
Summary: Currently we express umin as `~umax(~x, ~y)`. However, this becomes a problem for operands in non-integral pointer spaces, because `~x` is not something we can compute for `x` non-integral. However, since comparisons are generally still allowed, we are actually able to express `umin(x, y)` directly as long as we don't try to express is as a umax. Support this by adding an explicit umin/smin representation to SCEV. We do this by factoring the existing getUMax/getSMax functions into a new function that does all four. The previous two functions were largely identical. Reviewed By: sanjoy Differential Revision: https://reviews.llvm.org/D50167 llvm-svn: 360159
91 lines
2.7 KiB
LLVM
91 lines
2.7 KiB
LLVM
; RUN: opt -loop-accesses -analyze < %s | FileCheck %s
|
|
; RUN: opt -passes='require<scalar-evolution>,require<aa>,loop(print-access-info)' -disable-output < %s 2>&1 | FileCheck %s
|
|
|
|
; The runtime memory check code and the access grouping
|
|
; algorithm both assume that the start and end values
|
|
; for an access range are ordered (start <= stop).
|
|
; When generating checks for accesses with negative stride
|
|
; we need to take this into account and swap the interval
|
|
; ends.
|
|
;
|
|
; for (i = 0; i < 10000; i++) {
|
|
; B[i] = A[15000 - i] * 3;
|
|
; }
|
|
|
|
target datalayout = "e-m:e-i64:64-i128:128-n32:64-S128"
|
|
target triple = "aarch64--linux-gnueabi"
|
|
|
|
; CHECK: function 'f':
|
|
; CHECK: (Low: (20000 + %a) High: (60004 + %a))
|
|
|
|
@B = common global i32* null, align 8
|
|
@A = common global i32* null, align 8
|
|
|
|
define void @f() {
|
|
entry:
|
|
%a = load i32*, i32** @A, align 8
|
|
%b = load i32*, i32** @B, align 8
|
|
br label %for.body
|
|
|
|
for.body: ; preds = %for.body, %entry
|
|
%idx = phi i64 [ 0, %entry ], [ %add, %for.body ]
|
|
%negidx = sub i64 15000, %idx
|
|
|
|
%arrayidxA0 = getelementptr inbounds i32, i32* %a, i64 %negidx
|
|
%loadA0 = load i32, i32* %arrayidxA0, align 2
|
|
|
|
%res = mul i32 %loadA0, 3
|
|
|
|
%add = add nuw nsw i64 %idx, 1
|
|
|
|
%arrayidxB = getelementptr inbounds i32, i32* %b, i64 %idx
|
|
store i32 %res, i32* %arrayidxB, align 2
|
|
|
|
%exitcond = icmp eq i64 %idx, 10000
|
|
br i1 %exitcond, label %for.end, label %for.body
|
|
|
|
for.end: ; preds = %for.body
|
|
ret void
|
|
}
|
|
|
|
; CHECK: function 'g':
|
|
; When the stride is not constant, we are forced to do umin/umax to get
|
|
; the interval limits.
|
|
|
|
; for (i = 0; i < 10000; i++) {
|
|
; B[i] = A[15000 - step * i] * 3;
|
|
; }
|
|
|
|
; Here it is not obvious what the limits are, since 'step' could be negative.
|
|
|
|
; CHECK: Low: ((60000 + %a)<nsw> umin (60000 + (-40000 * %step) + %a))
|
|
; CHECK: High: (4 + ((60000 + %a)<nsw> umax (60000 + (-40000 * %step) + %a)))
|
|
|
|
define void @g(i64 %step) {
|
|
entry:
|
|
%a = load i32*, i32** @A, align 8
|
|
%b = load i32*, i32** @B, align 8
|
|
br label %for.body
|
|
|
|
for.body: ; preds = %for.body, %entry
|
|
%idx = phi i64 [ 0, %entry ], [ %add, %for.body ]
|
|
%idx_mul = mul i64 %idx, %step
|
|
%negidx = sub i64 15000, %idx_mul
|
|
|
|
%arrayidxA0 = getelementptr inbounds i32, i32* %a, i64 %negidx
|
|
%loadA0 = load i32, i32* %arrayidxA0, align 2
|
|
|
|
%res = mul i32 %loadA0, 3
|
|
|
|
%add = add nuw nsw i64 %idx, 1
|
|
|
|
%arrayidxB = getelementptr inbounds i32, i32* %b, i64 %idx
|
|
store i32 %res, i32* %arrayidxB, align 2
|
|
|
|
%exitcond = icmp eq i64 %idx, 10000
|
|
br i1 %exitcond, label %for.end, label %for.body
|
|
|
|
for.end: ; preds = %for.body
|
|
ret void
|
|
}
|