
This changes the behavior of constructing MLIRContext to no longer load globally registered dialects on construction. Instead Dialects are only loaded explicitly on demand: - the Parser is lazily loading Dialects in the context as it encounters them during parsing. This is the only purpose for registering dialects and not load them in the context. - Passes are expected to declare the dialects they will create entity from (Operations, Attributes, or Types), and the PassManager is loading Dialects into the Context when starting a pipeline. This changes simplifies the configuration of the registration: a compiler only need to load the dialect for the IR it will emit, and the optimizer is self-contained and load the required Dialects. For example in the Toy tutorial, the compiler only needs to load the Toy dialect in the Context, all the others (linalg, affine, std, LLVM, ...) are automatically loaded depending on the optimization pipeline enabled. To adjust to this change, stop using the existing dialect registration: the global registry will be removed soon. 1) For passes, you need to override the method: virtual void getDependentDialects(DialectRegistry ®istry) const {} and registery on the provided registry any dialect that this pass can produce. Passes defined in TableGen can provide this list in the dependentDialects list field. 2) For dialects, on construction you can register dependent dialects using the provided MLIRContext: `context.getOrLoadDialect<DialectName>()` This is useful if a dialect may canonicalize or have interfaces involving another dialect. 3) For loading IR, dialect that can be in the input file must be explicitly registered with the context. `MlirOptMain()` is taking an explicit registry for this purpose. See how the standalone-opt.cpp example is setup: mlir::DialectRegistry registry; mlir::registerDialect<mlir::standalone::StandaloneDialect>(); mlir::registerDialect<mlir::StandardOpsDialect>(); Only operations from these two dialects can be in the input file. To include all of the dialects in MLIR Core, you can populate the registry this way: mlir::registerAllDialects(registry); 4) For `mlir-translate` callback, as well as frontend, Dialects can be loaded in the context before emitting the IR: context.getOrLoadDialect<ToyDialect>()
196 lines
6.1 KiB
C++
196 lines
6.1 KiB
C++
//===- AttributeTest.cpp - Attribute unit tests ---------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/IR/Attributes.h"
|
|
#include "mlir/IR/Identifier.h"
|
|
#include "mlir/IR/StandardTypes.h"
|
|
#include "gtest/gtest.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::detail;
|
|
|
|
template <typename EltTy>
|
|
static void testSplat(Type eltType, const EltTy &splatElt) {
|
|
RankedTensorType shape = RankedTensorType::get({2, 1}, eltType);
|
|
|
|
// Check that the generated splat is the same for 1 element and N elements.
|
|
DenseElementsAttr splat = DenseElementsAttr::get(shape, splatElt);
|
|
EXPECT_TRUE(splat.isSplat());
|
|
|
|
auto detectedSplat =
|
|
DenseElementsAttr::get(shape, llvm::makeArrayRef({splatElt, splatElt}));
|
|
EXPECT_EQ(detectedSplat, splat);
|
|
|
|
for (auto newValue : detectedSplat.template getValues<EltTy>())
|
|
EXPECT_TRUE(newValue == splatElt);
|
|
}
|
|
|
|
namespace {
|
|
TEST(DenseSplatTest, BoolSplat) {
|
|
MLIRContext context(false);
|
|
IntegerType boolTy = IntegerType::get(1, &context);
|
|
RankedTensorType shape = RankedTensorType::get({2, 2}, boolTy);
|
|
|
|
// Check that splat is automatically detected for boolean values.
|
|
/// True.
|
|
DenseElementsAttr trueSplat = DenseElementsAttr::get(shape, true);
|
|
EXPECT_TRUE(trueSplat.isSplat());
|
|
/// False.
|
|
DenseElementsAttr falseSplat = DenseElementsAttr::get(shape, false);
|
|
EXPECT_TRUE(falseSplat.isSplat());
|
|
EXPECT_NE(falseSplat, trueSplat);
|
|
|
|
/// Detect and handle splat within 8 elements (bool values are bit-packed).
|
|
/// True.
|
|
auto detectedSplat = DenseElementsAttr::get(shape, {true, true, true, true});
|
|
EXPECT_EQ(detectedSplat, trueSplat);
|
|
/// False.
|
|
detectedSplat = DenseElementsAttr::get(shape, {false, false, false, false});
|
|
EXPECT_EQ(detectedSplat, falseSplat);
|
|
}
|
|
|
|
TEST(DenseSplatTest, LargeBoolSplat) {
|
|
constexpr int64_t boolCount = 56;
|
|
|
|
MLIRContext context(false);
|
|
IntegerType boolTy = IntegerType::get(1, &context);
|
|
RankedTensorType shape = RankedTensorType::get({boolCount}, boolTy);
|
|
|
|
// Check that splat is automatically detected for boolean values.
|
|
/// True.
|
|
DenseElementsAttr trueSplat = DenseElementsAttr::get(shape, true);
|
|
DenseElementsAttr falseSplat = DenseElementsAttr::get(shape, false);
|
|
EXPECT_TRUE(trueSplat.isSplat());
|
|
EXPECT_TRUE(falseSplat.isSplat());
|
|
|
|
/// Detect that the large boolean arrays are properly splatted.
|
|
/// True.
|
|
SmallVector<bool, 64> trueValues(boolCount, true);
|
|
auto detectedSplat = DenseElementsAttr::get(shape, trueValues);
|
|
EXPECT_EQ(detectedSplat, trueSplat);
|
|
/// False.
|
|
SmallVector<bool, 64> falseValues(boolCount, false);
|
|
detectedSplat = DenseElementsAttr::get(shape, falseValues);
|
|
EXPECT_EQ(detectedSplat, falseSplat);
|
|
}
|
|
|
|
TEST(DenseSplatTest, BoolNonSplat) {
|
|
MLIRContext context(false);
|
|
IntegerType boolTy = IntegerType::get(1, &context);
|
|
RankedTensorType shape = RankedTensorType::get({6}, boolTy);
|
|
|
|
// Check that we properly handle non-splat values.
|
|
DenseElementsAttr nonSplat =
|
|
DenseElementsAttr::get(shape, {false, false, true, false, false, true});
|
|
EXPECT_FALSE(nonSplat.isSplat());
|
|
}
|
|
|
|
TEST(DenseSplatTest, OddIntSplat) {
|
|
// Test detecting a splat with an odd(non 8-bit) integer bitwidth.
|
|
MLIRContext context(false);
|
|
constexpr size_t intWidth = 19;
|
|
IntegerType intTy = IntegerType::get(intWidth, &context);
|
|
APInt value(intWidth, 10);
|
|
|
|
testSplat(intTy, value);
|
|
}
|
|
|
|
TEST(DenseSplatTest, Int32Splat) {
|
|
MLIRContext context(false);
|
|
IntegerType intTy = IntegerType::get(32, &context);
|
|
int value = 64;
|
|
|
|
testSplat(intTy, value);
|
|
}
|
|
|
|
TEST(DenseSplatTest, IntAttrSplat) {
|
|
MLIRContext context(false);
|
|
IntegerType intTy = IntegerType::get(85, &context);
|
|
Attribute value = IntegerAttr::get(intTy, 109);
|
|
|
|
testSplat(intTy, value);
|
|
}
|
|
|
|
TEST(DenseSplatTest, F32Splat) {
|
|
MLIRContext context(false);
|
|
FloatType floatTy = FloatType::getF32(&context);
|
|
float value = 10.0;
|
|
|
|
testSplat(floatTy, value);
|
|
}
|
|
|
|
TEST(DenseSplatTest, F64Splat) {
|
|
MLIRContext context(false);
|
|
FloatType floatTy = FloatType::getF64(&context);
|
|
double value = 10.0;
|
|
|
|
testSplat(floatTy, APFloat(value));
|
|
}
|
|
|
|
TEST(DenseSplatTest, FloatAttrSplat) {
|
|
MLIRContext context(false);
|
|
FloatType floatTy = FloatType::getF32(&context);
|
|
Attribute value = FloatAttr::get(floatTy, 10.0);
|
|
|
|
testSplat(floatTy, value);
|
|
}
|
|
|
|
TEST(DenseSplatTest, BF16Splat) {
|
|
MLIRContext context(false);
|
|
FloatType floatTy = FloatType::getBF16(&context);
|
|
Attribute value = FloatAttr::get(floatTy, 10.0);
|
|
|
|
testSplat(floatTy, value);
|
|
}
|
|
|
|
TEST(DenseSplatTest, StringSplat) {
|
|
MLIRContext context(false);
|
|
Type stringType =
|
|
OpaqueType::get(Identifier::get("test", &context), "string", &context);
|
|
StringRef value = "test-string";
|
|
testSplat(stringType, value);
|
|
}
|
|
|
|
TEST(DenseSplatTest, StringAttrSplat) {
|
|
MLIRContext context(false);
|
|
Type stringType =
|
|
OpaqueType::get(Identifier::get("test", &context), "string", &context);
|
|
Attribute stringAttr = StringAttr::get("test-string", stringType);
|
|
testSplat(stringType, stringAttr);
|
|
}
|
|
|
|
TEST(DenseComplexTest, ComplexFloatSplat) {
|
|
MLIRContext context(false);
|
|
ComplexType complexType = ComplexType::get(FloatType::getF32(&context));
|
|
std::complex<float> value(10.0, 15.0);
|
|
testSplat(complexType, value);
|
|
}
|
|
|
|
TEST(DenseComplexTest, ComplexIntSplat) {
|
|
MLIRContext context(false);
|
|
ComplexType complexType = ComplexType::get(IntegerType::get(64, &context));
|
|
std::complex<int64_t> value(10, 15);
|
|
testSplat(complexType, value);
|
|
}
|
|
|
|
TEST(DenseComplexTest, ComplexAPFloatSplat) {
|
|
MLIRContext context(false);
|
|
ComplexType complexType = ComplexType::get(FloatType::getF32(&context));
|
|
std::complex<APFloat> value(APFloat(10.0f), APFloat(15.0f));
|
|
testSplat(complexType, value);
|
|
}
|
|
|
|
TEST(DenseComplexTest, ComplexAPIntSplat) {
|
|
MLIRContext context(false);
|
|
ComplexType complexType = ComplexType::get(IntegerType::get(64, &context));
|
|
std::complex<APInt> value(APInt(64, 10), APInt(64, 15));
|
|
testSplat(complexType, value);
|
|
}
|
|
|
|
} // end namespace
|