llvm-project/llvm/lib/Transforms/Vectorize/VPlanPatternMatch.h
Luke Lau 2e5776130b
[VPlan] Simplify select !c, x, y -> select c, y, x (#147268)
This is split off from #133993

On its own this simplification isn't that useful, but it allows us to
make the equivalent VPBlendRecipe optimisation more generic by operating
on VPInstructions.

In order to actually test this without #133993, I've had to also extend
the m_Not pattern matcher to also catch VPWidenRecipes, since I couldn't
really think of a straightforward way to create a VPInstruction::Select
with a negated condition.
2025-07-08 15:56:04 +08:00

639 lines
23 KiB
C++

//===- VPlanPatternMatch.h - Match on VPValues and recipes ------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file provides a simple and efficient mechanism for performing general
// tree-based pattern matches on the VPlan values and recipes, based on
// LLVM's IR pattern matchers.
//
// Currently it provides generic matchers for unary and binary VPInstructions,
// and specialized matchers like m_Not, m_ActiveLaneMask, m_BranchOnCond,
// m_BranchOnCount to match specific VPInstructions.
// TODO: Add missing matchers for additional opcodes and recipes as needed.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_TRANSFORM_VECTORIZE_VPLANPATTERNMATCH_H
#define LLVM_TRANSFORM_VECTORIZE_VPLANPATTERNMATCH_H
#include "VPlan.h"
namespace llvm {
namespace VPlanPatternMatch {
template <typename Val, typename Pattern> bool match(Val *V, const Pattern &P) {
return P.match(V);
}
template <typename Pattern> bool match(VPUser *U, const Pattern &P) {
auto *R = dyn_cast<VPRecipeBase>(U);
return R && match(R, P);
}
template <typename Class> struct class_match {
template <typename ITy> bool match(ITy *V) const { return isa<Class>(V); }
};
/// Match an arbitrary VPValue and ignore it.
inline class_match<VPValue> m_VPValue() { return class_match<VPValue>(); }
template <typename Class> struct bind_ty {
Class *&VR;
bind_ty(Class *&V) : VR(V) {}
template <typename ITy> bool match(ITy *V) const {
if (auto *CV = dyn_cast<Class>(V)) {
VR = CV;
return true;
}
return false;
}
};
/// Match a specified VPValue.
struct specificval_ty {
const VPValue *Val;
specificval_ty(const VPValue *V) : Val(V) {}
bool match(VPValue *VPV) const { return VPV == Val; }
};
inline specificval_ty m_Specific(const VPValue *VPV) { return VPV; }
/// Stores a reference to the VPValue *, not the VPValue * itself,
/// thus can be used in commutative matchers.
struct deferredval_ty {
VPValue *const &Val;
deferredval_ty(VPValue *const &V) : Val(V) {}
bool match(VPValue *const V) const { return V == Val; }
};
/// Like m_Specific(), but works if the specific value to match is determined
/// as part of the same match() expression. For example:
/// m_Mul(m_VPValue(X), m_Specific(X)) is incorrect, because m_Specific() will
/// bind X before the pattern match starts.
/// m_Mul(m_VPValue(X), m_Deferred(X)) is correct, and will check against
/// whichever value m_VPValue(X) populated.
inline deferredval_ty m_Deferred(VPValue *const &V) { return V; }
/// Match an integer constant or vector of constants if Pred::isValue returns
/// true for the APInt. \p BitWidth optionally specifies the bitwidth the
/// matched constant must have. If it is 0, the matched constant can have any
/// bitwidth.
template <typename Pred, unsigned BitWidth = 0> struct int_pred_ty {
Pred P;
int_pred_ty(Pred P) : P(std::move(P)) {}
int_pred_ty() : P() {}
bool match(VPValue *VPV) const {
if (!VPV->isLiveIn())
return false;
Value *V = VPV->getLiveInIRValue();
if (!V)
return false;
const auto *CI = dyn_cast<ConstantInt>(V);
if (!CI && V->getType()->isVectorTy())
if (const auto *C = dyn_cast<Constant>(V))
CI = dyn_cast_or_null<ConstantInt>(
C->getSplatValue(/*AllowPoison=*/false));
if (!CI)
return false;
if (BitWidth != 0 && CI->getBitWidth() != BitWidth)
return false;
return P.isValue(CI->getValue());
}
};
/// Match a specified integer value or vector of all elements of that
/// value. \p BitWidth optionally specifies the bitwidth the matched constant
/// must have. If it is 0, the matched constant can have any bitwidth.
struct is_specific_int {
APInt Val;
is_specific_int(APInt Val) : Val(std::move(Val)) {}
bool isValue(const APInt &C) const { return APInt::isSameValue(Val, C); }
};
template <unsigned Bitwidth = 0>
using specific_intval = int_pred_ty<is_specific_int, Bitwidth>;
inline specific_intval<0> m_SpecificInt(uint64_t V) {
return specific_intval<0>(is_specific_int(APInt(64, V)));
}
inline specific_intval<1> m_False() {
return specific_intval<1>(is_specific_int(APInt(64, 0)));
}
inline specific_intval<1> m_True() {
return specific_intval<1>(is_specific_int(APInt(64, 1)));
}
struct is_all_ones {
bool isValue(const APInt &C) const { return C.isAllOnes(); }
};
/// Match an integer or vector with all bits set.
/// For vectors, this includes constants with undefined elements.
inline int_pred_ty<is_all_ones> m_AllOnes() {
return int_pred_ty<is_all_ones>();
}
/// Matching combinators
template <typename LTy, typename RTy> struct match_combine_or {
LTy L;
RTy R;
match_combine_or(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
template <typename ITy> bool match(ITy *V) const {
if (L.match(V))
return true;
if (R.match(V))
return true;
return false;
}
};
template <typename LTy, typename RTy> struct match_combine_and {
LTy L;
RTy R;
match_combine_and(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
template <typename ITy> bool match(ITy *V) const {
return L.match(V) && R.match(V);
}
};
/// Combine two pattern matchers matching L || R
template <typename LTy, typename RTy>
inline match_combine_or<LTy, RTy> m_CombineOr(const LTy &L, const RTy &R) {
return match_combine_or<LTy, RTy>(L, R);
}
/// Combine two pattern matchers matching L && R
template <typename LTy, typename RTy>
inline match_combine_and<LTy, RTy> m_CombineAnd(const LTy &L, const RTy &R) {
return match_combine_and<LTy, RTy>(L, R);
}
/// Match a VPValue, capturing it if we match.
inline bind_ty<VPValue> m_VPValue(VPValue *&V) { return V; }
/// Match a VPInstruction, capturing if we match.
inline bind_ty<VPInstruction> m_VPInstruction(VPInstruction *&V) { return V; }
template <typename Ops_t, unsigned Opcode, bool Commutative,
typename... RecipeTys>
struct Recipe_match {
Ops_t Ops;
Recipe_match() : Ops() {
static_assert(std::tuple_size<Ops_t>::value == 0 &&
"constructor can only be used with zero operands");
}
Recipe_match(Ops_t Ops) : Ops(Ops) {}
template <typename A_t, typename B_t>
Recipe_match(A_t A, B_t B) : Ops({A, B}) {
static_assert(std::tuple_size<Ops_t>::value == 2 &&
"constructor can only be used for binary matcher");
}
bool match(const VPValue *V) const {
auto *DefR = V->getDefiningRecipe();
return DefR && match(DefR);
}
bool match(const VPSingleDefRecipe *R) const {
return match(static_cast<const VPRecipeBase *>(R));
}
bool match(const VPRecipeBase *R) const {
if (std::tuple_size<Ops_t>::value == 0) {
assert(Opcode == VPInstruction::BuildVector &&
"can only match BuildVector with empty ops");
auto *VPI = dyn_cast<VPInstruction>(R);
return VPI && VPI->getOpcode() == VPInstruction::BuildVector;
}
if ((!matchRecipeAndOpcode<RecipeTys>(R) && ...))
return false;
assert(R->getNumOperands() == std::tuple_size<Ops_t>::value &&
"recipe with matched opcode does not have the expected number of "
"operands");
auto IdxSeq = std::make_index_sequence<std::tuple_size<Ops_t>::value>();
if (all_of_tuple_elements(IdxSeq, [R](auto Op, unsigned Idx) {
return Op.match(R->getOperand(Idx));
}))
return true;
return Commutative &&
all_of_tuple_elements(IdxSeq, [R](auto Op, unsigned Idx) {
return Op.match(R->getOperand(R->getNumOperands() - Idx - 1));
});
}
private:
template <typename RecipeTy>
static bool matchRecipeAndOpcode(const VPRecipeBase *R) {
auto *DefR = dyn_cast<RecipeTy>(R);
// Check for recipes that do not have opcodes.
if constexpr (std::is_same<RecipeTy, VPScalarIVStepsRecipe>::value ||
std::is_same<RecipeTy, VPCanonicalIVPHIRecipe>::value ||
std::is_same<RecipeTy, VPWidenSelectRecipe>::value ||
std::is_same<RecipeTy, VPDerivedIVRecipe>::value ||
std::is_same<RecipeTy, VPWidenGEPRecipe>::value)
return DefR;
else
return DefR && DefR->getOpcode() == Opcode;
}
/// Helper to check if predicate \p P holds on all tuple elements in Ops using
/// the provided index sequence.
template <typename Fn, std::size_t... Is>
bool all_of_tuple_elements(std::index_sequence<Is...>, Fn P) const {
return (P(std::get<Is>(Ops), Is) && ...);
}
};
template <unsigned Opcode, typename... RecipeTys>
using ZeroOpRecipe_match =
Recipe_match<std::tuple<>, Opcode, false, RecipeTys...>;
template <typename Op0_t, unsigned Opcode, typename... RecipeTys>
using UnaryRecipe_match =
Recipe_match<std::tuple<Op0_t>, Opcode, false, RecipeTys...>;
template <typename Op0_t, unsigned Opcode>
using UnaryVPInstruction_match =
UnaryRecipe_match<Op0_t, Opcode, VPInstruction>;
template <unsigned Opcode>
using ZeroOpVPInstruction_match = ZeroOpRecipe_match<Opcode, VPInstruction>;
template <typename Op0_t, unsigned Opcode>
using AllUnaryRecipe_match =
UnaryRecipe_match<Op0_t, Opcode, VPWidenRecipe, VPReplicateRecipe,
VPWidenCastRecipe, VPInstruction>;
template <typename Op0_t, typename Op1_t, unsigned Opcode, bool Commutative,
typename... RecipeTys>
using BinaryRecipe_match =
Recipe_match<std::tuple<Op0_t, Op1_t>, Opcode, Commutative, RecipeTys...>;
template <typename Op0_t, typename Op1_t, unsigned Opcode>
using BinaryVPInstruction_match =
BinaryRecipe_match<Op0_t, Op1_t, Opcode, /*Commutative*/ false,
VPInstruction>;
template <typename Op0_t, typename Op1_t, typename Op2_t, unsigned Opcode,
bool Commutative, typename... RecipeTys>
using TernaryRecipe_match = Recipe_match<std::tuple<Op0_t, Op1_t, Op2_t>,
Opcode, Commutative, RecipeTys...>;
template <typename Op0_t, typename Op1_t, typename Op2_t, unsigned Opcode>
using TernaryVPInstruction_match =
TernaryRecipe_match<Op0_t, Op1_t, Op2_t, Opcode, /*Commutative*/ false,
VPInstruction>;
template <typename Op0_t, typename Op1_t, unsigned Opcode,
bool Commutative = false>
using AllBinaryRecipe_match =
BinaryRecipe_match<Op0_t, Op1_t, Opcode, Commutative, VPWidenRecipe,
VPReplicateRecipe, VPWidenCastRecipe, VPInstruction>;
/// BuildVector is matches only its opcode, w/o matching its operands as the
/// number of operands is not fixed.
inline ZeroOpVPInstruction_match<VPInstruction::BuildVector> m_BuildVector() {
return ZeroOpVPInstruction_match<VPInstruction::BuildVector>();
}
template <unsigned Opcode, typename Op0_t>
inline UnaryVPInstruction_match<Op0_t, Opcode>
m_VPInstruction(const Op0_t &Op0) {
return UnaryVPInstruction_match<Op0_t, Opcode>(Op0);
}
template <unsigned Opcode, typename Op0_t, typename Op1_t>
inline BinaryVPInstruction_match<Op0_t, Op1_t, Opcode>
m_VPInstruction(const Op0_t &Op0, const Op1_t &Op1) {
return BinaryVPInstruction_match<Op0_t, Op1_t, Opcode>(Op0, Op1);
}
template <unsigned Opcode, typename Op0_t, typename Op1_t, typename Op2_t>
inline TernaryVPInstruction_match<Op0_t, Op1_t, Op2_t, Opcode>
m_VPInstruction(const Op0_t &Op0, const Op1_t &Op1, const Op2_t &Op2) {
return TernaryVPInstruction_match<Op0_t, Op1_t, Op2_t, Opcode>(
{Op0, Op1, Op2});
}
template <typename Op0_t, typename Op1_t, typename Op2_t, typename Op3_t,
unsigned Opcode, bool Commutative, typename... RecipeTys>
using Recipe4Op_match = Recipe_match<std::tuple<Op0_t, Op1_t, Op2_t, Op3_t>,
Opcode, Commutative, RecipeTys...>;
template <typename Op0_t, typename Op1_t, typename Op2_t, typename Op3_t,
unsigned Opcode>
using VPInstruction4Op_match =
Recipe4Op_match<Op0_t, Op1_t, Op2_t, Op3_t, Opcode, /*Commutative*/ false,
VPInstruction>;
template <unsigned Opcode, typename Op0_t, typename Op1_t, typename Op2_t,
typename Op3_t>
inline VPInstruction4Op_match<Op0_t, Op1_t, Op2_t, Op3_t, Opcode>
m_VPInstruction(const Op0_t &Op0, const Op1_t &Op1, const Op2_t &Op2,
const Op3_t &Op3) {
return VPInstruction4Op_match<Op0_t, Op1_t, Op2_t, Op3_t, Opcode>(
{Op0, Op1, Op2, Op3});
}
template <typename Op0_t>
inline UnaryVPInstruction_match<Op0_t, Instruction::Freeze>
m_Freeze(const Op0_t &Op0) {
return m_VPInstruction<Instruction::Freeze>(Op0);
}
template <typename Op0_t>
inline UnaryVPInstruction_match<Op0_t, VPInstruction::BranchOnCond>
m_BranchOnCond(const Op0_t &Op0) {
return m_VPInstruction<VPInstruction::BranchOnCond>(Op0);
}
template <typename Op0_t>
inline UnaryVPInstruction_match<Op0_t, VPInstruction::Broadcast>
m_Broadcast(const Op0_t &Op0) {
return m_VPInstruction<VPInstruction::Broadcast>(Op0);
}
template <typename Op0_t, typename Op1_t>
inline BinaryVPInstruction_match<Op0_t, Op1_t, VPInstruction::ActiveLaneMask>
m_ActiveLaneMask(const Op0_t &Op0, const Op1_t &Op1) {
return m_VPInstruction<VPInstruction::ActiveLaneMask>(Op0, Op1);
}
template <typename Op0_t, typename Op1_t>
inline BinaryVPInstruction_match<Op0_t, Op1_t, VPInstruction::BranchOnCount>
m_BranchOnCount(const Op0_t &Op0, const Op1_t &Op1) {
return m_VPInstruction<VPInstruction::BranchOnCount>(Op0, Op1);
}
template <unsigned Opcode, typename Op0_t>
inline AllUnaryRecipe_match<Op0_t, Opcode> m_Unary(const Op0_t &Op0) {
return AllUnaryRecipe_match<Op0_t, Opcode>(Op0);
}
template <typename Op0_t>
inline AllUnaryRecipe_match<Op0_t, Instruction::Trunc>
m_Trunc(const Op0_t &Op0) {
return m_Unary<Instruction::Trunc, Op0_t>(Op0);
}
template <typename Op0_t>
inline AllUnaryRecipe_match<Op0_t, Instruction::ZExt> m_ZExt(const Op0_t &Op0) {
return m_Unary<Instruction::ZExt, Op0_t>(Op0);
}
template <typename Op0_t>
inline AllUnaryRecipe_match<Op0_t, Instruction::SExt> m_SExt(const Op0_t &Op0) {
return m_Unary<Instruction::SExt, Op0_t>(Op0);
}
template <typename Op0_t>
inline match_combine_or<AllUnaryRecipe_match<Op0_t, Instruction::ZExt>,
AllUnaryRecipe_match<Op0_t, Instruction::SExt>>
m_ZExtOrSExt(const Op0_t &Op0) {
return m_CombineOr(m_ZExt(Op0), m_SExt(Op0));
}
template <unsigned Opcode, typename Op0_t, typename Op1_t,
bool Commutative = false>
inline AllBinaryRecipe_match<Op0_t, Op1_t, Opcode, Commutative>
m_Binary(const Op0_t &Op0, const Op1_t &Op1) {
return AllBinaryRecipe_match<Op0_t, Op1_t, Opcode, Commutative>(Op0, Op1);
}
template <unsigned Opcode, typename Op0_t, typename Op1_t>
inline AllBinaryRecipe_match<Op0_t, Op1_t, Opcode, true>
m_c_Binary(const Op0_t &Op0, const Op1_t &Op1) {
return AllBinaryRecipe_match<Op0_t, Op1_t, Opcode, true>(Op0, Op1);
}
template <typename Op0_t, typename Op1_t>
inline AllBinaryRecipe_match<Op0_t, Op1_t, Instruction::Mul>
m_Mul(const Op0_t &Op0, const Op1_t &Op1) {
return m_Binary<Instruction::Mul, Op0_t, Op1_t>(Op0, Op1);
}
template <typename Op0_t, typename Op1_t>
inline AllBinaryRecipe_match<Op0_t, Op1_t, Instruction::Mul,
/* Commutative =*/true>
m_c_Mul(const Op0_t &Op0, const Op1_t &Op1) {
return m_Binary<Instruction::Mul, Op0_t, Op1_t, true>(Op0, Op1);
}
/// Match a binary OR operation. Note that while conceptually the operands can
/// be matched commutatively, \p Commutative defaults to false in line with the
/// IR-based pattern matching infrastructure. Use m_c_BinaryOr for a commutative
/// version of the matcher.
template <typename Op0_t, typename Op1_t, bool Commutative = false>
inline AllBinaryRecipe_match<Op0_t, Op1_t, Instruction::Or, Commutative>
m_BinaryOr(const Op0_t &Op0, const Op1_t &Op1) {
return m_Binary<Instruction::Or, Op0_t, Op1_t, Commutative>(Op0, Op1);
}
template <typename Op0_t, typename Op1_t>
inline AllBinaryRecipe_match<Op0_t, Op1_t, Instruction::Or,
/*Commutative*/ true>
m_c_BinaryOr(const Op0_t &Op0, const Op1_t &Op1) {
return m_BinaryOr<Op0_t, Op1_t, /*Commutative*/ true>(Op0, Op1);
}
template <typename Op0_t, typename Op1_t>
using GEPLikeRecipe_match =
BinaryRecipe_match<Op0_t, Op1_t, Instruction::GetElementPtr, false,
VPWidenRecipe, VPReplicateRecipe, VPWidenGEPRecipe,
VPInstruction>;
template <typename Op0_t, typename Op1_t>
inline GEPLikeRecipe_match<Op0_t, Op1_t> m_GetElementPtr(const Op0_t &Op0,
const Op1_t &Op1) {
return GEPLikeRecipe_match<Op0_t, Op1_t>(Op0, Op1);
}
template <typename Op0_t, typename Op1_t, typename Op2_t, unsigned Opcode>
using AllTernaryRecipe_match =
Recipe_match<std::tuple<Op0_t, Op1_t, Op2_t>, Opcode, false,
VPReplicateRecipe, VPInstruction, VPWidenSelectRecipe>;
template <typename Op0_t, typename Op1_t, typename Op2_t>
inline AllTernaryRecipe_match<Op0_t, Op1_t, Op2_t, Instruction::Select>
m_Select(const Op0_t &Op0, const Op1_t &Op1, const Op2_t &Op2) {
return AllTernaryRecipe_match<Op0_t, Op1_t, Op2_t, Instruction::Select>(
{Op0, Op1, Op2});
}
template <typename Op0_t>
inline match_combine_or<UnaryVPInstruction_match<Op0_t, VPInstruction::Not>,
AllBinaryRecipe_match<int_pred_ty<is_all_ones>, Op0_t,
Instruction::Xor, true>>
m_Not(const Op0_t &Op0) {
return m_CombineOr(m_VPInstruction<VPInstruction::Not>(Op0),
m_c_Binary<Instruction::Xor>(m_AllOnes(), Op0));
}
template <typename Op0_t, typename Op1_t>
inline match_combine_or<
BinaryVPInstruction_match<Op0_t, Op1_t, VPInstruction::LogicalAnd>,
AllTernaryRecipe_match<Op0_t, Op1_t, specific_intval<1>,
Instruction::Select>>
m_LogicalAnd(const Op0_t &Op0, const Op1_t &Op1) {
return m_CombineOr(
m_VPInstruction<VPInstruction::LogicalAnd, Op0_t, Op1_t>(Op0, Op1),
m_Select(Op0, Op1, m_False()));
}
template <typename Op0_t, typename Op1_t>
inline AllTernaryRecipe_match<Op0_t, specific_intval<1>, Op1_t,
Instruction::Select>
m_LogicalOr(const Op0_t &Op0, const Op1_t &Op1) {
return m_Select(Op0, m_True(), Op1);
}
template <typename Op0_t, typename Op1_t, typename Op2_t>
using VPScalarIVSteps_match =
TernaryRecipe_match<Op0_t, Op1_t, Op2_t, 0, false, VPScalarIVStepsRecipe>;
template <typename Op0_t, typename Op1_t, typename Op2_t>
inline VPScalarIVSteps_match<Op0_t, Op1_t, Op2_t>
m_ScalarIVSteps(const Op0_t &Op0, const Op1_t &Op1, const Op2_t &Op2) {
return VPScalarIVSteps_match<Op0_t, Op1_t, Op2_t>({Op0, Op1, Op2});
}
template <typename Op0_t, typename Op1_t, typename Op2_t>
using VPDerivedIV_match =
Recipe_match<std::tuple<Op0_t, Op1_t, Op2_t>, 0, false, VPDerivedIVRecipe>;
template <typename Op0_t, typename Op1_t, typename Op2_t>
inline VPDerivedIV_match<Op0_t, Op1_t, Op2_t>
m_DerivedIV(const Op0_t &Op0, const Op1_t &Op1, const Op2_t &Op2) {
return VPDerivedIV_match<Op0_t, Op1_t, Op2_t>({Op0, Op1, Op2});
}
/// Match a call argument at a given argument index.
template <typename Opnd_t> struct Argument_match {
/// Call argument index to match.
unsigned OpI;
Opnd_t Val;
Argument_match(unsigned OpIdx, const Opnd_t &V) : OpI(OpIdx), Val(V) {}
template <typename OpTy> bool match(OpTy *V) const {
if (const auto *R = dyn_cast<VPWidenIntrinsicRecipe>(V))
return Val.match(R->getOperand(OpI));
if (const auto *R = dyn_cast<VPWidenCallRecipe>(V))
return Val.match(R->getOperand(OpI));
if (const auto *R = dyn_cast<VPReplicateRecipe>(V))
if (isa<CallInst>(R->getUnderlyingInstr()))
return Val.match(R->getOperand(OpI + 1));
return false;
}
};
/// Match a call argument.
template <unsigned OpI, typename Opnd_t>
inline Argument_match<Opnd_t> m_Argument(const Opnd_t &Op) {
return Argument_match<Opnd_t>(OpI, Op);
}
/// Intrinsic matchers.
struct IntrinsicID_match {
unsigned ID;
IntrinsicID_match(Intrinsic::ID IntrID) : ID(IntrID) {}
template <typename OpTy> bool match(OpTy *V) const {
if (const auto *R = dyn_cast<VPWidenIntrinsicRecipe>(V))
return R->getVectorIntrinsicID() == ID;
if (const auto *R = dyn_cast<VPWidenCallRecipe>(V))
return R->getCalledScalarFunction()->getIntrinsicID() == ID;
if (const auto *R = dyn_cast<VPReplicateRecipe>(V))
if (const auto *CI = dyn_cast<CallInst>(R->getUnderlyingInstr()))
if (const auto *F = CI->getCalledFunction())
return F->getIntrinsicID() == ID;
return false;
}
};
/// Intrinsic matches are combinations of ID matchers, and argument
/// matchers. Higher arity matcher are defined recursively in terms of and-ing
/// them with lower arity matchers. Here's some convenient typedefs for up to
/// several arguments, and more can be added as needed
template <typename T0 = void, typename T1 = void, typename T2 = void,
typename T3 = void>
struct m_Intrinsic_Ty;
template <typename T0> struct m_Intrinsic_Ty<T0> {
using Ty = match_combine_and<IntrinsicID_match, Argument_match<T0>>;
};
template <typename T0, typename T1> struct m_Intrinsic_Ty<T0, T1> {
using Ty =
match_combine_and<typename m_Intrinsic_Ty<T0>::Ty, Argument_match<T1>>;
};
template <typename T0, typename T1, typename T2>
struct m_Intrinsic_Ty<T0, T1, T2> {
using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1>::Ty,
Argument_match<T2>>;
};
template <typename T0, typename T1, typename T2, typename T3>
struct m_Intrinsic_Ty {
using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2>::Ty,
Argument_match<T3>>;
};
/// Match intrinsic calls like this:
/// m_Intrinsic<Intrinsic::fabs>(m_VPValue(X), ...)
template <Intrinsic::ID IntrID> inline IntrinsicID_match m_Intrinsic() {
return IntrinsicID_match(IntrID);
}
template <Intrinsic::ID IntrID, typename T0>
inline typename m_Intrinsic_Ty<T0>::Ty m_Intrinsic(const T0 &Op0) {
return m_CombineAnd(m_Intrinsic<IntrID>(), m_Argument<0>(Op0));
}
template <Intrinsic::ID IntrID, typename T0, typename T1>
inline typename m_Intrinsic_Ty<T0, T1>::Ty m_Intrinsic(const T0 &Op0,
const T1 &Op1) {
return m_CombineAnd(m_Intrinsic<IntrID>(Op0), m_Argument<1>(Op1));
}
template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2>
inline typename m_Intrinsic_Ty<T0, T1, T2>::Ty
m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2) {
return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1), m_Argument<2>(Op2));
}
template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
typename T3>
inline typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty
m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3) {
return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2), m_Argument<3>(Op3));
}
} // namespace VPlanPatternMatch
} // namespace llvm
#endif