
|
|
// which calculates active/inactive lanes
|
|
Instruction *Predicate = nullptr;
|
|
|
|
// The add instruction that increments the IV
|
|
Value *TripCount = nullptr;
|
|
|
|
// The number of elements processed by the vector loop.
|
|
Value *NumElements = nullptr;
|
|
|
|
VectorType *VecTy = nullptr;
|
|
Instruction *Shuffle = nullptr;
|
|
Instruction *Induction = nullptr;
|
|
|
|
TripCountPattern(Instruction *P, Value *TC, VectorType *VT)
|
|
: Predicate(P), TripCount(TC), VecTy(VT){};
|
|
};
|
|
|
|
class MVETailPredication : public LoopPass {
|
|
SmallVector<IntrinsicInst*, 4> MaskedInsts;
|
|
Loop *L = nullptr;
|
|
LoopInfo *LI = nullptr;
|
|
const DataLayout *DL;
|
|
DominatorTree *DT = nullptr;
|
|
ScalarEvolution *SE = nullptr;
|
|
TargetTransformInfo *TTI = nullptr;
|
|
TargetLibraryInfo *TLI = nullptr;
|
|
bool ClonedVCTPInExitBlock = false;
|
|
|
|
public:
|
|
static char ID;
|
|
|
|
MVETailPredication() : LoopPass(ID) { }
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequired<ScalarEvolutionWrapperPass>();
|
|
AU.addRequired<LoopInfoWrapperPass>();
|
|
AU.addRequired<TargetPassConfig>();
|
|
AU.addRequired<TargetTransformInfoWrapperPass>();
|
|
AU.addRequired<DominatorTreeWrapperPass>();
|
|
AU.addRequired<TargetLibraryInfoWrapperPass>();
|
|
AU.addPreserved<LoopInfoWrapperPass>();
|
|
AU.setPreservesCFG();
|
|
}
|
|
|
|
bool runOnLoop(Loop *L, LPPassManager&) override;
|
|
|
|
private:
|
|
/// Perform the relevant checks on the loop and convert if possible.
|
|
bool TryConvert(Value *TripCount);
|
|
|
|
/// Return whether this is a vectorized loop, that contains masked
|
|
/// load/stores.
|
|
bool IsPredicatedVectorLoop();
|
|
|
|
/// Compute a value for the total number of elements that the predicated
|
|
/// loop will process if it is a runtime value.
|
|
bool ComputeRuntimeElements(TripCountPattern &TCP);
|
|
|
|
/// Is the icmp that generates an i1 vector, based upon a loop counter
|
|
/// and a limit that is defined outside the loop.
|
|
bool isTailPredicate(TripCountPattern &TCP);
|
|
|
|
/// Insert the intrinsic to represent the effect of tail predication.
|
|
void InsertVCTPIntrinsic(TripCountPattern &TCP,
|
|
DenseMap<Instruction *, Instruction *> &NewPredicates);
|
|
|
|
/// Rematerialize the iteration count in exit blocks, which enables
|
|
/// ARMLowOverheadLoops to better optimise away loop update statements inside
|
|
/// hardware-loops.
|
|
void RematerializeIterCount();
|
|
};
|
|
|
|
} // end namespace
|
|
|
|
static bool IsDecrement(Instruction &I) {
|
|
auto *Call = dyn_cast<IntrinsicInst>(&I);
|
|
if (!Call)
|
|
return false;
|
|
|
|
Intrinsic::ID ID = Call->getIntrinsicID();
|
|
return ID == Intrinsic::loop_decrement_reg;
|
|
}
|
|
|
|
static bool IsMasked(Instruction *I) {
|
|
auto *Call = dyn_cast<IntrinsicInst>(I);
|
|
if (!Call)
|
|
return false;
|
|
|
|
Intrinsic::ID ID = Call->getIntrinsicID();
|
|
// TODO: Support gather/scatter expand/compress operations.
|
|
return ID == Intrinsic::masked_store || ID == Intrinsic::masked_load;
|
|
}
|
|
|
|
void MVETailPredication::RematerializeIterCount() {
|
|
SmallVector<WeakTrackingVH, 16> DeadInsts;
|
|
SCEVExpander Rewriter(*SE, *DL, "mvetp");
|
|
ReplaceExitVal ReplaceExitValue = AlwaysRepl;
|
|
|
|
formLCSSARecursively(*L, *DT, LI, SE);
|
|
rewriteLoopExitValues(L, LI, TLI, SE, TTI, Rewriter, DT, ReplaceExitValue,
|
|
DeadInsts);
|
|
}
|
|
|
|
bool MVETailPredication::runOnLoop(Loop *L, LPPassManager&) {
|
|
if (skipLoop(L) || DisableTailPredication)
|
|
return false;
|
|
|
|
MaskedInsts.clear();
|
|
Function &F = *L->getHeader()->getParent();
|
|
auto &TPC = getAnalysis<TargetPassConfig>();
|
|
auto &TM = TPC.getTM<TargetMachine>();
|
|
auto *ST = &TM.getSubtarget<ARMSubtarget>(F);
|
|
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
|
LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
|
|
TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
|
|
SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
|
|
auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
|
|
TLI = TLIP ? &TLIP->getTLI(*L->getHeader()->getParent()) : nullptr;
|
|
DL = &L->getHeader()->getModule()->getDataLayout();
|
|
this->L = L;
|
|
|
|
// The MVE and LOB extensions are combined to enable tail-predication, but
|
|
// there's nothing preventing us from generating VCTP instructions for v8.1m.
|
|
if (!ST->hasMVEIntegerOps() || !ST->hasV8_1MMainlineOps()) {
|
|
LLVM_DEBUG(dbgs() << "ARM TP: Not a v8.1m.main+mve target.\n");
|
|
return false;
|
|
}
|
|
|
|
BasicBlock *Preheader = L->getLoopPreheader();
|
|
if (!Preheader)
|
|
return false;
|
|
|
|
auto FindLoopIterations = [](BasicBlock *BB) -> IntrinsicInst* {
|
|
for (auto &I : *BB) {
|
|
auto *Call = dyn_cast<IntrinsicInst>(&I);
|
|
if (!Call)
|
|
continue;
|
|
|
|
Intrinsic::ID ID = Call->getIntrinsicID();
|
|
if (ID == Intrinsic::set_loop_iterations ||
|
|
ID == Intrinsic::test_set_loop_iterations)
|
|
return cast<IntrinsicInst>(&I);
|
|
}
|
|
return nullptr;
|
|
};
|
|
|
|
// Look for the hardware loop intrinsic that sets the iteration count.
|
|
IntrinsicInst *Setup = FindLoopIterations(Preheader);
|
|
|
|
// The test.set iteration could live in the pre-preheader.
|
|
if (!Setup) {
|
|
if (!Preheader->getSinglePredecessor())
|
|
return false;
|
|
Setup = FindLoopIterations(Preheader->getSinglePredecessor());
|
|
if (!Setup)
|
|
return false;
|
|
}
|
|
|
|
// Search for the hardware loop intrinic that decrements the loop counter.
|
|
IntrinsicInst *Decrement = nullptr;
|
|
for (auto *BB : L->getBlocks()) {
|
|
for (auto &I : *BB) {
|
|
if (IsDecrement(I)) {
|
|
Decrement = cast<IntrinsicInst>(&I);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!Decrement)
|
|
return false;
|
|
|
|
ClonedVCTPInExitBlock = false;
|
|
LLVM_DEBUG(dbgs() << "ARM TP: Running on Loop: " << *L << *Setup << "\n"
|
|
<< *Decrement << "\n");
|
|
|
|
if (TryConvert(Setup->getArgOperand(0))) {
|
|
if (ClonedVCTPInExitBlock)
|
|
RematerializeIterCount();
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// Pattern match predicates/masks and determine if they use the loop induction
|
|
// variable to control the number of elements processed by the loop. If so,
|
|
// the loop is a candidate for tail-predication.
|
|
bool MVETailPredication::isTailPredicate(TripCountPattern &TCP) {
|
|
using namespace PatternMatch;
|
|
|
|
// Pattern match the loop body and find the add with takes the index iv
|
|
// and adds a constant vector to it:
|
|
//
|
|
// vector.body:
|
|
// ..
|
|
// %index = phi i32
|
|
// %broadcast.splatinsert = insertelement <4 x i32> undef, i32 %index, i32 0
|
|
// %broadcast.splat = shufflevector <4 x i32> %broadcast.splatinsert,
|
|
// <4 x i32> undef,
|
|
// <4 x i32> zeroinitializer
|
|
// %induction = [add|or] <4 x i32> %broadcast.splat, <i32 0, i32 1, i32 2, i32 3>
|
|
// %pred = icmp ule <4 x i32> %induction, %broadcast.splat11
|
|
//
|
|
// Please note that the 'or' is equivalent to the 'and' here, this relies on
|
|
// BroadcastSplat being the IV which we know is a phi with 0 start and Lanes
|
|
// increment, which is all being checked below.
|
|
Instruction *BroadcastSplat = nullptr;
|
|
Constant *Const = nullptr;
|
|
if (!match(TCP.Induction,
|
|
m_Add(m_Instruction(BroadcastSplat), m_Constant(Const))) &&
|
|
!match(TCP.Induction,
|
|
m_Or(m_Instruction(BroadcastSplat), m_Constant(Const))))
|
|
return false;
|
|
|
|
// Check that we're adding <0, 1, 2, 3...
|
|
if (auto *CDS = dyn_cast<ConstantDataSequential>(Const)) {
|
|
for (unsigned i = 0; i < CDS->getNumElements(); ++i) {
|
|
if (CDS->getElementAsInteger(i) != i)
|
|
return false;
|
|
}
|
|
} else
|
|
return false;
|
|
|
|
Instruction *Insert = nullptr;
|
|
// The shuffle which broadcasts the index iv into a vector.
|
|
if (!match(BroadcastSplat,
|
|
m_ShuffleVector(m_Instruction(Insert), m_Undef(), m_ZeroMask())))
|
|
return false;
|
|
|
|
// The insert element which initialises a vector with the index iv.
|
|
Instruction *IV = nullptr;
|
|
if (!match(Insert, m_InsertElement(m_Undef(), m_Instruction(IV), m_Zero())))
|
|
return false;
|
|
|
|
// The index iv.
|
|
auto *Phi = dyn_cast<PHINode>(IV);
|
|
if (!Phi)
|
|
return false;
|
|
|
|
// TODO: Don't think we need to check the entry value.
|
|
Value *OnEntry = Phi->getIncomingValueForBlock(L->getLoopPreheader());
|
|
if (!match(OnEntry, m_Zero()))
|
|
return false;
|
|
|
|
Value *InLoop = Phi->getIncomingValueForBlock(L->getLoopLatch());
|
|
unsigned Lanes = cast<VectorType>(Insert->getType())->getNumElements();
|
|
|
|
Instruction *LHS = nullptr;
|
|
if (!match(InLoop, m_Add(m_Instruction(LHS), m_SpecificInt(Lanes))))
|
|
return false;
|
|
|
|
return LHS == Phi;
|
|
}
|
|
|
|
static VectorType *getVectorType(IntrinsicInst *I) {
|
|
unsigned TypeOp = I->getIntrinsicID() == Intrinsic::masked_load ? 0 : 1;
|
|
auto *PtrTy = cast<PointerType>(I->getOperand(TypeOp)->getType());
|
|
return cast<VectorType>(PtrTy->getElementType());
|
|
}
|
|
|
|
bool MVETailPredication::IsPredicatedVectorLoop() {
|
|
// Check that the loop contains at least one masked load/store intrinsic.
|
|
// We only support 'normal' vector instructions - other than masked
|
|
// load/stores.
|
|
for (auto *BB : L->getBlocks()) {
|
|
for (auto &I : *BB) {
|
|
if (IsMasked(&I)) {
|
|
VectorType *VecTy = getVectorType(cast<IntrinsicInst>(&I));
|
|
unsigned Lanes = VecTy->getNumElements();
|
|
unsigned ElementWidth = VecTy->getScalarSizeInBits();
|
|
// MVE vectors are 128-bit, but don't support 128 x i1.
|
|
// TODO: Can we support vectors larger than 128-bits?
|
|
unsigned MaxWidth = TTI->getRegisterBitWidth(true);
|
|
if (Lanes * ElementWidth > MaxWidth || Lanes == MaxWidth)
|
|
return false;
|
|
MaskedInsts.push_back(cast<IntrinsicInst>(&I));
|
|
} else if (auto *Int = dyn_cast<IntrinsicInst>(&I)) {
|
|
for (auto &U : Int->args()) {
|
|
if (isa<VectorType>(U->getType()))
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return !MaskedInsts.empty();
|
|
}
|
|
|
|
// Pattern match the predicate, which is an icmp with a constant vector of this
|
|
// form:
|
|
//
|
|
// icmp ult <4 x i32> %induction, <i32 32002, i32 32002, i32 32002, i32 32002>
|
|
//
|
|
// and return the constant, i.e. 32002 in this example. This is assumed to be
|
|
// the scalar loop iteration count: the number of loop elements by the
|
|
// the vector loop. Further checks are performed in function isTailPredicate(),
|
|
// to verify 'induction' behaves as an induction variable.
|
|
//
|
|
static bool ComputeConstElements(TripCountPattern &TCP) {
|
|
if (!dyn_cast<ConstantInt>(TCP.TripCount))
|
|
return false;
|
|
|
|
ConstantInt *VF = ConstantInt::get(
|
|
cast<IntegerType>(TCP.TripCount->getType()), TCP.VecTy->getNumElements());
|
|
using namespace PatternMatch;
|
|
CmpInst::Predicate CC;
|
|
|
|
if (!match(TCP.Predicate, m_ICmp(CC, m_Instruction(TCP.Induction),
|
|
m_AnyIntegralConstant())) ||
|
|
CC != ICmpInst::ICMP_ULT)
|
|
return false;
|
|
|
|
LLVM_DEBUG(dbgs() << "ARM TP: icmp with constants: "; TCP.Predicate->dump(););
|
|
Value *ConstVec = TCP.Predicate->getOperand(1);
|
|
|
|
auto *CDS = dyn_cast<ConstantDataSequential>(ConstVec);
|
|
if (!CDS || CDS->getNumElements() != VF->getSExtValue())
|
|
return false;
|
|
|
|
if ((TCP.NumElements = CDS->getSplatValue())) {
|
|
assert(dyn_cast<ConstantInt>(TCP.NumElements)->getSExtValue() %
|
|
VF->getSExtValue() !=
|
|
0 &&
|
|
"tail-predication: trip count should not be a multiple of the VF");
|
|
LLVM_DEBUG(dbgs() << "ARM TP: Found const elem count: " << *TCP.NumElements
|
|
<< "\n");
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Pattern match the loop iteration count setup:
|
|
//
|
|
// %trip.count.minus.1 = add i32 %N, -1
|
|
// %broadcast.splatinsert10 = insertelement <4 x i32> undef,
|
|
// i32 %trip.count.minus.1, i32 0
|
|
// %broadcast.splat11 = shufflevector <4 x i32> %broadcast.splatinsert10,
|
|
// <4 x i32> undef,
|
|
// <4 x i32> zeroinitializer
|
|
// ..
|
|
// vector.body:
|
|
// ..
|
|
//
|
|
static bool MatchElemCountLoopSetup(Loop *L, Instruction *Shuffle,
|
|
Value *NumElements) {
|
|
using namespace PatternMatch;
|
|
Instruction *Insert = nullptr;
|
|
|
|
if (!match(Shuffle,
|
|
m_ShuffleVector(m_Instruction(Insert), m_Undef(), m_ZeroMask())))
|
|
return false;
|
|
|
|
// Insert the limit into a vector.
|
|
Instruction *BECount = nullptr;
|
|
if (!match(Insert,
|
|
m_InsertElement(m_Undef(), m_Instruction(BECount), m_Zero())))
|
|
return false;
|
|
|
|
// The limit calculation, backedge count.
|
|
Value *TripCount = nullptr;
|
|
if (!match(BECount, m_Add(m_Value(TripCount), m_AllOnes())))
|
|
return false;
|
|
|
|
if (TripCount != NumElements || !L->isLoopInvariant(BECount))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool MVETailPredication::ComputeRuntimeElements(TripCountPattern &TCP) {
|
|
using namespace PatternMatch;
|
|
const SCEV *TripCountSE = SE->getSCEV(TCP.TripCount);
|
|
ConstantInt *VF = ConstantInt::get(
|
|
cast<IntegerType>(TCP.TripCount->getType()), TCP.VecTy->getNumElements());
|
|
|
|
if (VF->equalsInt(1))
|
|
return false;
|
|
|
|
CmpInst::Predicate Pred;
|
|
if (!match(TCP.Predicate, m_ICmp(Pred, m_Instruction(TCP.Induction),
|
|
m_Instruction(TCP.Shuffle))) ||
|
|
Pred != ICmpInst::ICMP_ULE)
|
|
return false;
|
|
|
|
LLVM_DEBUG(dbgs() << "Computing number of elements for vector trip count: ";
|
|
TCP.TripCount->dump());
|
|
|
|
// Otherwise, continue and try to pattern match the vector iteration
|
|
// count expression
|
|
auto VisitAdd = [&](const SCEVAddExpr *S) -> const SCEVMulExpr * {
|
|
if (auto *Const = dyn_cast<SCEVConstant>(S->getOperand(0))) {
|
|
if (Const->getAPInt() != -VF->getValue())
|
|
return nullptr;
|
|
} else
|
|
return nullptr;
|
|
return dyn_cast<SCEVMulExpr>(S->getOperand(1));
|
|
};
|
|
|
|
auto VisitMul = [&](const SCEVMulExpr *S) -> const SCEVUDivExpr * {
|
|
if (auto *Const = dyn_cast<SCEVConstant>(S->getOperand(0))) {
|
|
if (Const->getValue() != VF)
|
|
return nullptr;
|
|
} else
|
|
return nullptr;
|
|
return dyn_cast<SCEVUDivExpr>(S->getOperand(1));
|
|
};
|
|
|
|
auto VisitDiv = [&](const SCEVUDivExpr *S) -> const SCEV * {
|
|
if (auto *Const = dyn_cast<SCEVConstant>(S->getRHS())) {
|
|
if (Const->getValue() != VF)
|
|
return nullptr;
|
|
} else
|
|
return nullptr;
|
|
|
|
if (auto *RoundUp = dyn_cast<SCEVAddExpr>(S->getLHS())) {
|
|
if (auto *Const = dyn_cast<SCEVConstant>(RoundUp->getOperand(0))) {
|
|
if (Const->getAPInt() != (VF->getValue() - 1))
|
|
return nullptr;
|
|
} else
|
|
return nullptr;
|
|
|
|
return RoundUp->getOperand(1);
|
|
}
|
|
return nullptr;
|
|
};
|
|
|
|
// TODO: Can we use SCEV helpers, such as findArrayDimensions, and friends to
|
|
// determine the numbers of elements instead? Looks like this is what is used
|
|
// for delinearization, but I'm not sure if it can be applied to the
|
|
// vectorized form - at least not without a bit more work than I feel
|
|
// comfortable with.
|
|
|
|
// Search for Elems in the following SCEV:
|
|
// (1 + ((-VF + (VF * (((VF - 1) + %Elems) /u VF))<nuw>) /u VF))<nuw><nsw>
|
|
const SCEV *Elems = nullptr;
|
|
if (auto *TC = dyn_cast<SCEVAddExpr>(TripCountSE))
|
|
if (auto *Div = dyn_cast<SCEVUDivExpr>(TC->getOperand(1)))
|
|
if (auto *Add = dyn_cast<SCEVAddExpr>(Div->getLHS()))
|
|
if (auto *Mul = VisitAdd(Add))
|
|
if (auto *Div = VisitMul(Mul))
|
|
if (auto *Res = VisitDiv(Div))
|
|
Elems = Res;
|
|
|
|
if (!Elems)
|
|
return false;
|
|
|
|
Instruction *InsertPt = L->getLoopPreheader()->getTerminator();
|
|
if (!isSafeToExpandAt(Elems, InsertPt, *SE))
|
|
return false;
|
|
|
|
auto DL = L->getHeader()->getModule()->getDataLayout();
|
|
SCEVExpander Expander(*SE, DL, "elements");
|
|
TCP.NumElements = Expander.expandCodeFor(Elems, Elems->getType(), InsertPt);
|
|
|
|
if (!MatchElemCountLoopSetup(L, TCP.Shuffle, TCP.NumElements))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
// Look through the exit block to see whether there's a duplicate predicate
|
|
// instruction. This can happen when we need to perform a select on values
|
|
// from the last and previous iteration. Instead of doing a straight
|
|
// replacement of that predicate with the vctp, clone the vctp and place it
|
|
// in the block. This means that the VPR doesn't have to be live into the
|
|
// exit block which should make it easier to convert this loop into a proper
|
|
// tail predicated loop.
|
|
static bool Cleanup(DenseMap<Instruction*, Instruction*> &NewPredicates,
|
|
SetVector<Instruction*> &MaybeDead, Loop *L) {
|
|
BasicBlock *Exit = L->getUniqueExitBlock();
|
|
if (!Exit) {
|
|
LLVM_DEBUG(dbgs() << "ARM TP: can't find loop exit block\n");
|
|
return false;
|
|
}
|
|
|
|
bool ClonedVCTPInExitBlock = false;
|
|
|
|
for (auto &Pair : NewPredicates) {
|
|
Instruction *OldPred = Pair.first;
|
|
Instruction *NewPred = Pair.second;
|
|
|
|
for (auto &I : *Exit) {
|
|
if (I.isSameOperationAs(OldPred)) {
|
|
Instruction *PredClone = NewPred->clone();
|
|
PredClone->insertBefore(&I);
|
|
I.replaceAllUsesWith(PredClone);
|
|
MaybeDead.insert(&I);
|
|
ClonedVCTPInExitBlock = true;
|
|
LLVM_DEBUG(dbgs() << "ARM TP: replacing: "; I.dump();
|
|
dbgs() << "ARM TP: with: "; PredClone->dump());
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Drop references and add operands to check for dead.
|
|
SmallPtrSet<Instruction*, 4> Dead;
|
|
while (!MaybeDead.empty()) {
|
|
auto *I = MaybeDead.front();
|
|
MaybeDead.remove(I);
|
|
if (I->hasNUsesOrMore(1))
|
|
continue;
|
|
|
|
for (auto &U : I->operands()) {
|
|
if (auto *OpI = dyn_cast<Instruction>(U))
|
|
MaybeDead.insert(OpI);
|
|
}
|
|
I->dropAllReferences();
|
|
Dead.insert(I);
|
|
}
|
|
|
|
for (auto *I : Dead) {
|
|
LLVM_DEBUG(dbgs() << "ARM TP: removing dead insn: "; I->dump());
|
|
I->eraseFromParent();
|
|
}
|
|
|
|
for (auto I : L->blocks())
|
|
DeleteDeadPHIs(I);
|
|
|
|
return ClonedVCTPInExitBlock;
|
|
}
|
|
|
|
void MVETailPredication::InsertVCTPIntrinsic(TripCountPattern &TCP,
|
|
DenseMap<Instruction*, Instruction*> &NewPredicates) {
|
|
IRBuilder<> Builder(L->getHeader()->getFirstNonPHI());
|
|
Module *M = L->getHeader()->getModule();
|
|
Type *Ty = IntegerType::get(M->getContext(), 32);
|
|
|
|
// Insert a phi to count the number of elements processed by the loop.
|
|
PHINode *Processed = Builder.CreatePHI(Ty, 2);
|
|
Processed->addIncoming(TCP.NumElements, L->getLoopPreheader());
|
|
|
|
// Insert the intrinsic to represent the effect of tail predication.
|
|
Builder.SetInsertPoint(cast<Instruction>(TCP.Predicate));
|
|
ConstantInt *Factor =
|
|
ConstantInt::get(cast<IntegerType>(Ty), TCP.VecTy->getNumElements());
|
|
|
|
Intrinsic::ID VCTPID;
|
|
switch (TCP.VecTy->getNumElements()) {
|
|
default:
|
|
llvm_unreachable("unexpected number of lanes");
|
|
case 4: VCTPID = Intrinsic::arm_mve_vctp32; break;
|
|
case 8: VCTPID = Intrinsic::arm_mve_vctp16; break;
|
|
case 16: VCTPID = Intrinsic::arm_mve_vctp8; break;
|
|
|
|
// FIXME: vctp64 currently not supported because the predicate
|
|
// vector wants to be <2 x i1>, but v2i1 is not a legal MVE
|
|
// type, so problems happen at isel time.
|
|
// Intrinsic::arm_mve_vctp64 exists for ACLE intrinsics
|
|
// purposes, but takes a v4i1 instead of a v2i1.
|
|
}
|
|
Function *VCTP = Intrinsic::getDeclaration(M, VCTPID);
|
|
Value *TailPredicate = Builder.CreateCall(VCTP, Processed);
|
|
TCP.Predicate->replaceAllUsesWith(TailPredicate);
|
|
NewPredicates[TCP.Predicate] = cast<Instruction>(TailPredicate);
|
|
|
|
// Add the incoming value to the new phi.
|
|
// TODO: This add likely already exists in the loop.
|
|
Value *Remaining = Builder.CreateSub(Processed, Factor);
|
|
Processed->addIncoming(Remaining, L->getLoopLatch());
|
|
LLVM_DEBUG(dbgs() << "ARM TP: Insert processed elements phi: "
|
|
<< *Processed << "\n"
|
|
<< "ARM TP: Inserted VCTP: " << *TailPredicate << "\n");
|
|
}
|
|
|
|
bool MVETailPredication::TryConvert(Value *TripCount) {
|
|
if (!IsPredicatedVectorLoop()) {
|
|
LLVM_DEBUG(dbgs() << "ARM TP: no masked instructions in loop.\n");
|
|
return false;
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "ARM TP: Found predicated vector loop.\n");
|
|
|
|
// Walk through the masked intrinsics and try to find whether the predicate
|
|
// operand is generated from an induction variable.
|
|
SetVector<Instruction*> Predicates;
|
|
DenseMap<Instruction*, Instruction*> NewPredicates;
|
|
|
|
for (auto *I : MaskedInsts) {
|
|
Intrinsic::ID ID = I->getIntrinsicID();
|
|
unsigned PredOp = ID == Intrinsic::masked_load ? 2 : 3;
|
|
auto *Predicate = dyn_cast<Instruction>(I->getArgOperand(PredOp));
|
|
if (!Predicate || Predicates.count(Predicate))
|
|
continue;
|
|
|
|
TripCountPattern TCP(Predicate, TripCount, getVectorType(I));
|
|
|
|
if (!(ComputeConstElements(TCP) || ComputeRuntimeElements(TCP)))
|
|
continue;
|
|
|
|
if (!isTailPredicate(TCP)) {
|
|
LLVM_DEBUG(dbgs() << "ARM TP: Not tail predicate: " << *Predicate << "\n");
|
|
continue;
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "ARM TP: Found tail predicate: " << *Predicate << "\n");
|
|
Predicates.insert(Predicate);
|
|
InsertVCTPIntrinsic(TCP, NewPredicates);
|
|
}
|
|
|
|
if (!NewPredicates.size())
|
|
return false;
|
|
|
|
// Now clean up.
|
|
ClonedVCTPInExitBlock = Cleanup(NewPredicates, Predicates, L);
|
|
return true;
|
|
}
|
|
|
|
Pass *llvm::createMVETailPredicationPass() {
|
|
return new MVETailPredication();
|
|
}
|
|
|
|
char MVETailPredication::ID = 0;
|
|
|
|
INITIALIZE_PASS_BEGIN(MVETailPredication, DEBUG_TYPE, DESC, false, false)
|
|
INITIALIZE_PASS_END(MVETailPredication, DEBUG_TYPE, DESC, false, false)
|