
In loop-vectorize, interleave count and vector factor depend on target register number. Currently, it does not estimate different register pressure for different register class separately(especially for scalar type, float type should not be on the same position with int type), so it's not accurate. Specifically, it causes too many times interleaving/unrolling, result in too many register spills in loop body and hurting performance. So we need classify the register classes in IR level, and importantly these are abstract register classes, and are not the target register class of backend provided in td file. It's used to establish the mapping between the types of IR values and the number of simultaneous live ranges to which we'd like to limit for some set of those types. For example, POWER target, register num is special when VSX is enabled. When VSX is enabled, the number of int scalar register is 32(GPR), float is 64(VSR), but for int and float vector register both are 64(VSR). So there should be 2 kinds of register class when vsx is enabled, and 3 kinds of register class when VSX is NOT enabled. It runs on POWER target, it makes big(+~30%) performance improvement in one specific bmk(503.bwaves_r) of spec2017 and no other obvious degressions. Differential revision: https://reviews.llvm.org/D67148 llvm-svn: 374634
154 lines
6.2 KiB
LLVM
154 lines
6.2 KiB
LLVM
; RUN: opt < %s -debug-only=loop-vectorize -loop-vectorize -vectorizer-maximize-bandwidth -O2 -mtriple=x86_64-unknown-linux -S 2>&1 | FileCheck %s
|
|
; RUN: opt < %s -debug-only=loop-vectorize -loop-vectorize -vectorizer-maximize-bandwidth -O2 -mtriple=x86_64-unknown-linux -mattr=+avx512f -S 2>&1 | FileCheck %s --check-prefix=AVX512F
|
|
; REQUIRES: asserts
|
|
|
|
@a = global [1024 x i8] zeroinitializer, align 16
|
|
@b = global [1024 x i8] zeroinitializer, align 16
|
|
|
|
define i32 @foo() {
|
|
; This function has a loop of SAD pattern. Here we check when VF = 16 the
|
|
; register usage doesn't exceed 16.
|
|
;
|
|
; CHECK-LABEL: foo
|
|
; CHECK: LV(REG): VF = 8
|
|
; CHECK-NEXT: LV(REG): Found max usage: 2 item
|
|
; CHECK-NEXT: LV(REG): RegisterClass: Generic::ScalarRC, 2 registers
|
|
; CHECK-NEXT: LV(REG): RegisterClass: Generic::VectorRC, 7 registers
|
|
; CHECK-NEXT: LV(REG): Found invariant usage: 0 item
|
|
; CHECK: LV(REG): VF = 16
|
|
; CHECK-NEXT: LV(REG): Found max usage: 2 item
|
|
; CHECK-NEXT: LV(REG): RegisterClass: Generic::ScalarRC, 2 registers
|
|
; CHECK-NEXT: LV(REG): RegisterClass: Generic::VectorRC, 13 registers
|
|
; CHECK-NEXT: LV(REG): Found invariant usage: 0 item
|
|
|
|
entry:
|
|
br label %for.body
|
|
|
|
for.cond.cleanup:
|
|
%add.lcssa = phi i32 [ %add, %for.body ]
|
|
ret i32 %add.lcssa
|
|
|
|
for.body:
|
|
%indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
|
|
%s.015 = phi i32 [ 0, %entry ], [ %add, %for.body ]
|
|
%arrayidx = getelementptr inbounds [1024 x i8], [1024 x i8]* @a, i64 0, i64 %indvars.iv
|
|
%0 = load i8, i8* %arrayidx, align 1
|
|
%conv = zext i8 %0 to i32
|
|
%arrayidx2 = getelementptr inbounds [1024 x i8], [1024 x i8]* @b, i64 0, i64 %indvars.iv
|
|
%1 = load i8, i8* %arrayidx2, align 1
|
|
%conv3 = zext i8 %1 to i32
|
|
%sub = sub nsw i32 %conv, %conv3
|
|
%ispos = icmp sgt i32 %sub, -1
|
|
%neg = sub nsw i32 0, %sub
|
|
%2 = select i1 %ispos, i32 %sub, i32 %neg
|
|
%add = add nsw i32 %2, %s.015
|
|
%indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
|
|
%exitcond = icmp eq i64 %indvars.iv.next, 1024
|
|
br i1 %exitcond, label %for.cond.cleanup, label %for.body
|
|
}
|
|
|
|
define i32 @goo() {
|
|
; For indvars.iv used in a computating chain only feeding into getelementptr or cmp,
|
|
; it will not have vector version and the vector register usage will not exceed the
|
|
; available vector register number.
|
|
; CHECK-LABEL: goo
|
|
; CHECK: LV(REG): VF = 8
|
|
; CHECK-NEXT: LV(REG): Found max usage: 2 item
|
|
; CHECK-NEXT: LV(REG): RegisterClass: Generic::ScalarRC, 2 registers
|
|
; CHECK-NEXT: LV(REG): RegisterClass: Generic::VectorRC, 7 registers
|
|
; CHECK-NEXT: LV(REG): Found invariant usage: 0 item
|
|
; CHECK: LV(REG): VF = 16
|
|
; CHECK-NEXT: LV(REG): Found max usage: 2 item
|
|
; CHECK-NEXT: LV(REG): RegisterClass: Generic::ScalarRC, 2 registers
|
|
; CHECK-NEXT: LV(REG): RegisterClass: Generic::VectorRC, 13 registers
|
|
; CHECK-NEXT: LV(REG): Found invariant usage: 0 item
|
|
entry:
|
|
br label %for.body
|
|
|
|
for.cond.cleanup: ; preds = %for.body
|
|
%add.lcssa = phi i32 [ %add, %for.body ]
|
|
ret i32 %add.lcssa
|
|
|
|
for.body: ; preds = %for.body, %entry
|
|
%indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
|
|
%s.015 = phi i32 [ 0, %entry ], [ %add, %for.body ]
|
|
%tmp1 = add nsw i64 %indvars.iv, 3
|
|
%arrayidx = getelementptr inbounds [1024 x i8], [1024 x i8]* @a, i64 0, i64 %tmp1
|
|
%tmp = load i8, i8* %arrayidx, align 1
|
|
%conv = zext i8 %tmp to i32
|
|
%tmp2 = add nsw i64 %indvars.iv, 2
|
|
%arrayidx2 = getelementptr inbounds [1024 x i8], [1024 x i8]* @b, i64 0, i64 %tmp2
|
|
%tmp3 = load i8, i8* %arrayidx2, align 1
|
|
%conv3 = zext i8 %tmp3 to i32
|
|
%sub = sub nsw i32 %conv, %conv3
|
|
%ispos = icmp sgt i32 %sub, -1
|
|
%neg = sub nsw i32 0, %sub
|
|
%tmp4 = select i1 %ispos, i32 %sub, i32 %neg
|
|
%add = add nsw i32 %tmp4, %s.015
|
|
%indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
|
|
%exitcond = icmp eq i64 %indvars.iv.next, 1024
|
|
br i1 %exitcond, label %for.cond.cleanup, label %for.body
|
|
}
|
|
|
|
define i64 @bar(i64* nocapture %a) {
|
|
; CHECK-LABEL: bar
|
|
; CHECK: LV(REG): VF = 2
|
|
; CHECK-NEXT: LV(REG): Found max usage: 2 item
|
|
; CHECK-NEXT: LV(REG): RegisterClass: Generic::VectorRC, 3 registers
|
|
; CHECK-NEXT: LV(REG): RegisterClass: Generic::ScalarRC, 1 registers
|
|
; CHECK-NEXT: LV(REG): Found invariant usage: 0 item
|
|
|
|
entry:
|
|
br label %for.body
|
|
|
|
for.cond.cleanup:
|
|
%add2.lcssa = phi i64 [ %add2, %for.body ]
|
|
ret i64 %add2.lcssa
|
|
|
|
for.body:
|
|
%i.012 = phi i64 [ 0, %entry ], [ %inc, %for.body ]
|
|
%s.011 = phi i64 [ 0, %entry ], [ %add2, %for.body ]
|
|
%arrayidx = getelementptr inbounds i64, i64* %a, i64 %i.012
|
|
%0 = load i64, i64* %arrayidx, align 8
|
|
%add = add nsw i64 %0, %i.012
|
|
store i64 %add, i64* %arrayidx, align 8
|
|
%add2 = add nsw i64 %add, %s.011
|
|
%inc = add nuw nsw i64 %i.012, 1
|
|
%exitcond = icmp eq i64 %inc, 1024
|
|
br i1 %exitcond, label %for.cond.cleanup, label %for.body
|
|
}
|
|
|
|
@d = external global [0 x i64], align 8
|
|
@e = external global [0 x i32], align 4
|
|
@c = external global [0 x i32], align 4
|
|
|
|
define void @hoo(i32 %n) {
|
|
; For c[i] = e[d[i]] in the loop, e[d[i]] is not consecutive but its index %tmp can
|
|
; be gathered into a vector. For VF == 16, the vector version of %tmp will be <16 x i64>
|
|
; so the max usage of AVX512 vector register will be 2.
|
|
; AVX512F-LABEL: bar
|
|
; AVX512F: LV(REG): VF = 16
|
|
; AVX512F-CHECK: LV(REG): Found max usage: 2 item
|
|
; AVX512F-CHECK: LV(REG): RegisterClass: Generic::ScalarRC, 2 registers
|
|
; AVX512F-CHECK: LV(REG): RegisterClass: Generic::VectorRC, 2 registers
|
|
; AVX512F-CHECK: LV(REG): Found invariant usage: 0 item
|
|
|
|
entry:
|
|
br label %for.body
|
|
|
|
for.body: ; preds = %for.body, %entry
|
|
%indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
|
|
%arrayidx = getelementptr inbounds [0 x i64], [0 x i64]* @d, i64 0, i64 %indvars.iv
|
|
%tmp = load i64, i64* %arrayidx, align 8
|
|
%arrayidx1 = getelementptr inbounds [0 x i32], [0 x i32]* @e, i64 0, i64 %tmp
|
|
%tmp1 = load i32, i32* %arrayidx1, align 4
|
|
%arrayidx3 = getelementptr inbounds [0 x i32], [0 x i32]* @c, i64 0, i64 %indvars.iv
|
|
store i32 %tmp1, i32* %arrayidx3, align 4
|
|
%indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
|
|
%exitcond = icmp eq i64 %indvars.iv.next, 10000
|
|
br i1 %exitcond, label %for.end, label %for.body
|
|
|
|
for.end: ; preds = %for.body
|
|
ret void
|
|
}
|