
Summary: Implemented RangeConstraintManager::getRangeForComparisonSymbol which handles comparison operators. RangeConstraintManager::getRangeForComparisonSymbol cares about the sanity of comparison expressions sequences helps reasonably to branch an exploded graph. It can significantly reduce the graph and speed up the analysis. For more details, please, see the differential revision. This fixes https://bugs.llvm.org/show_bug.cgi?id=13426 Differential Revision: https://reviews.llvm.org/D78933
1350 lines
51 KiB
C++
1350 lines
51 KiB
C++
//== RangeConstraintManager.cpp - Manage range constraints.------*- C++ -*--==//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines RangeConstraintManager, a class that tracks simple
|
|
// equality and inequality constraints on symbolic values of ProgramState.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/Basic/JsonSupport.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/RangedConstraintManager.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/SValVisitor.h"
|
|
#include "llvm/ADT/FoldingSet.h"
|
|
#include "llvm/ADT/ImmutableSet.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
using namespace clang;
|
|
using namespace ento;
|
|
|
|
// This class can be extended with other tables which will help to reason
|
|
// about ranges more precisely.
|
|
class OperatorRelationsTable {
|
|
static_assert(BO_LT < BO_GT && BO_GT < BO_LE && BO_LE < BO_GE &&
|
|
BO_GE < BO_EQ && BO_EQ < BO_NE,
|
|
"This class relies on operators order. Rework it otherwise.");
|
|
|
|
public:
|
|
enum TriStateKind {
|
|
False = 0,
|
|
True,
|
|
Unknown,
|
|
};
|
|
|
|
private:
|
|
// CmpOpTable holds states which represent the corresponding range for
|
|
// branching an exploded graph. We can reason about the branch if there is
|
|
// a previously known fact of the existence of a comparison expression with
|
|
// operands used in the current expression.
|
|
// E.g. assuming (x < y) is true that means (x != y) is surely true.
|
|
// if (x previous_operation y) // < | != | >
|
|
// if (x operation y) // != | > | <
|
|
// tristate // True | Unknown | False
|
|
//
|
|
// CmpOpTable represents next:
|
|
// __|< |> |<=|>=|==|!=|UnknownX2|
|
|
// < |1 |0 |* |0 |0 |* |1 |
|
|
// > |0 |1 |0 |* |0 |* |1 |
|
|
// <=|1 |0 |1 |* |1 |* |0 |
|
|
// >=|0 |1 |* |1 |1 |* |0 |
|
|
// ==|0 |0 |* |* |1 |0 |1 |
|
|
// !=|1 |1 |* |* |0 |1 |0 |
|
|
//
|
|
// Columns stands for a previous operator.
|
|
// Rows stands for a current operator.
|
|
// Each row has exactly two `Unknown` cases.
|
|
// UnknownX2 means that both `Unknown` previous operators are met in code,
|
|
// and there is a special column for that, for example:
|
|
// if (x >= y)
|
|
// if (x != y)
|
|
// if (x <= y)
|
|
// False only
|
|
static constexpr size_t CmpOpCount = BO_NE - BO_LT + 1;
|
|
const TriStateKind CmpOpTable[CmpOpCount][CmpOpCount + 1] = {
|
|
// < > <= >= == != UnknownX2
|
|
{True, False, Unknown, False, False, Unknown, True}, // <
|
|
{False, True, False, Unknown, False, Unknown, True}, // >
|
|
{True, False, True, Unknown, True, Unknown, False}, // <=
|
|
{False, True, Unknown, True, True, Unknown, False}, // >=
|
|
{False, False, Unknown, Unknown, True, False, True}, // ==
|
|
{True, True, Unknown, Unknown, False, True, False}, // !=
|
|
};
|
|
|
|
static size_t getIndexFromOp(BinaryOperatorKind OP) {
|
|
return static_cast<size_t>(OP - BO_LT);
|
|
}
|
|
|
|
public:
|
|
constexpr size_t getCmpOpCount() const { return CmpOpCount; }
|
|
|
|
static BinaryOperatorKind getOpFromIndex(size_t Index) {
|
|
return static_cast<BinaryOperatorKind>(Index + BO_LT);
|
|
}
|
|
|
|
TriStateKind getCmpOpState(BinaryOperatorKind CurrentOP,
|
|
BinaryOperatorKind QueriedOP) const {
|
|
return CmpOpTable[getIndexFromOp(CurrentOP)][getIndexFromOp(QueriedOP)];
|
|
}
|
|
|
|
TriStateKind getCmpOpStateForUnknownX2(BinaryOperatorKind CurrentOP) const {
|
|
return CmpOpTable[getIndexFromOp(CurrentOP)][CmpOpCount];
|
|
}
|
|
};
|
|
//===----------------------------------------------------------------------===//
|
|
// RangeSet implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void RangeSet::IntersectInRange(BasicValueFactory &BV, Factory &F,
|
|
const llvm::APSInt &Lower,
|
|
const llvm::APSInt &Upper,
|
|
PrimRangeSet &newRanges,
|
|
PrimRangeSet::iterator &i,
|
|
PrimRangeSet::iterator &e) const {
|
|
// There are six cases for each range R in the set:
|
|
// 1. R is entirely before the intersection range.
|
|
// 2. R is entirely after the intersection range.
|
|
// 3. R contains the entire intersection range.
|
|
// 4. R starts before the intersection range and ends in the middle.
|
|
// 5. R starts in the middle of the intersection range and ends after it.
|
|
// 6. R is entirely contained in the intersection range.
|
|
// These correspond to each of the conditions below.
|
|
for (/* i = begin(), e = end() */; i != e; ++i) {
|
|
if (i->To() < Lower) {
|
|
continue;
|
|
}
|
|
if (i->From() > Upper) {
|
|
break;
|
|
}
|
|
|
|
if (i->Includes(Lower)) {
|
|
if (i->Includes(Upper)) {
|
|
newRanges =
|
|
F.add(newRanges, Range(BV.getValue(Lower), BV.getValue(Upper)));
|
|
break;
|
|
} else
|
|
newRanges = F.add(newRanges, Range(BV.getValue(Lower), i->To()));
|
|
} else {
|
|
if (i->Includes(Upper)) {
|
|
newRanges = F.add(newRanges, Range(i->From(), BV.getValue(Upper)));
|
|
break;
|
|
} else
|
|
newRanges = F.add(newRanges, *i);
|
|
}
|
|
}
|
|
}
|
|
|
|
const llvm::APSInt &RangeSet::getMinValue() const {
|
|
assert(!isEmpty());
|
|
return begin()->From();
|
|
}
|
|
|
|
const llvm::APSInt &RangeSet::getMaxValue() const {
|
|
assert(!isEmpty());
|
|
// NOTE: It's a shame that we can't implement 'getMaxValue' without scanning
|
|
// the whole tree to get to the last element.
|
|
// llvm::ImmutableSet should support decrement for 'end' iterators
|
|
// or reverse order iteration.
|
|
auto It = begin();
|
|
for (auto End = end(); std::next(It) != End; ++It) {
|
|
}
|
|
return It->To();
|
|
}
|
|
|
|
bool RangeSet::pin(llvm::APSInt &Lower, llvm::APSInt &Upper) const {
|
|
if (isEmpty()) {
|
|
// This range is already infeasible.
|
|
return false;
|
|
}
|
|
|
|
// This function has nine cases, the cartesian product of range-testing
|
|
// both the upper and lower bounds against the symbol's type.
|
|
// Each case requires a different pinning operation.
|
|
// The function returns false if the described range is entirely outside
|
|
// the range of values for the associated symbol.
|
|
APSIntType Type(getMinValue());
|
|
APSIntType::RangeTestResultKind LowerTest = Type.testInRange(Lower, true);
|
|
APSIntType::RangeTestResultKind UpperTest = Type.testInRange(Upper, true);
|
|
|
|
switch (LowerTest) {
|
|
case APSIntType::RTR_Below:
|
|
switch (UpperTest) {
|
|
case APSIntType::RTR_Below:
|
|
// The entire range is outside the symbol's set of possible values.
|
|
// If this is a conventionally-ordered range, the state is infeasible.
|
|
if (Lower <= Upper)
|
|
return false;
|
|
|
|
// However, if the range wraps around, it spans all possible values.
|
|
Lower = Type.getMinValue();
|
|
Upper = Type.getMaxValue();
|
|
break;
|
|
case APSIntType::RTR_Within:
|
|
// The range starts below what's possible but ends within it. Pin.
|
|
Lower = Type.getMinValue();
|
|
Type.apply(Upper);
|
|
break;
|
|
case APSIntType::RTR_Above:
|
|
// The range spans all possible values for the symbol. Pin.
|
|
Lower = Type.getMinValue();
|
|
Upper = Type.getMaxValue();
|
|
break;
|
|
}
|
|
break;
|
|
case APSIntType::RTR_Within:
|
|
switch (UpperTest) {
|
|
case APSIntType::RTR_Below:
|
|
// The range wraps around, but all lower values are not possible.
|
|
Type.apply(Lower);
|
|
Upper = Type.getMaxValue();
|
|
break;
|
|
case APSIntType::RTR_Within:
|
|
// The range may or may not wrap around, but both limits are valid.
|
|
Type.apply(Lower);
|
|
Type.apply(Upper);
|
|
break;
|
|
case APSIntType::RTR_Above:
|
|
// The range starts within what's possible but ends above it. Pin.
|
|
Type.apply(Lower);
|
|
Upper = Type.getMaxValue();
|
|
break;
|
|
}
|
|
break;
|
|
case APSIntType::RTR_Above:
|
|
switch (UpperTest) {
|
|
case APSIntType::RTR_Below:
|
|
// The range wraps but is outside the symbol's set of possible values.
|
|
return false;
|
|
case APSIntType::RTR_Within:
|
|
// The range starts above what's possible but ends within it (wrap).
|
|
Lower = Type.getMinValue();
|
|
Type.apply(Upper);
|
|
break;
|
|
case APSIntType::RTR_Above:
|
|
// The entire range is outside the symbol's set of possible values.
|
|
// If this is a conventionally-ordered range, the state is infeasible.
|
|
if (Lower <= Upper)
|
|
return false;
|
|
|
|
// However, if the range wraps around, it spans all possible values.
|
|
Lower = Type.getMinValue();
|
|
Upper = Type.getMaxValue();
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Returns a set containing the values in the receiving set, intersected with
|
|
// the closed range [Lower, Upper]. Unlike the Range type, this range uses
|
|
// modular arithmetic, corresponding to the common treatment of C integer
|
|
// overflow. Thus, if the Lower bound is greater than the Upper bound, the
|
|
// range is taken to wrap around. This is equivalent to taking the
|
|
// intersection with the two ranges [Min, Upper] and [Lower, Max],
|
|
// or, alternatively, /removing/ all integers between Upper and Lower.
|
|
RangeSet RangeSet::Intersect(BasicValueFactory &BV, Factory &F,
|
|
llvm::APSInt Lower, llvm::APSInt Upper) const {
|
|
PrimRangeSet newRanges = F.getEmptySet();
|
|
|
|
if (isEmpty() || !pin(Lower, Upper))
|
|
return newRanges;
|
|
|
|
PrimRangeSet::iterator i = begin(), e = end();
|
|
if (Lower <= Upper)
|
|
IntersectInRange(BV, F, Lower, Upper, newRanges, i, e);
|
|
else {
|
|
// The order of the next two statements is important!
|
|
// IntersectInRange() does not reset the iteration state for i and e.
|
|
// Therefore, the lower range most be handled first.
|
|
IntersectInRange(BV, F, BV.getMinValue(Upper), Upper, newRanges, i, e);
|
|
IntersectInRange(BV, F, Lower, BV.getMaxValue(Lower), newRanges, i, e);
|
|
}
|
|
|
|
return newRanges;
|
|
}
|
|
|
|
// Returns a set containing the values in the receiving set, intersected with
|
|
// the range set passed as parameter.
|
|
RangeSet RangeSet::Intersect(BasicValueFactory &BV, Factory &F,
|
|
const RangeSet &Other) const {
|
|
PrimRangeSet newRanges = F.getEmptySet();
|
|
|
|
for (iterator i = Other.begin(), e = Other.end(); i != e; ++i) {
|
|
RangeSet newPiece = Intersect(BV, F, i->From(), i->To());
|
|
for (iterator j = newPiece.begin(), ee = newPiece.end(); j != ee; ++j) {
|
|
newRanges = F.add(newRanges, *j);
|
|
}
|
|
}
|
|
|
|
return newRanges;
|
|
}
|
|
|
|
// Turn all [A, B] ranges to [-B, -A], when "-" is a C-like unary minus
|
|
// operation under the values of the type.
|
|
//
|
|
// We also handle MIN because applying unary minus to MIN does not change it.
|
|
// Example 1:
|
|
// char x = -128; // -128 is a MIN value in a range of 'char'
|
|
// char y = -x; // y: -128
|
|
// Example 2:
|
|
// unsigned char x = 0; // 0 is a MIN value in a range of 'unsigned char'
|
|
// unsigned char y = -x; // y: 0
|
|
//
|
|
// And it makes us to separate the range
|
|
// like [MIN, N] to [MIN, MIN] U [-N,MAX].
|
|
// For instance, whole range is {-128..127} and subrange is [-128,-126],
|
|
// thus [-128,-127,-126,.....] negates to [-128,.....,126,127].
|
|
//
|
|
// Negate restores disrupted ranges on bounds,
|
|
// e.g. [MIN, B] => [MIN, MIN] U [-B, MAX] => [MIN, B].
|
|
RangeSet RangeSet::Negate(BasicValueFactory &BV, Factory &F) const {
|
|
PrimRangeSet newRanges = F.getEmptySet();
|
|
|
|
if (isEmpty())
|
|
return newRanges;
|
|
|
|
const llvm::APSInt sampleValue = getMinValue();
|
|
const llvm::APSInt &MIN = BV.getMinValue(sampleValue);
|
|
const llvm::APSInt &MAX = BV.getMaxValue(sampleValue);
|
|
|
|
// Handle a special case for MIN value.
|
|
iterator i = begin();
|
|
const llvm::APSInt &from = i->From();
|
|
const llvm::APSInt &to = i->To();
|
|
if (from == MIN) {
|
|
// If [from, to] are [MIN, MAX], then just return the same [MIN, MAX].
|
|
if (to == MAX) {
|
|
newRanges = ranges;
|
|
} else {
|
|
// Add separate range for the lowest value.
|
|
newRanges = F.add(newRanges, Range(MIN, MIN));
|
|
// Skip adding the second range in case when [from, to] are [MIN, MIN].
|
|
if (to != MIN) {
|
|
newRanges = F.add(newRanges, Range(BV.getValue(-to), MAX));
|
|
}
|
|
}
|
|
// Skip the first range in the loop.
|
|
++i;
|
|
}
|
|
|
|
// Negate all other ranges.
|
|
for (iterator e = end(); i != e; ++i) {
|
|
// Negate int values.
|
|
const llvm::APSInt &newFrom = BV.getValue(-i->To());
|
|
const llvm::APSInt &newTo = BV.getValue(-i->From());
|
|
// Add a negated range.
|
|
newRanges = F.add(newRanges, Range(newFrom, newTo));
|
|
}
|
|
|
|
if (newRanges.isSingleton())
|
|
return newRanges;
|
|
|
|
// Try to find and unite next ranges:
|
|
// [MIN, MIN] & [MIN + 1, N] => [MIN, N].
|
|
iterator iter1 = newRanges.begin();
|
|
iterator iter2 = std::next(iter1);
|
|
|
|
if (iter1->To() == MIN && (iter2->From() - 1) == MIN) {
|
|
const llvm::APSInt &to = iter2->To();
|
|
// remove adjacent ranges
|
|
newRanges = F.remove(newRanges, *iter1);
|
|
newRanges = F.remove(newRanges, *newRanges.begin());
|
|
// add united range
|
|
newRanges = F.add(newRanges, Range(MIN, to));
|
|
}
|
|
|
|
return newRanges;
|
|
}
|
|
|
|
void RangeSet::print(raw_ostream &os) const {
|
|
bool isFirst = true;
|
|
os << "{ ";
|
|
for (iterator i = begin(), e = end(); i != e; ++i) {
|
|
if (isFirst)
|
|
isFirst = false;
|
|
else
|
|
os << ", ";
|
|
|
|
os << '[' << i->From().toString(10) << ", " << i->To().toString(10)
|
|
<< ']';
|
|
}
|
|
os << " }";
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// A little component aggregating all of the reasoning we have about
|
|
/// the ranges of symbolic expressions.
|
|
///
|
|
/// Even when we don't know the exact values of the operands, we still
|
|
/// can get a pretty good estimate of the result's range.
|
|
class SymbolicRangeInferrer
|
|
: public SymExprVisitor<SymbolicRangeInferrer, RangeSet> {
|
|
public:
|
|
static RangeSet inferRange(BasicValueFactory &BV, RangeSet::Factory &F,
|
|
ProgramStateRef State, SymbolRef Sym) {
|
|
SymbolicRangeInferrer Inferrer(BV, F, State);
|
|
return Inferrer.infer(Sym);
|
|
}
|
|
|
|
RangeSet VisitSymExpr(SymbolRef Sym) {
|
|
// If we got to this function, the actual type of the symbolic
|
|
// expression is not supported for advanced inference.
|
|
// In this case, we simply backoff to the default "let's simply
|
|
// infer the range from the expression's type".
|
|
return infer(Sym->getType());
|
|
}
|
|
|
|
RangeSet VisitSymIntExpr(const SymIntExpr *Sym) {
|
|
return VisitBinaryOperator(Sym);
|
|
}
|
|
|
|
RangeSet VisitIntSymExpr(const IntSymExpr *Sym) {
|
|
return VisitBinaryOperator(Sym);
|
|
}
|
|
|
|
RangeSet VisitSymSymExpr(const SymSymExpr *Sym) {
|
|
return VisitBinaryOperator(Sym);
|
|
}
|
|
|
|
private:
|
|
SymbolicRangeInferrer(BasicValueFactory &BV, RangeSet::Factory &F,
|
|
ProgramStateRef S)
|
|
: ValueFactory(BV), RangeFactory(F), State(S) {}
|
|
|
|
/// Infer range information from the given integer constant.
|
|
///
|
|
/// It's not a real "inference", but is here for operating with
|
|
/// sub-expressions in a more polymorphic manner.
|
|
RangeSet inferAs(const llvm::APSInt &Val, QualType) {
|
|
return {RangeFactory, Val};
|
|
}
|
|
|
|
/// Infer range information from symbol in the context of the given type.
|
|
RangeSet inferAs(SymbolRef Sym, QualType DestType) {
|
|
QualType ActualType = Sym->getType();
|
|
// Check that we can reason about the symbol at all.
|
|
if (ActualType->isIntegralOrEnumerationType() ||
|
|
Loc::isLocType(ActualType)) {
|
|
return infer(Sym);
|
|
}
|
|
// Otherwise, let's simply infer from the destination type.
|
|
// We couldn't figure out nothing else about that expression.
|
|
return infer(DestType);
|
|
}
|
|
|
|
RangeSet infer(SymbolRef Sym) {
|
|
const RangeSet *AssociatedRange = State->get<ConstraintRange>(Sym);
|
|
|
|
// If Sym is a difference of symbols A - B, then maybe we have range set
|
|
// stored for B - A.
|
|
const RangeSet *RangeAssociatedWithNegatedSym =
|
|
getRangeForMinusSymbol(State, Sym);
|
|
|
|
// If we have range set stored for both A - B and B - A then calculate the
|
|
// effective range set by intersecting the range set for A - B and the
|
|
// negated range set of B - A.
|
|
if (AssociatedRange && RangeAssociatedWithNegatedSym)
|
|
return AssociatedRange->Intersect(
|
|
ValueFactory, RangeFactory,
|
|
RangeAssociatedWithNegatedSym->Negate(ValueFactory, RangeFactory));
|
|
|
|
if (AssociatedRange)
|
|
return *AssociatedRange;
|
|
|
|
if (RangeAssociatedWithNegatedSym)
|
|
return RangeAssociatedWithNegatedSym->Negate(ValueFactory, RangeFactory);
|
|
|
|
// If Sym is a comparison expression (except <=>),
|
|
// find any other comparisons with the same operands.
|
|
// See function description.
|
|
const RangeSet CmpRangeSet = getRangeForComparisonSymbol(State, Sym);
|
|
if (!CmpRangeSet.isEmpty())
|
|
return CmpRangeSet;
|
|
|
|
return Visit(Sym);
|
|
}
|
|
|
|
/// Infer range information solely from the type.
|
|
RangeSet infer(QualType T) {
|
|
// Lazily generate a new RangeSet representing all possible values for the
|
|
// given symbol type.
|
|
RangeSet Result(RangeFactory, ValueFactory.getMinValue(T),
|
|
ValueFactory.getMaxValue(T));
|
|
|
|
// References are known to be non-zero.
|
|
if (T->isReferenceType())
|
|
return assumeNonZero(Result, T);
|
|
|
|
return Result;
|
|
}
|
|
|
|
template <class BinarySymExprTy>
|
|
RangeSet VisitBinaryOperator(const BinarySymExprTy *Sym) {
|
|
// TODO #1: VisitBinaryOperator implementation might not make a good
|
|
// use of the inferred ranges. In this case, we might be calculating
|
|
// everything for nothing. This being said, we should introduce some
|
|
// sort of laziness mechanism here.
|
|
//
|
|
// TODO #2: We didn't go into the nested expressions before, so it
|
|
// might cause us spending much more time doing the inference.
|
|
// This can be a problem for deeply nested expressions that are
|
|
// involved in conditions and get tested continuously. We definitely
|
|
// need to address this issue and introduce some sort of caching
|
|
// in here.
|
|
QualType ResultType = Sym->getType();
|
|
return VisitBinaryOperator(inferAs(Sym->getLHS(), ResultType),
|
|
Sym->getOpcode(),
|
|
inferAs(Sym->getRHS(), ResultType), ResultType);
|
|
}
|
|
|
|
RangeSet VisitBinaryOperator(RangeSet LHS, BinaryOperator::Opcode Op,
|
|
RangeSet RHS, QualType T) {
|
|
switch (Op) {
|
|
case BO_Or:
|
|
return VisitBinaryOperator<BO_Or>(LHS, RHS, T);
|
|
case BO_And:
|
|
return VisitBinaryOperator<BO_And>(LHS, RHS, T);
|
|
case BO_Rem:
|
|
return VisitBinaryOperator<BO_Rem>(LHS, RHS, T);
|
|
default:
|
|
return infer(T);
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Ranges and operators
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Return a rough approximation of the given range set.
|
|
///
|
|
/// For the range set:
|
|
/// { [x_0, y_0], [x_1, y_1], ... , [x_N, y_N] }
|
|
/// it will return the range [x_0, y_N].
|
|
static Range fillGaps(RangeSet Origin) {
|
|
assert(!Origin.isEmpty());
|
|
return {Origin.getMinValue(), Origin.getMaxValue()};
|
|
}
|
|
|
|
/// Try to convert given range into the given type.
|
|
///
|
|
/// It will return llvm::None only when the trivial conversion is possible.
|
|
llvm::Optional<Range> convert(const Range &Origin, APSIntType To) {
|
|
if (To.testInRange(Origin.From(), false) != APSIntType::RTR_Within ||
|
|
To.testInRange(Origin.To(), false) != APSIntType::RTR_Within) {
|
|
return llvm::None;
|
|
}
|
|
return Range(ValueFactory.Convert(To, Origin.From()),
|
|
ValueFactory.Convert(To, Origin.To()));
|
|
}
|
|
|
|
template <BinaryOperator::Opcode Op>
|
|
RangeSet VisitBinaryOperator(RangeSet LHS, RangeSet RHS, QualType T) {
|
|
// We should propagate information about unfeasbility of one of the
|
|
// operands to the resulting range.
|
|
if (LHS.isEmpty() || RHS.isEmpty()) {
|
|
return RangeFactory.getEmptySet();
|
|
}
|
|
|
|
Range CoarseLHS = fillGaps(LHS);
|
|
Range CoarseRHS = fillGaps(RHS);
|
|
|
|
APSIntType ResultType = ValueFactory.getAPSIntType(T);
|
|
|
|
// We need to convert ranges to the resulting type, so we can compare values
|
|
// and combine them in a meaningful (in terms of the given operation) way.
|
|
auto ConvertedCoarseLHS = convert(CoarseLHS, ResultType);
|
|
auto ConvertedCoarseRHS = convert(CoarseRHS, ResultType);
|
|
|
|
// It is hard to reason about ranges when conversion changes
|
|
// borders of the ranges.
|
|
if (!ConvertedCoarseLHS || !ConvertedCoarseRHS) {
|
|
return infer(T);
|
|
}
|
|
|
|
return VisitBinaryOperator<Op>(*ConvertedCoarseLHS, *ConvertedCoarseRHS, T);
|
|
}
|
|
|
|
template <BinaryOperator::Opcode Op>
|
|
RangeSet VisitBinaryOperator(Range LHS, Range RHS, QualType T) {
|
|
return infer(T);
|
|
}
|
|
|
|
/// Return a symmetrical range for the given range and type.
|
|
///
|
|
/// If T is signed, return the smallest range [-x..x] that covers the original
|
|
/// range, or [-min(T), max(T)] if the aforementioned symmetric range doesn't
|
|
/// exist due to original range covering min(T)).
|
|
///
|
|
/// If T is unsigned, return the smallest range [0..x] that covers the
|
|
/// original range.
|
|
Range getSymmetricalRange(Range Origin, QualType T) {
|
|
APSIntType RangeType = ValueFactory.getAPSIntType(T);
|
|
|
|
if (RangeType.isUnsigned()) {
|
|
return Range(ValueFactory.getMinValue(RangeType), Origin.To());
|
|
}
|
|
|
|
if (Origin.From().isMinSignedValue()) {
|
|
// If mini is a minimal signed value, absolute value of it is greater
|
|
// than the maximal signed value. In order to avoid these
|
|
// complications, we simply return the whole range.
|
|
return {ValueFactory.getMinValue(RangeType),
|
|
ValueFactory.getMaxValue(RangeType)};
|
|
}
|
|
|
|
// At this point, we are sure that the type is signed and we can safely
|
|
// use unary - operator.
|
|
//
|
|
// While calculating absolute maximum, we can use the following formula
|
|
// because of these reasons:
|
|
// * If From >= 0 then To >= From and To >= -From.
|
|
// AbsMax == To == max(To, -From)
|
|
// * If To <= 0 then -From >= -To and -From >= From.
|
|
// AbsMax == -From == max(-From, To)
|
|
// * Otherwise, From <= 0, To >= 0, and
|
|
// AbsMax == max(abs(From), abs(To))
|
|
llvm::APSInt AbsMax = std::max(-Origin.From(), Origin.To());
|
|
|
|
// Intersection is guaranteed to be non-empty.
|
|
return {ValueFactory.getValue(-AbsMax), ValueFactory.getValue(AbsMax)};
|
|
}
|
|
|
|
/// Return a range set subtracting zero from \p Domain.
|
|
RangeSet assumeNonZero(RangeSet Domain, QualType T) {
|
|
APSIntType IntType = ValueFactory.getAPSIntType(T);
|
|
return Domain.Intersect(ValueFactory, RangeFactory,
|
|
++IntType.getZeroValue(), --IntType.getZeroValue());
|
|
}
|
|
|
|
// FIXME: Once SValBuilder supports unary minus, we should use SValBuilder to
|
|
// obtain the negated symbolic expression instead of constructing the
|
|
// symbol manually. This will allow us to support finding ranges of not
|
|
// only negated SymSymExpr-type expressions, but also of other, simpler
|
|
// expressions which we currently do not know how to negate.
|
|
const RangeSet *getRangeForMinusSymbol(ProgramStateRef State, SymbolRef Sym) {
|
|
if (const SymSymExpr *SSE = dyn_cast<SymSymExpr>(Sym)) {
|
|
if (SSE->getOpcode() == BO_Sub) {
|
|
QualType T = Sym->getType();
|
|
SymbolManager &SymMgr = State->getSymbolManager();
|
|
SymbolRef negSym =
|
|
SymMgr.getSymSymExpr(SSE->getRHS(), BO_Sub, SSE->getLHS(), T);
|
|
|
|
if (const RangeSet *negV = State->get<ConstraintRange>(negSym)) {
|
|
// Unsigned range set cannot be negated, unless it is [0, 0].
|
|
if (T->isUnsignedIntegerOrEnumerationType() ||
|
|
T->isSignedIntegerOrEnumerationType())
|
|
return negV;
|
|
}
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
// Returns ranges only for binary comparison operators (except <=>)
|
|
// when left and right operands are symbolic values.
|
|
// Finds any other comparisons with the same operands.
|
|
// Then do logical calculations and refuse impossible branches.
|
|
// E.g. (x < y) and (x > y) at the same time are impossible.
|
|
// E.g. (x >= y) and (x != y) at the same time makes (x > y) true only.
|
|
// E.g. (x == y) and (y == x) are just reversed but the same.
|
|
// It covers all possible combinations (see CmpOpTable description).
|
|
// Note that `x` and `y` can also stand for subexpressions,
|
|
// not only for actual symbols.
|
|
RangeSet getRangeForComparisonSymbol(ProgramStateRef State, SymbolRef Sym) {
|
|
const RangeSet EmptyRangeSet = RangeFactory.getEmptySet();
|
|
|
|
auto SSE = dyn_cast<SymSymExpr>(Sym);
|
|
if (!SSE)
|
|
return EmptyRangeSet;
|
|
|
|
BinaryOperatorKind CurrentOP = SSE->getOpcode();
|
|
|
|
// We currently do not support <=> (C++20).
|
|
if (!BinaryOperator::isComparisonOp(CurrentOP) || (CurrentOP == BO_Cmp))
|
|
return EmptyRangeSet;
|
|
|
|
static const OperatorRelationsTable CmpOpTable;
|
|
|
|
const SymExpr *LHS = SSE->getLHS();
|
|
const SymExpr *RHS = SSE->getRHS();
|
|
QualType T = SSE->getType();
|
|
|
|
SymbolManager &SymMgr = State->getSymbolManager();
|
|
const llvm::APSInt &Zero = ValueFactory.getValue(0, T);
|
|
const llvm::APSInt &One = ValueFactory.getValue(1, T);
|
|
const RangeSet TrueRangeSet(RangeFactory, One, One);
|
|
const RangeSet FalseRangeSet(RangeFactory, Zero, Zero);
|
|
|
|
int UnknownStates = 0;
|
|
|
|
// Loop goes through all of the columns exept the last one ('UnknownX2').
|
|
// We treat `UnknownX2` column separately at the end of the loop body.
|
|
for (size_t i = 0; i < CmpOpTable.getCmpOpCount(); ++i) {
|
|
|
|
// Let's find an expression e.g. (x < y).
|
|
BinaryOperatorKind QueriedOP = OperatorRelationsTable::getOpFromIndex(i);
|
|
const SymSymExpr *SymSym = SymMgr.getSymSymExpr(LHS, QueriedOP, RHS, T);
|
|
const RangeSet *QueriedRangeSet = State->get<ConstraintRange>(SymSym);
|
|
|
|
// If ranges were not previously found,
|
|
// try to find a reversed expression (y > x).
|
|
if (!QueriedRangeSet) {
|
|
const BinaryOperatorKind ROP =
|
|
BinaryOperator::reverseComparisonOp(QueriedOP);
|
|
SymSym = SymMgr.getSymSymExpr(RHS, ROP, LHS, T);
|
|
QueriedRangeSet = State->get<ConstraintRange>(SymSym);
|
|
}
|
|
|
|
if (!QueriedRangeSet || QueriedRangeSet->isEmpty())
|
|
continue;
|
|
|
|
const llvm::APSInt *ConcreteValue = QueriedRangeSet->getConcreteValue();
|
|
const bool isInFalseBranch =
|
|
ConcreteValue ? (*ConcreteValue == 0) : false;
|
|
|
|
// If it is a false branch, we shall be guided by opposite operator,
|
|
// because the table is made assuming we are in the true branch.
|
|
// E.g. when (x <= y) is false, then (x > y) is true.
|
|
if (isInFalseBranch)
|
|
QueriedOP = BinaryOperator::negateComparisonOp(QueriedOP);
|
|
|
|
OperatorRelationsTable::TriStateKind BranchState =
|
|
CmpOpTable.getCmpOpState(CurrentOP, QueriedOP);
|
|
|
|
if (BranchState == OperatorRelationsTable::Unknown) {
|
|
if (++UnknownStates == 2)
|
|
// If we met both Unknown states.
|
|
// if (x <= y) // assume true
|
|
// if (x != y) // assume true
|
|
// if (x < y) // would be also true
|
|
// Get a state from `UnknownX2` column.
|
|
BranchState = CmpOpTable.getCmpOpStateForUnknownX2(CurrentOP);
|
|
else
|
|
continue;
|
|
}
|
|
|
|
return (BranchState == OperatorRelationsTable::True) ? TrueRangeSet
|
|
: FalseRangeSet;
|
|
}
|
|
|
|
return EmptyRangeSet;
|
|
}
|
|
|
|
BasicValueFactory &ValueFactory;
|
|
RangeSet::Factory &RangeFactory;
|
|
ProgramStateRef State;
|
|
};
|
|
|
|
template <>
|
|
RangeSet SymbolicRangeInferrer::VisitBinaryOperator<BO_Or>(Range LHS, Range RHS,
|
|
QualType T) {
|
|
APSIntType ResultType = ValueFactory.getAPSIntType(T);
|
|
llvm::APSInt Zero = ResultType.getZeroValue();
|
|
|
|
bool IsLHSPositiveOrZero = LHS.From() >= Zero;
|
|
bool IsRHSPositiveOrZero = RHS.From() >= Zero;
|
|
|
|
bool IsLHSNegative = LHS.To() < Zero;
|
|
bool IsRHSNegative = RHS.To() < Zero;
|
|
|
|
// Check if both ranges have the same sign.
|
|
if ((IsLHSPositiveOrZero && IsRHSPositiveOrZero) ||
|
|
(IsLHSNegative && IsRHSNegative)) {
|
|
// The result is definitely greater or equal than any of the operands.
|
|
const llvm::APSInt &Min = std::max(LHS.From(), RHS.From());
|
|
|
|
// We estimate maximal value for positives as the maximal value for the
|
|
// given type. For negatives, we estimate it with -1 (e.g. 0x11111111).
|
|
//
|
|
// TODO: We basically, limit the resulting range from below, but don't do
|
|
// anything with the upper bound.
|
|
//
|
|
// For positive operands, it can be done as follows: for the upper
|
|
// bound of LHS and RHS we calculate the most significant bit set.
|
|
// Let's call it the N-th bit. Then we can estimate the maximal
|
|
// number to be 2^(N+1)-1, i.e. the number with all the bits up to
|
|
// the N-th bit set.
|
|
const llvm::APSInt &Max = IsLHSNegative
|
|
? ValueFactory.getValue(--Zero)
|
|
: ValueFactory.getMaxValue(ResultType);
|
|
|
|
return {RangeFactory, ValueFactory.getValue(Min), Max};
|
|
}
|
|
|
|
// Otherwise, let's check if at least one of the operands is negative.
|
|
if (IsLHSNegative || IsRHSNegative) {
|
|
// This means that the result is definitely negative as well.
|
|
return {RangeFactory, ValueFactory.getMinValue(ResultType),
|
|
ValueFactory.getValue(--Zero)};
|
|
}
|
|
|
|
RangeSet DefaultRange = infer(T);
|
|
|
|
// It is pretty hard to reason about operands with different signs
|
|
// (and especially with possibly different signs). We simply check if it
|
|
// can be zero. In order to conclude that the result could not be zero,
|
|
// at least one of the operands should be definitely not zero itself.
|
|
if (!LHS.Includes(Zero) || !RHS.Includes(Zero)) {
|
|
return assumeNonZero(DefaultRange, T);
|
|
}
|
|
|
|
// Nothing much else to do here.
|
|
return DefaultRange;
|
|
}
|
|
|
|
template <>
|
|
RangeSet SymbolicRangeInferrer::VisitBinaryOperator<BO_And>(Range LHS,
|
|
Range RHS,
|
|
QualType T) {
|
|
APSIntType ResultType = ValueFactory.getAPSIntType(T);
|
|
llvm::APSInt Zero = ResultType.getZeroValue();
|
|
|
|
bool IsLHSPositiveOrZero = LHS.From() >= Zero;
|
|
bool IsRHSPositiveOrZero = RHS.From() >= Zero;
|
|
|
|
bool IsLHSNegative = LHS.To() < Zero;
|
|
bool IsRHSNegative = RHS.To() < Zero;
|
|
|
|
// Check if both ranges have the same sign.
|
|
if ((IsLHSPositiveOrZero && IsRHSPositiveOrZero) ||
|
|
(IsLHSNegative && IsRHSNegative)) {
|
|
// The result is definitely less or equal than any of the operands.
|
|
const llvm::APSInt &Max = std::min(LHS.To(), RHS.To());
|
|
|
|
// We conservatively estimate lower bound to be the smallest positive
|
|
// or negative value corresponding to the sign of the operands.
|
|
const llvm::APSInt &Min = IsLHSNegative
|
|
? ValueFactory.getMinValue(ResultType)
|
|
: ValueFactory.getValue(Zero);
|
|
|
|
return {RangeFactory, Min, Max};
|
|
}
|
|
|
|
// Otherwise, let's check if at least one of the operands is positive.
|
|
if (IsLHSPositiveOrZero || IsRHSPositiveOrZero) {
|
|
// This makes result definitely positive.
|
|
//
|
|
// We can also reason about a maximal value by finding the maximal
|
|
// value of the positive operand.
|
|
const llvm::APSInt &Max = IsLHSPositiveOrZero ? LHS.To() : RHS.To();
|
|
|
|
// The minimal value on the other hand is much harder to reason about.
|
|
// The only thing we know for sure is that the result is positive.
|
|
return {RangeFactory, ValueFactory.getValue(Zero),
|
|
ValueFactory.getValue(Max)};
|
|
}
|
|
|
|
// Nothing much else to do here.
|
|
return infer(T);
|
|
}
|
|
|
|
template <>
|
|
RangeSet SymbolicRangeInferrer::VisitBinaryOperator<BO_Rem>(Range LHS,
|
|
Range RHS,
|
|
QualType T) {
|
|
llvm::APSInt Zero = ValueFactory.getAPSIntType(T).getZeroValue();
|
|
|
|
Range ConservativeRange = getSymmetricalRange(RHS, T);
|
|
|
|
llvm::APSInt Max = ConservativeRange.To();
|
|
llvm::APSInt Min = ConservativeRange.From();
|
|
|
|
if (Max == Zero) {
|
|
// It's an undefined behaviour to divide by 0 and it seems like we know
|
|
// for sure that RHS is 0. Let's say that the resulting range is
|
|
// simply infeasible for that matter.
|
|
return RangeFactory.getEmptySet();
|
|
}
|
|
|
|
// At this point, our conservative range is closed. The result, however,
|
|
// couldn't be greater than the RHS' maximal absolute value. Because of
|
|
// this reason, we turn the range into open (or half-open in case of
|
|
// unsigned integers).
|
|
//
|
|
// While we operate on integer values, an open interval (a, b) can be easily
|
|
// represented by the closed interval [a + 1, b - 1]. And this is exactly
|
|
// what we do next.
|
|
//
|
|
// If we are dealing with unsigned case, we shouldn't move the lower bound.
|
|
if (Min.isSigned()) {
|
|
++Min;
|
|
}
|
|
--Max;
|
|
|
|
bool IsLHSPositiveOrZero = LHS.From() >= Zero;
|
|
bool IsRHSPositiveOrZero = RHS.From() >= Zero;
|
|
|
|
// Remainder operator results with negative operands is implementation
|
|
// defined. Positive cases are much easier to reason about though.
|
|
if (IsLHSPositiveOrZero && IsRHSPositiveOrZero) {
|
|
// If maximal value of LHS is less than maximal value of RHS,
|
|
// the result won't get greater than LHS.To().
|
|
Max = std::min(LHS.To(), Max);
|
|
// We want to check if it is a situation similar to the following:
|
|
//
|
|
// <------------|---[ LHS ]--------[ RHS ]----->
|
|
// -INF 0 +INF
|
|
//
|
|
// In this situation, we can conclude that (LHS / RHS) == 0 and
|
|
// (LHS % RHS) == LHS.
|
|
Min = LHS.To() < RHS.From() ? LHS.From() : Zero;
|
|
}
|
|
|
|
// Nevertheless, the symmetrical range for RHS is a conservative estimate
|
|
// for any sign of either LHS, or RHS.
|
|
return {RangeFactory, ValueFactory.getValue(Min), ValueFactory.getValue(Max)};
|
|
}
|
|
|
|
class RangeConstraintManager : public RangedConstraintManager {
|
|
public:
|
|
RangeConstraintManager(ExprEngine *EE, SValBuilder &SVB)
|
|
: RangedConstraintManager(EE, SVB) {}
|
|
|
|
//===------------------------------------------------------------------===//
|
|
// Implementation for interface from ConstraintManager.
|
|
//===------------------------------------------------------------------===//
|
|
|
|
bool haveEqualConstraints(ProgramStateRef S1,
|
|
ProgramStateRef S2) const override {
|
|
return S1->get<ConstraintRange>() == S2->get<ConstraintRange>();
|
|
}
|
|
|
|
bool canReasonAbout(SVal X) const override;
|
|
|
|
ConditionTruthVal checkNull(ProgramStateRef State, SymbolRef Sym) override;
|
|
|
|
const llvm::APSInt *getSymVal(ProgramStateRef State,
|
|
SymbolRef Sym) const override;
|
|
|
|
ProgramStateRef removeDeadBindings(ProgramStateRef State,
|
|
SymbolReaper &SymReaper) override;
|
|
|
|
void printJson(raw_ostream &Out, ProgramStateRef State, const char *NL = "\n",
|
|
unsigned int Space = 0, bool IsDot = false) const override;
|
|
|
|
//===------------------------------------------------------------------===//
|
|
// Implementation for interface from RangedConstraintManager.
|
|
//===------------------------------------------------------------------===//
|
|
|
|
ProgramStateRef assumeSymNE(ProgramStateRef State, SymbolRef Sym,
|
|
const llvm::APSInt &V,
|
|
const llvm::APSInt &Adjustment) override;
|
|
|
|
ProgramStateRef assumeSymEQ(ProgramStateRef State, SymbolRef Sym,
|
|
const llvm::APSInt &V,
|
|
const llvm::APSInt &Adjustment) override;
|
|
|
|
ProgramStateRef assumeSymLT(ProgramStateRef State, SymbolRef Sym,
|
|
const llvm::APSInt &V,
|
|
const llvm::APSInt &Adjustment) override;
|
|
|
|
ProgramStateRef assumeSymGT(ProgramStateRef State, SymbolRef Sym,
|
|
const llvm::APSInt &V,
|
|
const llvm::APSInt &Adjustment) override;
|
|
|
|
ProgramStateRef assumeSymLE(ProgramStateRef State, SymbolRef Sym,
|
|
const llvm::APSInt &V,
|
|
const llvm::APSInt &Adjustment) override;
|
|
|
|
ProgramStateRef assumeSymGE(ProgramStateRef State, SymbolRef Sym,
|
|
const llvm::APSInt &V,
|
|
const llvm::APSInt &Adjustment) override;
|
|
|
|
ProgramStateRef assumeSymWithinInclusiveRange(
|
|
ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
|
|
const llvm::APSInt &To, const llvm::APSInt &Adjustment) override;
|
|
|
|
ProgramStateRef assumeSymOutsideInclusiveRange(
|
|
ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
|
|
const llvm::APSInt &To, const llvm::APSInt &Adjustment) override;
|
|
|
|
private:
|
|
RangeSet::Factory F;
|
|
|
|
RangeSet getRange(ProgramStateRef State, SymbolRef Sym);
|
|
|
|
RangeSet getSymLTRange(ProgramStateRef St, SymbolRef Sym,
|
|
const llvm::APSInt &Int,
|
|
const llvm::APSInt &Adjustment);
|
|
RangeSet getSymGTRange(ProgramStateRef St, SymbolRef Sym,
|
|
const llvm::APSInt &Int,
|
|
const llvm::APSInt &Adjustment);
|
|
RangeSet getSymLERange(ProgramStateRef St, SymbolRef Sym,
|
|
const llvm::APSInt &Int,
|
|
const llvm::APSInt &Adjustment);
|
|
RangeSet getSymLERange(llvm::function_ref<RangeSet()> RS,
|
|
const llvm::APSInt &Int,
|
|
const llvm::APSInt &Adjustment);
|
|
RangeSet getSymGERange(ProgramStateRef St, SymbolRef Sym,
|
|
const llvm::APSInt &Int,
|
|
const llvm::APSInt &Adjustment);
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
std::unique_ptr<ConstraintManager>
|
|
ento::CreateRangeConstraintManager(ProgramStateManager &StMgr,
|
|
ExprEngine *Eng) {
|
|
return std::make_unique<RangeConstraintManager>(Eng, StMgr.getSValBuilder());
|
|
}
|
|
|
|
bool RangeConstraintManager::canReasonAbout(SVal X) const {
|
|
Optional<nonloc::SymbolVal> SymVal = X.getAs<nonloc::SymbolVal>();
|
|
if (SymVal && SymVal->isExpression()) {
|
|
const SymExpr *SE = SymVal->getSymbol();
|
|
|
|
if (const SymIntExpr *SIE = dyn_cast<SymIntExpr>(SE)) {
|
|
switch (SIE->getOpcode()) {
|
|
// We don't reason yet about bitwise-constraints on symbolic values.
|
|
case BO_And:
|
|
case BO_Or:
|
|
case BO_Xor:
|
|
return false;
|
|
// We don't reason yet about these arithmetic constraints on
|
|
// symbolic values.
|
|
case BO_Mul:
|
|
case BO_Div:
|
|
case BO_Rem:
|
|
case BO_Shl:
|
|
case BO_Shr:
|
|
return false;
|
|
// All other cases.
|
|
default:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (const SymSymExpr *SSE = dyn_cast<SymSymExpr>(SE)) {
|
|
// FIXME: Handle <=> here.
|
|
if (BinaryOperator::isEqualityOp(SSE->getOpcode()) ||
|
|
BinaryOperator::isRelationalOp(SSE->getOpcode())) {
|
|
// We handle Loc <> Loc comparisons, but not (yet) NonLoc <> NonLoc.
|
|
// We've recently started producing Loc <> NonLoc comparisons (that
|
|
// result from casts of one of the operands between eg. intptr_t and
|
|
// void *), but we can't reason about them yet.
|
|
if (Loc::isLocType(SSE->getLHS()->getType())) {
|
|
return Loc::isLocType(SSE->getRHS()->getType());
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
ConditionTruthVal RangeConstraintManager::checkNull(ProgramStateRef State,
|
|
SymbolRef Sym) {
|
|
const RangeSet *Ranges = State->get<ConstraintRange>(Sym);
|
|
|
|
// If we don't have any information about this symbol, it's underconstrained.
|
|
if (!Ranges)
|
|
return ConditionTruthVal();
|
|
|
|
// If we have a concrete value, see if it's zero.
|
|
if (const llvm::APSInt *Value = Ranges->getConcreteValue())
|
|
return *Value == 0;
|
|
|
|
BasicValueFactory &BV = getBasicVals();
|
|
APSIntType IntType = BV.getAPSIntType(Sym->getType());
|
|
llvm::APSInt Zero = IntType.getZeroValue();
|
|
|
|
// Check if zero is in the set of possible values.
|
|
if (Ranges->Intersect(BV, F, Zero, Zero).isEmpty())
|
|
return false;
|
|
|
|
// Zero is a possible value, but it is not the /only/ possible value.
|
|
return ConditionTruthVal();
|
|
}
|
|
|
|
const llvm::APSInt *RangeConstraintManager::getSymVal(ProgramStateRef St,
|
|
SymbolRef Sym) const {
|
|
const ConstraintRangeTy::data_type *T = St->get<ConstraintRange>(Sym);
|
|
return T ? T->getConcreteValue() : nullptr;
|
|
}
|
|
|
|
/// Scan all symbols referenced by the constraints. If the symbol is not alive
|
|
/// as marked in LSymbols, mark it as dead in DSymbols.
|
|
ProgramStateRef
|
|
RangeConstraintManager::removeDeadBindings(ProgramStateRef State,
|
|
SymbolReaper &SymReaper) {
|
|
bool Changed = false;
|
|
ConstraintRangeTy CR = State->get<ConstraintRange>();
|
|
ConstraintRangeTy::Factory &CRFactory = State->get_context<ConstraintRange>();
|
|
|
|
for (ConstraintRangeTy::iterator I = CR.begin(), E = CR.end(); I != E; ++I) {
|
|
SymbolRef Sym = I.getKey();
|
|
if (SymReaper.isDead(Sym)) {
|
|
Changed = true;
|
|
CR = CRFactory.remove(CR, Sym);
|
|
}
|
|
}
|
|
|
|
return Changed ? State->set<ConstraintRange>(CR) : State;
|
|
}
|
|
|
|
RangeSet RangeConstraintManager::getRange(ProgramStateRef State,
|
|
SymbolRef Sym) {
|
|
return SymbolicRangeInferrer::inferRange(getBasicVals(), F, State, Sym);
|
|
}
|
|
|
|
//===------------------------------------------------------------------------===
|
|
// assumeSymX methods: protected interface for RangeConstraintManager.
|
|
//===------------------------------------------------------------------------===/
|
|
|
|
// The syntax for ranges below is mathematical, using [x, y] for closed ranges
|
|
// and (x, y) for open ranges. These ranges are modular, corresponding with
|
|
// a common treatment of C integer overflow. This means that these methods
|
|
// do not have to worry about overflow; RangeSet::Intersect can handle such a
|
|
// "wraparound" range.
|
|
// As an example, the range [UINT_MAX-1, 3) contains five values: UINT_MAX-1,
|
|
// UINT_MAX, 0, 1, and 2.
|
|
|
|
ProgramStateRef
|
|
RangeConstraintManager::assumeSymNE(ProgramStateRef St, SymbolRef Sym,
|
|
const llvm::APSInt &Int,
|
|
const llvm::APSInt &Adjustment) {
|
|
// Before we do any real work, see if the value can even show up.
|
|
APSIntType AdjustmentType(Adjustment);
|
|
if (AdjustmentType.testInRange(Int, true) != APSIntType::RTR_Within)
|
|
return St;
|
|
|
|
llvm::APSInt Lower = AdjustmentType.convert(Int) - Adjustment;
|
|
llvm::APSInt Upper = Lower;
|
|
--Lower;
|
|
++Upper;
|
|
|
|
// [Int-Adjustment+1, Int-Adjustment-1]
|
|
// Notice that the lower bound is greater than the upper bound.
|
|
RangeSet New = getRange(St, Sym).Intersect(getBasicVals(), F, Upper, Lower);
|
|
return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
|
|
}
|
|
|
|
ProgramStateRef
|
|
RangeConstraintManager::assumeSymEQ(ProgramStateRef St, SymbolRef Sym,
|
|
const llvm::APSInt &Int,
|
|
const llvm::APSInt &Adjustment) {
|
|
// Before we do any real work, see if the value can even show up.
|
|
APSIntType AdjustmentType(Adjustment);
|
|
if (AdjustmentType.testInRange(Int, true) != APSIntType::RTR_Within)
|
|
return nullptr;
|
|
|
|
// [Int-Adjustment, Int-Adjustment]
|
|
llvm::APSInt AdjInt = AdjustmentType.convert(Int) - Adjustment;
|
|
RangeSet New = getRange(St, Sym).Intersect(getBasicVals(), F, AdjInt, AdjInt);
|
|
return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
|
|
}
|
|
|
|
RangeSet RangeConstraintManager::getSymLTRange(ProgramStateRef St,
|
|
SymbolRef Sym,
|
|
const llvm::APSInt &Int,
|
|
const llvm::APSInt &Adjustment) {
|
|
// Before we do any real work, see if the value can even show up.
|
|
APSIntType AdjustmentType(Adjustment);
|
|
switch (AdjustmentType.testInRange(Int, true)) {
|
|
case APSIntType::RTR_Below:
|
|
return F.getEmptySet();
|
|
case APSIntType::RTR_Within:
|
|
break;
|
|
case APSIntType::RTR_Above:
|
|
return getRange(St, Sym);
|
|
}
|
|
|
|
// Special case for Int == Min. This is always false.
|
|
llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
|
|
llvm::APSInt Min = AdjustmentType.getMinValue();
|
|
if (ComparisonVal == Min)
|
|
return F.getEmptySet();
|
|
|
|
llvm::APSInt Lower = Min - Adjustment;
|
|
llvm::APSInt Upper = ComparisonVal - Adjustment;
|
|
--Upper;
|
|
|
|
return getRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper);
|
|
}
|
|
|
|
ProgramStateRef
|
|
RangeConstraintManager::assumeSymLT(ProgramStateRef St, SymbolRef Sym,
|
|
const llvm::APSInt &Int,
|
|
const llvm::APSInt &Adjustment) {
|
|
RangeSet New = getSymLTRange(St, Sym, Int, Adjustment);
|
|
return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
|
|
}
|
|
|
|
RangeSet RangeConstraintManager::getSymGTRange(ProgramStateRef St,
|
|
SymbolRef Sym,
|
|
const llvm::APSInt &Int,
|
|
const llvm::APSInt &Adjustment) {
|
|
// Before we do any real work, see if the value can even show up.
|
|
APSIntType AdjustmentType(Adjustment);
|
|
switch (AdjustmentType.testInRange(Int, true)) {
|
|
case APSIntType::RTR_Below:
|
|
return getRange(St, Sym);
|
|
case APSIntType::RTR_Within:
|
|
break;
|
|
case APSIntType::RTR_Above:
|
|
return F.getEmptySet();
|
|
}
|
|
|
|
// Special case for Int == Max. This is always false.
|
|
llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
|
|
llvm::APSInt Max = AdjustmentType.getMaxValue();
|
|
if (ComparisonVal == Max)
|
|
return F.getEmptySet();
|
|
|
|
llvm::APSInt Lower = ComparisonVal - Adjustment;
|
|
llvm::APSInt Upper = Max - Adjustment;
|
|
++Lower;
|
|
|
|
return getRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper);
|
|
}
|
|
|
|
ProgramStateRef
|
|
RangeConstraintManager::assumeSymGT(ProgramStateRef St, SymbolRef Sym,
|
|
const llvm::APSInt &Int,
|
|
const llvm::APSInt &Adjustment) {
|
|
RangeSet New = getSymGTRange(St, Sym, Int, Adjustment);
|
|
return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
|
|
}
|
|
|
|
RangeSet RangeConstraintManager::getSymGERange(ProgramStateRef St,
|
|
SymbolRef Sym,
|
|
const llvm::APSInt &Int,
|
|
const llvm::APSInt &Adjustment) {
|
|
// Before we do any real work, see if the value can even show up.
|
|
APSIntType AdjustmentType(Adjustment);
|
|
switch (AdjustmentType.testInRange(Int, true)) {
|
|
case APSIntType::RTR_Below:
|
|
return getRange(St, Sym);
|
|
case APSIntType::RTR_Within:
|
|
break;
|
|
case APSIntType::RTR_Above:
|
|
return F.getEmptySet();
|
|
}
|
|
|
|
// Special case for Int == Min. This is always feasible.
|
|
llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
|
|
llvm::APSInt Min = AdjustmentType.getMinValue();
|
|
if (ComparisonVal == Min)
|
|
return getRange(St, Sym);
|
|
|
|
llvm::APSInt Max = AdjustmentType.getMaxValue();
|
|
llvm::APSInt Lower = ComparisonVal - Adjustment;
|
|
llvm::APSInt Upper = Max - Adjustment;
|
|
|
|
return getRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper);
|
|
}
|
|
|
|
ProgramStateRef
|
|
RangeConstraintManager::assumeSymGE(ProgramStateRef St, SymbolRef Sym,
|
|
const llvm::APSInt &Int,
|
|
const llvm::APSInt &Adjustment) {
|
|
RangeSet New = getSymGERange(St, Sym, Int, Adjustment);
|
|
return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
|
|
}
|
|
|
|
RangeSet RangeConstraintManager::getSymLERange(
|
|
llvm::function_ref<RangeSet()> RS,
|
|
const llvm::APSInt &Int,
|
|
const llvm::APSInt &Adjustment) {
|
|
// Before we do any real work, see if the value can even show up.
|
|
APSIntType AdjustmentType(Adjustment);
|
|
switch (AdjustmentType.testInRange(Int, true)) {
|
|
case APSIntType::RTR_Below:
|
|
return F.getEmptySet();
|
|
case APSIntType::RTR_Within:
|
|
break;
|
|
case APSIntType::RTR_Above:
|
|
return RS();
|
|
}
|
|
|
|
// Special case for Int == Max. This is always feasible.
|
|
llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
|
|
llvm::APSInt Max = AdjustmentType.getMaxValue();
|
|
if (ComparisonVal == Max)
|
|
return RS();
|
|
|
|
llvm::APSInt Min = AdjustmentType.getMinValue();
|
|
llvm::APSInt Lower = Min - Adjustment;
|
|
llvm::APSInt Upper = ComparisonVal - Adjustment;
|
|
|
|
return RS().Intersect(getBasicVals(), F, Lower, Upper);
|
|
}
|
|
|
|
RangeSet RangeConstraintManager::getSymLERange(ProgramStateRef St,
|
|
SymbolRef Sym,
|
|
const llvm::APSInt &Int,
|
|
const llvm::APSInt &Adjustment) {
|
|
return getSymLERange([&] { return getRange(St, Sym); }, Int, Adjustment);
|
|
}
|
|
|
|
ProgramStateRef
|
|
RangeConstraintManager::assumeSymLE(ProgramStateRef St, SymbolRef Sym,
|
|
const llvm::APSInt &Int,
|
|
const llvm::APSInt &Adjustment) {
|
|
RangeSet New = getSymLERange(St, Sym, Int, Adjustment);
|
|
return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
|
|
}
|
|
|
|
ProgramStateRef RangeConstraintManager::assumeSymWithinInclusiveRange(
|
|
ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
|
|
const llvm::APSInt &To, const llvm::APSInt &Adjustment) {
|
|
RangeSet New = getSymGERange(State, Sym, From, Adjustment);
|
|
if (New.isEmpty())
|
|
return nullptr;
|
|
RangeSet Out = getSymLERange([&] { return New; }, To, Adjustment);
|
|
return Out.isEmpty() ? nullptr : State->set<ConstraintRange>(Sym, Out);
|
|
}
|
|
|
|
ProgramStateRef RangeConstraintManager::assumeSymOutsideInclusiveRange(
|
|
ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
|
|
const llvm::APSInt &To, const llvm::APSInt &Adjustment) {
|
|
RangeSet RangeLT = getSymLTRange(State, Sym, From, Adjustment);
|
|
RangeSet RangeGT = getSymGTRange(State, Sym, To, Adjustment);
|
|
RangeSet New(RangeLT.addRange(F, RangeGT));
|
|
return New.isEmpty() ? nullptr : State->set<ConstraintRange>(Sym, New);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Pretty-printing.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void RangeConstraintManager::printJson(raw_ostream &Out, ProgramStateRef State,
|
|
const char *NL, unsigned int Space,
|
|
bool IsDot) const {
|
|
ConstraintRangeTy Constraints = State->get<ConstraintRange>();
|
|
|
|
Indent(Out, Space, IsDot) << "\"constraints\": ";
|
|
if (Constraints.isEmpty()) {
|
|
Out << "null," << NL;
|
|
return;
|
|
}
|
|
|
|
++Space;
|
|
Out << '[' << NL;
|
|
for (ConstraintRangeTy::iterator I = Constraints.begin();
|
|
I != Constraints.end(); ++I) {
|
|
Indent(Out, Space, IsDot)
|
|
<< "{ \"symbol\": \"" << I.getKey() << "\", \"range\": \"";
|
|
I.getData().print(Out);
|
|
Out << "\" }";
|
|
|
|
if (std::next(I) != Constraints.end())
|
|
Out << ',';
|
|
Out << NL;
|
|
}
|
|
|
|
--Space;
|
|
Indent(Out, Space, IsDot) << "]," << NL;
|
|
}
|