llvm-project/clang/lib/CodeGen/CodeGenTBAA.cpp
Vassil Vassilev 6c62ad446b
[clang-repl] [codegen] Reduce the state in TBAA. NFC for static compilation. (#98138)
In incremental compilation clang works with multiple `llvm::Module`s.
Our current approach is to create a CodeGenModule entity for every new
module request (via StartModule). However, some of the state such as the
mangle context needs to be preserved to keep the original semantics in
the ever-growing TU.

Fixes: llvm/llvm-project#95581.

cc: @jeaye
2024-08-21 07:22:31 +02:00

603 lines
23 KiB
C++

//===-- CodeGenTBAA.cpp - TBAA information for LLVM CodeGen ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This is the code that manages TBAA information and defines the TBAA policy
// for the optimizer to use. Relevant standards text includes:
//
// C99 6.5p7
// C++ [basic.lval] (p10 in n3126, p15 in some earlier versions)
//
//===----------------------------------------------------------------------===//
#include "CodeGenTBAA.h"
#include "ABIInfoImpl.h"
#include "CGCXXABI.h"
#include "CGRecordLayout.h"
#include "CodeGenTypes.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Attr.h"
#include "clang/AST/Mangle.h"
#include "clang/AST/RecordLayout.h"
#include "clang/Basic/CodeGenOptions.h"
#include "clang/Basic/TargetInfo.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/Debug.h"
using namespace clang;
using namespace CodeGen;
CodeGenTBAA::CodeGenTBAA(ASTContext &Ctx, CodeGenTypes &CGTypes,
llvm::Module &M, const CodeGenOptions &CGO,
const LangOptions &Features)
: Context(Ctx), CGTypes(CGTypes), Module(M), CodeGenOpts(CGO),
Features(Features), MDHelper(M.getContext()), Root(nullptr),
Char(nullptr) {}
CodeGenTBAA::~CodeGenTBAA() {
}
llvm::MDNode *CodeGenTBAA::getRoot() {
// Define the root of the tree. This identifies the tree, so that
// if our LLVM IR is linked with LLVM IR from a different front-end
// (or a different version of this front-end), their TBAA trees will
// remain distinct, and the optimizer will treat them conservatively.
if (!Root) {
if (Features.CPlusPlus)
Root = MDHelper.createTBAARoot("Simple C++ TBAA");
else
Root = MDHelper.createTBAARoot("Simple C/C++ TBAA");
}
return Root;
}
llvm::MDNode *CodeGenTBAA::createScalarTypeNode(StringRef Name,
llvm::MDNode *Parent,
uint64_t Size) {
if (CodeGenOpts.NewStructPathTBAA) {
llvm::Metadata *Id = MDHelper.createString(Name);
return MDHelper.createTBAATypeNode(Parent, Size, Id);
}
return MDHelper.createTBAAScalarTypeNode(Name, Parent);
}
llvm::MDNode *CodeGenTBAA::getChar() {
// Define the root of the tree for user-accessible memory. C and C++
// give special powers to char and certain similar types. However,
// these special powers only cover user-accessible memory, and doesn't
// include things like vtables.
if (!Char)
Char = createScalarTypeNode("omnipotent char", getRoot(), /* Size= */ 1);
return Char;
}
static bool TypeHasMayAlias(QualType QTy) {
// Tagged types have declarations, and therefore may have attributes.
if (auto *TD = QTy->getAsTagDecl())
if (TD->hasAttr<MayAliasAttr>())
return true;
// Also look for may_alias as a declaration attribute on a typedef.
// FIXME: We should follow GCC and model may_alias as a type attribute
// rather than as a declaration attribute.
while (auto *TT = QTy->getAs<TypedefType>()) {
if (TT->getDecl()->hasAttr<MayAliasAttr>())
return true;
QTy = TT->desugar();
}
return false;
}
/// Check if the given type is a valid base type to be used in access tags.
static bool isValidBaseType(QualType QTy) {
if (const RecordType *TTy = QTy->getAs<RecordType>()) {
const RecordDecl *RD = TTy->getDecl()->getDefinition();
// Incomplete types are not valid base access types.
if (!RD)
return false;
if (RD->hasFlexibleArrayMember())
return false;
// RD can be struct, union, class, interface or enum.
// For now, we only handle struct and class.
if (RD->isStruct() || RD->isClass())
return true;
}
return false;
}
llvm::MDNode *CodeGenTBAA::getTypeInfoHelper(const Type *Ty) {
uint64_t Size = Context.getTypeSizeInChars(Ty).getQuantity();
// Handle builtin types.
if (const BuiltinType *BTy = dyn_cast<BuiltinType>(Ty)) {
switch (BTy->getKind()) {
// Character types are special and can alias anything.
// In C++, this technically only includes "char" and "unsigned char",
// and not "signed char". In C, it includes all three. For now,
// the risk of exploiting this detail in C++ seems likely to outweigh
// the benefit.
case BuiltinType::Char_U:
case BuiltinType::Char_S:
case BuiltinType::UChar:
case BuiltinType::SChar:
return getChar();
// Unsigned types can alias their corresponding signed types.
case BuiltinType::UShort:
return getTypeInfo(Context.ShortTy);
case BuiltinType::UInt:
return getTypeInfo(Context.IntTy);
case BuiltinType::ULong:
return getTypeInfo(Context.LongTy);
case BuiltinType::ULongLong:
return getTypeInfo(Context.LongLongTy);
case BuiltinType::UInt128:
return getTypeInfo(Context.Int128Ty);
case BuiltinType::UShortFract:
return getTypeInfo(Context.ShortFractTy);
case BuiltinType::UFract:
return getTypeInfo(Context.FractTy);
case BuiltinType::ULongFract:
return getTypeInfo(Context.LongFractTy);
case BuiltinType::SatUShortFract:
return getTypeInfo(Context.SatShortFractTy);
case BuiltinType::SatUFract:
return getTypeInfo(Context.SatFractTy);
case BuiltinType::SatULongFract:
return getTypeInfo(Context.SatLongFractTy);
case BuiltinType::UShortAccum:
return getTypeInfo(Context.ShortAccumTy);
case BuiltinType::UAccum:
return getTypeInfo(Context.AccumTy);
case BuiltinType::ULongAccum:
return getTypeInfo(Context.LongAccumTy);
case BuiltinType::SatUShortAccum:
return getTypeInfo(Context.SatShortAccumTy);
case BuiltinType::SatUAccum:
return getTypeInfo(Context.SatAccumTy);
case BuiltinType::SatULongAccum:
return getTypeInfo(Context.SatLongAccumTy);
// Treat all other builtin types as distinct types. This includes
// treating wchar_t, char16_t, and char32_t as distinct from their
// "underlying types".
default:
return createScalarTypeNode(BTy->getName(Features), getChar(), Size);
}
}
// C++1z [basic.lval]p10: "If a program attempts to access the stored value of
// an object through a glvalue of other than one of the following types the
// behavior is undefined: [...] a char, unsigned char, or std::byte type."
if (Ty->isStdByteType())
return getChar();
// Handle pointers and references.
//
// C has a very strict rule for pointer aliasing. C23 6.7.6.1p2:
// For two pointer types to be compatible, both shall be identically
// qualified and both shall be pointers to compatible types.
//
// This rule is impractically strict; we want to at least ignore CVR
// qualifiers. Distinguishing by CVR qualifiers would make it UB to
// e.g. cast a `char **` to `const char * const *` and dereference it,
// which is too common and useful to invalidate. C++'s similar types
// rule permits qualifier differences in these nested positions; in fact,
// C++ even allows that cast as an implicit conversion.
//
// Other qualifiers could theoretically be distinguished, especially if
// they involve a significant representation difference. We don't
// currently do so, however.
//
// Computing the pointee type string recursively is implicitly more
// forgiving than the standards require. Effectively, we are turning
// the question "are these types compatible/similar" into "are
// accesses to these types allowed to alias". In both C and C++,
// the latter question has special carve-outs for signedness
// mismatches that only apply at the top level. As a result, we are
// allowing e.g. `int *` l-values to access `unsigned *` objects.
if (Ty->isPointerType() || Ty->isReferenceType()) {
llvm::MDNode *AnyPtr = createScalarTypeNode("any pointer", getChar(), Size);
if (!CodeGenOpts.PointerTBAA)
return AnyPtr;
// Compute the depth of the pointer and generate a tag of the form "p<depth>
// <base type tag>".
unsigned PtrDepth = 0;
do {
PtrDepth++;
Ty = Ty->getPointeeType().getTypePtr();
} while (Ty->isPointerType());
// TODO: Implement C++'s type "similarity" and consider dis-"similar"
// pointers distinct for non-builtin types.
if (isa<BuiltinType>(Ty)) {
llvm::MDNode *ScalarMD = getTypeInfoHelper(Ty);
StringRef Name =
cast<llvm::MDString>(
ScalarMD->getOperand(CodeGenOpts.NewStructPathTBAA ? 2 : 0))
->getString();
SmallString<256> OutName("p");
OutName += std::to_string(PtrDepth);
OutName += " ";
OutName += Name;
return createScalarTypeNode(OutName, AnyPtr, Size);
}
return AnyPtr;
}
// Accesses to arrays are accesses to objects of their element types.
if (CodeGenOpts.NewStructPathTBAA && Ty->isArrayType())
return getTypeInfo(cast<ArrayType>(Ty)->getElementType());
// Enum types are distinct types. In C++ they have "underlying types",
// however they aren't related for TBAA.
if (const EnumType *ETy = dyn_cast<EnumType>(Ty)) {
if (!Features.CPlusPlus)
return getTypeInfo(ETy->getDecl()->getIntegerType());
// In C++ mode, types have linkage, so we can rely on the ODR and
// on their mangled names, if they're external.
// TODO: Is there a way to get a program-wide unique name for a
// decl with local linkage or no linkage?
if (!ETy->getDecl()->isExternallyVisible())
return getChar();
SmallString<256> OutName;
llvm::raw_svector_ostream Out(OutName);
CGTypes.getCXXABI().getMangleContext().mangleCanonicalTypeName(
QualType(ETy, 0), Out);
return createScalarTypeNode(OutName, getChar(), Size);
}
if (const auto *EIT = dyn_cast<BitIntType>(Ty)) {
SmallString<256> OutName;
llvm::raw_svector_ostream Out(OutName);
// Don't specify signed/unsigned since integer types can alias despite sign
// differences.
Out << "_BitInt(" << EIT->getNumBits() << ')';
return createScalarTypeNode(OutName, getChar(), Size);
}
// For now, handle any other kind of type conservatively.
return getChar();
}
llvm::MDNode *CodeGenTBAA::getTypeInfo(QualType QTy) {
// At -O0 or relaxed aliasing, TBAA is not emitted for regular types.
if (CodeGenOpts.OptimizationLevel == 0 || CodeGenOpts.RelaxedAliasing)
return nullptr;
// If the type has the may_alias attribute (even on a typedef), it is
// effectively in the general char alias class.
if (TypeHasMayAlias(QTy))
return getChar();
// We need this function to not fall back to returning the "omnipotent char"
// type node for aggregate and union types. Otherwise, any dereference of an
// aggregate will result into the may-alias access descriptor, meaning all
// subsequent accesses to direct and indirect members of that aggregate will
// be considered may-alias too.
// TODO: Combine getTypeInfo() and getValidBaseTypeInfo() into a single
// function.
if (isValidBaseType(QTy))
return getValidBaseTypeInfo(QTy);
const Type *Ty = Context.getCanonicalType(QTy).getTypePtr();
if (llvm::MDNode *N = MetadataCache[Ty])
return N;
// Note that the following helper call is allowed to add new nodes to the
// cache, which invalidates all its previously obtained iterators. So we
// first generate the node for the type and then add that node to the cache.
llvm::MDNode *TypeNode = getTypeInfoHelper(Ty);
return MetadataCache[Ty] = TypeNode;
}
TBAAAccessInfo CodeGenTBAA::getAccessInfo(QualType AccessType) {
// Pointee values may have incomplete types, but they shall never be
// dereferenced.
if (AccessType->isIncompleteType())
return TBAAAccessInfo::getIncompleteInfo();
if (TypeHasMayAlias(AccessType))
return TBAAAccessInfo::getMayAliasInfo();
uint64_t Size = Context.getTypeSizeInChars(AccessType).getQuantity();
return TBAAAccessInfo(getTypeInfo(AccessType), Size);
}
TBAAAccessInfo CodeGenTBAA::getVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
const llvm::DataLayout &DL = Module.getDataLayout();
unsigned Size = DL.getPointerTypeSize(VTablePtrType);
return TBAAAccessInfo(createScalarTypeNode("vtable pointer", getRoot(), Size),
Size);
}
bool
CodeGenTBAA::CollectFields(uint64_t BaseOffset,
QualType QTy,
SmallVectorImpl<llvm::MDBuilder::TBAAStructField> &
Fields,
bool MayAlias) {
/* Things not handled yet include: C++ base classes, bitfields, */
if (const RecordType *TTy = QTy->getAs<RecordType>()) {
if (TTy->isUnionType()) {
uint64_t Size = Context.getTypeSizeInChars(QTy).getQuantity();
llvm::MDNode *TBAAType = getChar();
llvm::MDNode *TBAATag = getAccessTagInfo(TBAAAccessInfo(TBAAType, Size));
Fields.push_back(
llvm::MDBuilder::TBAAStructField(BaseOffset, Size, TBAATag));
return true;
}
const RecordDecl *RD = TTy->getDecl()->getDefinition();
if (RD->hasFlexibleArrayMember())
return false;
// TODO: Handle C++ base classes.
if (const CXXRecordDecl *Decl = dyn_cast<CXXRecordDecl>(RD))
if (Decl->bases_begin() != Decl->bases_end())
return false;
const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
const CGRecordLayout &CGRL = CGTypes.getCGRecordLayout(RD);
unsigned idx = 0;
for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
i != e; ++i, ++idx) {
if (isEmptyFieldForLayout(Context, *i))
continue;
uint64_t Offset =
BaseOffset + Layout.getFieldOffset(idx) / Context.getCharWidth();
// Create a single field for consecutive named bitfields using char as
// base type.
if ((*i)->isBitField()) {
const CGBitFieldInfo &Info = CGRL.getBitFieldInfo(*i);
// For big endian targets the first bitfield in the consecutive run is
// at the most-significant end; see CGRecordLowering::setBitFieldInfo
// for more information.
bool IsBE = Context.getTargetInfo().isBigEndian();
bool IsFirst = IsBE ? Info.StorageSize - (Info.Offset + Info.Size) == 0
: Info.Offset == 0;
if (!IsFirst)
continue;
unsigned CurrentBitFieldSize = Info.StorageSize;
uint64_t Size =
llvm::divideCeil(CurrentBitFieldSize, Context.getCharWidth());
llvm::MDNode *TBAAType = getChar();
llvm::MDNode *TBAATag =
getAccessTagInfo(TBAAAccessInfo(TBAAType, Size));
Fields.push_back(
llvm::MDBuilder::TBAAStructField(Offset, Size, TBAATag));
continue;
}
QualType FieldQTy = i->getType();
if (!CollectFields(Offset, FieldQTy, Fields,
MayAlias || TypeHasMayAlias(FieldQTy)))
return false;
}
return true;
}
/* Otherwise, treat whatever it is as a field. */
uint64_t Offset = BaseOffset;
uint64_t Size = Context.getTypeSizeInChars(QTy).getQuantity();
llvm::MDNode *TBAAType = MayAlias ? getChar() : getTypeInfo(QTy);
llvm::MDNode *TBAATag = getAccessTagInfo(TBAAAccessInfo(TBAAType, Size));
Fields.push_back(llvm::MDBuilder::TBAAStructField(Offset, Size, TBAATag));
return true;
}
llvm::MDNode *
CodeGenTBAA::getTBAAStructInfo(QualType QTy) {
if (CodeGenOpts.OptimizationLevel == 0 || CodeGenOpts.RelaxedAliasing)
return nullptr;
const Type *Ty = Context.getCanonicalType(QTy).getTypePtr();
if (llvm::MDNode *N = StructMetadataCache[Ty])
return N;
SmallVector<llvm::MDBuilder::TBAAStructField, 4> Fields;
if (CollectFields(0, QTy, Fields, TypeHasMayAlias(QTy)))
return MDHelper.createTBAAStructNode(Fields);
// For now, handle any other kind of type conservatively.
return StructMetadataCache[Ty] = nullptr;
}
llvm::MDNode *CodeGenTBAA::getBaseTypeInfoHelper(const Type *Ty) {
if (auto *TTy = dyn_cast<RecordType>(Ty)) {
const RecordDecl *RD = TTy->getDecl()->getDefinition();
const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
using TBAAStructField = llvm::MDBuilder::TBAAStructField;
SmallVector<TBAAStructField, 4> Fields;
if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
// Handle C++ base classes. Non-virtual bases can treated a kind of
// field. Virtual bases are more complex and omitted, but avoid an
// incomplete view for NewStructPathTBAA.
if (CodeGenOpts.NewStructPathTBAA && CXXRD->getNumVBases() != 0)
return nullptr;
for (const CXXBaseSpecifier &B : CXXRD->bases()) {
if (B.isVirtual())
continue;
QualType BaseQTy = B.getType();
const CXXRecordDecl *BaseRD = BaseQTy->getAsCXXRecordDecl();
if (BaseRD->isEmpty())
continue;
llvm::MDNode *TypeNode = isValidBaseType(BaseQTy)
? getValidBaseTypeInfo(BaseQTy)
: getTypeInfo(BaseQTy);
if (!TypeNode)
return nullptr;
uint64_t Offset = Layout.getBaseClassOffset(BaseRD).getQuantity();
uint64_t Size =
Context.getASTRecordLayout(BaseRD).getDataSize().getQuantity();
Fields.push_back(
llvm::MDBuilder::TBAAStructField(Offset, Size, TypeNode));
}
// The order in which base class subobjects are allocated is unspecified,
// so may differ from declaration order. In particular, Itanium ABI will
// allocate a primary base first.
// Since we exclude empty subobjects, the objects are not overlapping and
// their offsets are unique.
llvm::sort(Fields,
[](const TBAAStructField &A, const TBAAStructField &B) {
return A.Offset < B.Offset;
});
}
for (FieldDecl *Field : RD->fields()) {
if (Field->isZeroSize(Context) || Field->isUnnamedBitField())
continue;
QualType FieldQTy = Field->getType();
llvm::MDNode *TypeNode = isValidBaseType(FieldQTy)
? getValidBaseTypeInfo(FieldQTy)
: getTypeInfo(FieldQTy);
if (!TypeNode)
return nullptr;
uint64_t BitOffset = Layout.getFieldOffset(Field->getFieldIndex());
uint64_t Offset = Context.toCharUnitsFromBits(BitOffset).getQuantity();
uint64_t Size = Context.getTypeSizeInChars(FieldQTy).getQuantity();
Fields.push_back(llvm::MDBuilder::TBAAStructField(Offset, Size,
TypeNode));
}
SmallString<256> OutName;
if (Features.CPlusPlus) {
// Don't use the mangler for C code.
llvm::raw_svector_ostream Out(OutName);
CGTypes.getCXXABI().getMangleContext().mangleCanonicalTypeName(
QualType(Ty, 0), Out);
} else {
OutName = RD->getName();
}
if (CodeGenOpts.NewStructPathTBAA) {
llvm::MDNode *Parent = getChar();
uint64_t Size = Context.getTypeSizeInChars(Ty).getQuantity();
llvm::Metadata *Id = MDHelper.createString(OutName);
return MDHelper.createTBAATypeNode(Parent, Size, Id, Fields);
}
// Create the struct type node with a vector of pairs (offset, type).
SmallVector<std::pair<llvm::MDNode*, uint64_t>, 4> OffsetsAndTypes;
for (const auto &Field : Fields)
OffsetsAndTypes.push_back(std::make_pair(Field.Type, Field.Offset));
return MDHelper.createTBAAStructTypeNode(OutName, OffsetsAndTypes);
}
return nullptr;
}
llvm::MDNode *CodeGenTBAA::getValidBaseTypeInfo(QualType QTy) {
assert(isValidBaseType(QTy) && "Must be a valid base type");
const Type *Ty = Context.getCanonicalType(QTy).getTypePtr();
// nullptr is a valid value in the cache, so use find rather than []
auto I = BaseTypeMetadataCache.find(Ty);
if (I != BaseTypeMetadataCache.end())
return I->second;
// First calculate the metadata, before recomputing the insertion point, as
// the helper can recursively call us.
llvm::MDNode *TypeNode = getBaseTypeInfoHelper(Ty);
LLVM_ATTRIBUTE_UNUSED auto inserted =
BaseTypeMetadataCache.insert({Ty, TypeNode});
assert(inserted.second && "BaseType metadata was already inserted");
return TypeNode;
}
llvm::MDNode *CodeGenTBAA::getBaseTypeInfo(QualType QTy) {
return isValidBaseType(QTy) ? getValidBaseTypeInfo(QTy) : nullptr;
}
llvm::MDNode *CodeGenTBAA::getAccessTagInfo(TBAAAccessInfo Info) {
assert(!Info.isIncomplete() && "Access to an object of an incomplete type!");
if (Info.isMayAlias())
Info = TBAAAccessInfo(getChar(), Info.Size);
if (!Info.AccessType)
return nullptr;
if (!CodeGenOpts.StructPathTBAA)
Info = TBAAAccessInfo(Info.AccessType, Info.Size);
llvm::MDNode *&N = AccessTagMetadataCache[Info];
if (N)
return N;
if (!Info.BaseType) {
Info.BaseType = Info.AccessType;
assert(!Info.Offset && "Nonzero offset for an access with no base type!");
}
if (CodeGenOpts.NewStructPathTBAA) {
return N = MDHelper.createTBAAAccessTag(Info.BaseType, Info.AccessType,
Info.Offset, Info.Size);
}
return N = MDHelper.createTBAAStructTagNode(Info.BaseType, Info.AccessType,
Info.Offset);
}
TBAAAccessInfo CodeGenTBAA::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
TBAAAccessInfo TargetInfo) {
if (SourceInfo.isMayAlias() || TargetInfo.isMayAlias())
return TBAAAccessInfo::getMayAliasInfo();
return TargetInfo;
}
TBAAAccessInfo
CodeGenTBAA::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
TBAAAccessInfo InfoB) {
if (InfoA == InfoB)
return InfoA;
if (!InfoA || !InfoB)
return TBAAAccessInfo();
if (InfoA.isMayAlias() || InfoB.isMayAlias())
return TBAAAccessInfo::getMayAliasInfo();
// TODO: Implement the rest of the logic here. For example, two accesses
// with same final access types result in an access to an object of that final
// access type regardless of their base types.
return TBAAAccessInfo::getMayAliasInfo();
}
TBAAAccessInfo
CodeGenTBAA::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
TBAAAccessInfo SrcInfo) {
if (DestInfo == SrcInfo)
return DestInfo;
if (!DestInfo || !SrcInfo)
return TBAAAccessInfo();
if (DestInfo.isMayAlias() || SrcInfo.isMayAlias())
return TBAAAccessInfo::getMayAliasInfo();
// TODO: Implement the rest of the logic here. For example, two accesses
// with same final access types result in an access to an object of that final
// access type regardless of their base types.
return TBAAAccessInfo::getMayAliasInfo();
}