llvm-project/llvm/lib/Transforms/Utils/FixIrreducible.cpp
Sameer Sahasrabuddhe 7bb9f500e2 fix warning: specialization of template in different namespace
This is related to commit 8c11bc0cd06ffc18786a1a51ee5ce5b1cc4923f6
which introduces the FixIrreducible pass. The warning seems hard to
reproduce locally. The latest attempt ought to work.
2020-04-15 15:57:53 +05:30

336 lines
13 KiB
C++

//===- FixIrreducible.cpp - Convert irreducible control-flow into loops ---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// An irreducible SCC is one which has multiple "header" blocks, i.e., blocks
// with control-flow edges incident from outside the SCC. This pass converts a
// irreducible SCC into a natural loop by applying the following transformation:
//
// 1. Collect the set of headers H of the SCC.
// 2. Collect the set of predecessors P of these headers. These may be inside as
// well as outside the SCC.
// 3. Create block N and redirect every edge from set P to set H through N.
//
// This converts the SCC into a natural loop with N as the header: N is the only
// block with edges incident from outside the SCC, and all backedges in the SCC
// are incident on N, i.e., for every backedge, the head now dominates the tail.
//
// INPUT CFG: The blocks A and B form an irreducible loop with two headers.
//
// Entry
// / \
// v v
// A ----> B
// ^ /|
// `----' |
// v
// Exit
//
// OUTPUT CFG: Edges incident on A and B are now redirected through a
// new block N, forming a natural loop consisting of N, A and B.
//
// Entry
// |
// v
// .---> N <---.
// / / \ \
// | / \ |
// \ v v /
// `-- A B --'
// |
// v
// Exit
//
// The transformation is applied to every maximal SCC that is not already
// recognized as a loop. The pass operates on all maximal SCCs found in the
// function body outside of any loop, as well as those found inside each loop,
// including inside any newly created loops. This ensures that any SCC hidden
// inside a maximal SCC is also transformed.
//
// The actual transformation is handled by function CreateControlFlowHub, which
// takes a set of incoming blocks (the predecessors) and outgoing blocks (the
// headers). The function also moves every PHINode in an outgoing block to the
// hub. Since the hub dominates all the outgoing blocks, each such PHINode
// continues to dominate its uses. Since every header in an SCC has at least two
// predecessors, every value used in the header (or later) but defined in a
// predecessor (or earlier) is represented by a PHINode in a header. Hence the
// above handling of PHINodes is sufficient and no further processing is
// required to restore SSA.
//
// Limitation: The pass cannot handle switch statements and indirect
// branches. Both must be lowered to plain branches first.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/SCCIterator.h"
#include "llvm/Analysis/LoopIterator.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Transforms/Utils.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#define DEBUG_TYPE "fix-irreducible"
using namespace llvm;
namespace {
struct FixIrreducible : public FunctionPass {
static char ID;
FixIrreducible() : FunctionPass(ID) {
initializeFixIrreduciblePass(*PassRegistry::getPassRegistry());
}
void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequiredID(LowerSwitchID);
AU.addRequired<DominatorTreeWrapperPass>();
AU.addRequired<LoopInfoWrapperPass>();
AU.addPreservedID(LowerSwitchID);
AU.addPreserved<DominatorTreeWrapperPass>();
AU.addPreserved<LoopInfoWrapperPass>();
}
bool runOnFunction(Function &F);
};
} // namespace
char FixIrreducible::ID = 0;
FunctionPass *llvm::createFixIrreduciblePass() { return new FixIrreducible(); }
INITIALIZE_PASS_BEGIN(FixIrreducible, "fix-irreducible",
"Convert irreducible control-flow into natural loops",
false /* Only looks at CFG */, false /* Analysis Pass */)
INITIALIZE_PASS_DEPENDENCY(LowerSwitch)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_END(FixIrreducible, "fix-irreducible",
"Convert irreducible control-flow into natural loops",
false /* Only looks at CFG */, false /* Analysis Pass */)
// When a new loop is created, existing children of the parent loop may now be
// fully inside the new loop. Reconnect these as children of the new loop.
static void reconnectChildLoops(LoopInfo &LI, Loop *ParentLoop, Loop *NewLoop,
SetVector<BasicBlock *> &Blocks,
SetVector<BasicBlock *> &Headers) {
auto &CandidateLoops = ParentLoop ? ParentLoop->getSubLoopsVector()
: LI.getTopLevelLoopsVector();
// Partition the candidate loops into two ranges. The first part
// contains loops that are not children of the new loop. The second
// part contains children that need to be moved to the new loop.
auto FirstChild =
std::partition(CandidateLoops.begin(), CandidateLoops.end(), [&](Loop *L) {
return L == NewLoop || Blocks.count(L->getHeader()) == 0;
});
for (auto II = FirstChild, IE = CandidateLoops.end(); II != IE; ++II) {
auto Child = *II;
LLVM_DEBUG(dbgs() << "child loop: " << Child->getHeader()->getName()
<< "\n");
// TODO: A child loop whose header is also a header in the current
// SCC gets destroyed since its backedges are removed. That may
// not be necessary if we can retain such backedges.
if (Headers.count(Child->getHeader())) {
for (auto BB : Child->blocks()) {
LI.changeLoopFor(BB, NewLoop);
LLVM_DEBUG(dbgs() << "moved block from child: " << BB->getName()
<< "\n");
}
LI.destroy(Child);
LLVM_DEBUG(dbgs() << "subsumed child loop (common header)\n");
continue;
}
if (ParentLoop) {
LLVM_DEBUG(dbgs() << "removed child loop from parent\n");
ParentLoop->removeChildLoop(Child);
}
LLVM_DEBUG(dbgs() << "added child loop to new loop\n");
NewLoop->addChildLoop(Child);
}
CandidateLoops.erase(FirstChild, CandidateLoops.end());
}
// Given a set of blocks and headers in an irreducible SCC, convert it into a
// natural loop. Also insert this new loop at its appropriate place in the
// hierarchy of loops.
static void createNaturalLoopInternal(LoopInfo &LI, DominatorTree &DT,
Loop *ParentLoop,
SetVector<BasicBlock *> &Blocks,
SetVector<BasicBlock *> &Headers) {
#ifndef NDEBUG
// All headers are part of the SCC
for (auto H : Headers) {
assert(Blocks.count(H));
}
#endif
SetVector<BasicBlock *> Predecessors;
for (auto H : Headers) {
for (auto P : predecessors(H)) {
Predecessors.insert(P);
}
}
LLVM_DEBUG(
dbgs() << "Found predecessors:";
for (auto P : Predecessors) {
dbgs() << " " << P->getName();
}
dbgs() << "\n");
// Redirect all the backedges through a "hub" consisting of a series
// of guard blocks that manage the flow of control from the
// predecessors to the headers.
SmallVector<BasicBlock *, 8> GuardBlocks;
DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
CreateControlFlowHub(&DTU, GuardBlocks, Predecessors, Headers, "irr");
#if defined(EXPENSIVE_CHECKS)
assert(DT.verify(DominatorTree::VerificationLevel::Full));
#else
assert(DT.verify(DominatorTree::VerificationLevel::Fast));
#endif
// Create a new loop from the now-transformed cycle
auto NewLoop = LI.AllocateLoop();
if (ParentLoop) {
ParentLoop->addChildLoop(NewLoop);
} else {
LI.addTopLevelLoop(NewLoop);
}
// Add the guard blocks to the new loop. The first guard block is
// the head of all the backedges, and it is the first to be inserted
// in the loop. This ensures that it is recognized as the
// header. Since the new loop is already in LoopInfo, the new blocks
// are also propagated up the chain of parent loops.
for (auto G : GuardBlocks) {
LLVM_DEBUG(dbgs() << "added guard block: " << G->getName() << "\n");
NewLoop->addBasicBlockToLoop(G, LI);
}
// Add the SCC blocks to the new loop.
for (auto BB : Blocks) {
NewLoop->addBlockEntry(BB);
if (LI.getLoopFor(BB) == ParentLoop) {
LLVM_DEBUG(dbgs() << "moved block from parent: " << BB->getName()
<< "\n");
LI.changeLoopFor(BB, NewLoop);
} else {
LLVM_DEBUG(dbgs() << "added block from child: " << BB->getName() << "\n");
}
}
LLVM_DEBUG(dbgs() << "header for new loop: "
<< NewLoop->getHeader()->getName() << "\n");
reconnectChildLoops(LI, ParentLoop, NewLoop, Blocks, Headers);
NewLoop->verifyLoop();
if (ParentLoop) {
ParentLoop->verifyLoop();
}
#if defined(EXPENSIVE_CHECKS)
LI.verify(DT);
#endif // EXPENSIVE_CHECKS
}
namespace llvm {
// Enable the graph traits required for traversing a Loop body.
template <> struct GraphTraits<Loop> : LoopBodyTraits {};
} // namespace llvm
// Overloaded wrappers to go with the function template below.
BasicBlock *unwrapBlock(BasicBlock *B) { return B; }
BasicBlock *unwrapBlock(LoopBodyTraits::NodeRef &N) { return N.second; }
static void createNaturalLoop(LoopInfo &LI, DominatorTree &DT, Function *F,
SetVector<BasicBlock *> &Blocks,
SetVector<BasicBlock *> &Headers) {
createNaturalLoopInternal(LI, DT, nullptr, Blocks, Headers);
}
static void createNaturalLoop(LoopInfo &LI, DominatorTree &DT, Loop &L,
SetVector<BasicBlock *> &Blocks,
SetVector<BasicBlock *> &Headers) {
createNaturalLoopInternal(LI, DT, &L, Blocks, Headers);
}
// Convert irreducible SCCs; Graph G may be a Function* or a Loop&.
template <class Graph>
static bool makeReducible(LoopInfo &LI, DominatorTree &DT, Graph &&G) {
bool Changed = false;
for (auto Scc = scc_begin(G); !Scc.isAtEnd(); ++Scc) {
if (Scc->size() < 2)
continue;
SetVector<BasicBlock *> Blocks;
LLVM_DEBUG(dbgs() << "Found SCC:");
for (auto N : *Scc) {
auto BB = unwrapBlock(N);
LLVM_DEBUG(dbgs() << " " << BB->getName());
Blocks.insert(BB);
}
LLVM_DEBUG(dbgs() << "\n");
// Minor optimization: The SCC blocks are usually discovered in an order
// that is the opposite of the order in which these blocks appear as branch
// targets. This results in a lot of condition inversions in the control
// flow out of the new ControlFlowHub, which can be mitigated if the orders
// match. So we discover the headers using the reverse of the block order.
SetVector<BasicBlock *> Headers;
LLVM_DEBUG(dbgs() << "Found headers:");
for (auto BB : reverse(Blocks)) {
for (const auto P : predecessors(BB)) {
if (!Blocks.count(P)) {
LLVM_DEBUG(dbgs() << " " << BB->getName());
Headers.insert(BB);
break;
}
}
}
LLVM_DEBUG(dbgs() << "\n");
if (Headers.size() == 1) {
assert(LI.isLoopHeader(Headers.front()));
LLVM_DEBUG(dbgs() << "Natural loop with a single header: skipped\n");
continue;
}
createNaturalLoop(LI, DT, G, Blocks, Headers);
Changed = true;
}
return Changed;
}
bool FixIrreducible::runOnFunction(Function &F) {
LLVM_DEBUG(dbgs() << "===== Fix irreducible control-flow in function: "
<< F.getName() << "\n");
auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
bool Changed = false;
SmallVector<Loop *, 8> WorkList;
LLVM_DEBUG(dbgs() << "visiting top-level\n");
Changed |= makeReducible(LI, DT, &F);
// Any SCCs reduced are now already in the list of top-level loops, so simply
// add them all to the worklist.
for (auto L : LI) {
WorkList.push_back(L);
}
while (!WorkList.empty()) {
auto L = WorkList.back();
WorkList.pop_back();
LLVM_DEBUG(dbgs() << "visiting loop with header "
<< L->getHeader()->getName() << "\n");
Changed |= makeReducible(LI, DT, *L);
// Any SCCs reduced are now already in the list of child loops, so simply
// add them all to the worklist.
WorkList.append(L->begin(), L->end());
}
return Changed;
}