Fangrui Song e640ca8b9a MCSymbolELF: Migrate away from classof
The object file format specific derived classes are used in context
where the type is statically known. We don't use isa/dyn_cast and we
want to eliminate MCSymbol::Kind in the base class.
2025-08-03 15:45:36 -07:00

913 lines
32 KiB
C++

//===-- RISCVAsmBackend.cpp - RISC-V Assembler Backend --------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "RISCVAsmBackend.h"
#include "RISCVFixupKinds.h"
#include "llvm/ADT/APInt.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCAssembler.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCELFObjectWriter.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCObjectWriter.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/MCValue.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/EndianStream.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/LEB128.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
// Temporary workaround for old linkers that do not support ULEB128 relocations,
// which are abused by DWARF v5 DW_LLE_offset_pair/DW_RLE_offset_pair
// implemented in Clang/LLVM.
static cl::opt<bool> ULEB128Reloc(
"riscv-uleb128-reloc", cl::init(true), cl::Hidden,
cl::desc("Emit R_RISCV_SET_ULEB128/E_RISCV_SUB_ULEB128 if appropriate"));
RISCVAsmBackend::RISCVAsmBackend(const MCSubtargetInfo &STI, uint8_t OSABI,
bool Is64Bit, const MCTargetOptions &Options)
: MCAsmBackend(llvm::endianness::little), STI(STI), OSABI(OSABI),
Is64Bit(Is64Bit), TargetOptions(Options) {
RISCVFeatures::validate(STI.getTargetTriple(), STI.getFeatureBits());
}
std::optional<MCFixupKind> RISCVAsmBackend::getFixupKind(StringRef Name) const {
if (STI.getTargetTriple().isOSBinFormatELF()) {
unsigned Type;
Type = llvm::StringSwitch<unsigned>(Name)
#define ELF_RELOC(NAME, ID) .Case(#NAME, ID)
#include "llvm/BinaryFormat/ELFRelocs/RISCV.def"
#undef ELF_RELOC
#define ELF_RISCV_NONSTANDARD_RELOC(_VENDOR, NAME, ID) .Case(#NAME, ID)
#include "llvm/BinaryFormat/ELFRelocs/RISCV_nonstandard.def"
#undef ELF_RISCV_NONSTANDARD_RELOC
.Case("BFD_RELOC_NONE", ELF::R_RISCV_NONE)
.Case("BFD_RELOC_32", ELF::R_RISCV_32)
.Case("BFD_RELOC_64", ELF::R_RISCV_64)
.Default(-1u);
if (Type != -1u)
return static_cast<MCFixupKind>(FirstLiteralRelocationKind + Type);
}
return std::nullopt;
}
MCFixupKindInfo RISCVAsmBackend::getFixupKindInfo(MCFixupKind Kind) const {
const static MCFixupKindInfo Infos[] = {
// This table *must* be in the order that the fixup_* kinds are defined in
// RISCVFixupKinds.h.
//
// name offset bits flags
{"fixup_riscv_hi20", 12, 20, 0},
{"fixup_riscv_lo12_i", 20, 12, 0},
{"fixup_riscv_12_i", 20, 12, 0},
{"fixup_riscv_lo12_s", 0, 32, 0},
{"fixup_riscv_pcrel_hi20", 12, 20, 0},
{"fixup_riscv_pcrel_lo12_i", 20, 12, 0},
{"fixup_riscv_pcrel_lo12_s", 0, 32, 0},
{"fixup_riscv_jal", 12, 20, 0},
{"fixup_riscv_branch", 0, 32, 0},
{"fixup_riscv_rvc_jump", 2, 11, 0},
{"fixup_riscv_rvc_branch", 0, 16, 0},
{"fixup_riscv_rvc_imm", 0, 16, 0},
{"fixup_riscv_call", 0, 64, 0},
{"fixup_riscv_call_plt", 0, 64, 0},
{"fixup_riscv_qc_e_branch", 0, 48, 0},
{"fixup_riscv_qc_e_32", 16, 32, 0},
{"fixup_riscv_qc_abs20_u", 0, 32, 0},
{"fixup_riscv_qc_e_call_plt", 0, 48, 0},
// Andes fixups
{"fixup_riscv_nds_branch_10", 0, 32, 0},
};
static_assert((std::size(Infos)) == RISCV::NumTargetFixupKinds,
"Not all fixup kinds added to Infos array");
// Fixup kinds from raw relocation types and .reloc directives force
// relocations and do not use these fields.
if (mc::isRelocation(Kind))
return {};
if (Kind < FirstTargetFixupKind)
return MCAsmBackend::getFixupKindInfo(Kind);
assert(unsigned(Kind - FirstTargetFixupKind) < RISCV::NumTargetFixupKinds &&
"Invalid kind!");
return Infos[Kind - FirstTargetFixupKind];
}
bool RISCVAsmBackend::fixupNeedsRelaxationAdvanced(const MCFragment &,
const MCFixup &Fixup,
const MCValue &,
uint64_t Value,
bool Resolved) const {
int64_t Offset = int64_t(Value);
auto Kind = Fixup.getKind();
// Return true if the symbol is unresolved.
if (!Resolved)
return true;
switch (Kind) {
default:
return false;
case RISCV::fixup_riscv_rvc_branch:
// For compressed branch instructions the immediate must be
// in the range [-256, 254].
return Offset > 254 || Offset < -256;
case RISCV::fixup_riscv_rvc_jump:
// For compressed jump instructions the immediate must be
// in the range [-2048, 2046].
return Offset > 2046 || Offset < -2048;
case RISCV::fixup_riscv_branch:
case RISCV::fixup_riscv_qc_e_branch:
// For conditional branch instructions the immediate must be
// in the range [-4096, 4094].
return Offset > 4094 || Offset < -4096;
case RISCV::fixup_riscv_jal:
// For jump instructions the immediate must be in the range
// [-1048576, 1048574]
return Offset > 1048574 || Offset < -1048576;
case RISCV::fixup_riscv_rvc_imm:
// This fixup can never be emitted as a relocation, so always needs to be
// relaxed.
return true;
}
}
// Given a compressed control flow instruction this function returns
// the expanded instruction, or the original instruction code if no
// expansion is available.
static unsigned getRelaxedOpcode(unsigned Opcode, ArrayRef<MCOperand> Operands,
const MCSubtargetInfo &STI) {
switch (Opcode) {
case RISCV::C_BEQZ:
return RISCV::BEQ;
case RISCV::C_BNEZ:
return RISCV::BNE;
case RISCV::C_J:
case RISCV::C_JAL: // fall through.
// This only relaxes one "step" - i.e. from C.J to JAL, not from C.J to
// QC.E.J, because we can always relax again if needed.
return RISCV::JAL;
case RISCV::C_LI:
if (!STI.hasFeature(RISCV::FeatureVendorXqcili))
break;
// We only need this because `QC.E.LI` can be compressed into a `C.LI`. This
// happens because the `simm6` MCOperandPredicate accepts bare symbols, and
// `QC.E.LI` is the only instruction that accepts bare symbols at parse-time
// and compresses to `C.LI`. `C.LI` does not itself accept bare symbols at
// parse time.
//
// If we have a bare symbol, we need to turn this back to a `QC.E.LI`, as we
// have no way to emit a relocation on a `C.LI` instruction.
return RISCV::QC_E_LI;
case RISCV::JAL: {
// We can only relax JAL if we have Xqcilb
if (!STI.hasFeature(RISCV::FeatureVendorXqcilb))
break;
// And only if it is using X0 or X1 for rd.
MCRegister Reg = Operands[0].getReg();
if (Reg == RISCV::X0)
return RISCV::QC_E_J;
if (Reg == RISCV::X1)
return RISCV::QC_E_JAL;
break;
}
case RISCV::BEQ:
return RISCV::PseudoLongBEQ;
case RISCV::BNE:
return RISCV::PseudoLongBNE;
case RISCV::BLT:
return RISCV::PseudoLongBLT;
case RISCV::BGE:
return RISCV::PseudoLongBGE;
case RISCV::BLTU:
return RISCV::PseudoLongBLTU;
case RISCV::BGEU:
return RISCV::PseudoLongBGEU;
case RISCV::QC_BEQI:
return RISCV::PseudoLongQC_BEQI;
case RISCV::QC_BNEI:
return RISCV::PseudoLongQC_BNEI;
case RISCV::QC_BLTI:
return RISCV::PseudoLongQC_BLTI;
case RISCV::QC_BGEI:
return RISCV::PseudoLongQC_BGEI;
case RISCV::QC_BLTUI:
return RISCV::PseudoLongQC_BLTUI;
case RISCV::QC_BGEUI:
return RISCV::PseudoLongQC_BGEUI;
case RISCV::QC_E_BEQI:
return RISCV::PseudoLongQC_E_BEQI;
case RISCV::QC_E_BNEI:
return RISCV::PseudoLongQC_E_BNEI;
case RISCV::QC_E_BLTI:
return RISCV::PseudoLongQC_E_BLTI;
case RISCV::QC_E_BGEI:
return RISCV::PseudoLongQC_E_BGEI;
case RISCV::QC_E_BLTUI:
return RISCV::PseudoLongQC_E_BLTUI;
case RISCV::QC_E_BGEUI:
return RISCV::PseudoLongQC_E_BGEUI;
}
// Returning the original opcode means we cannot relax the instruction.
return Opcode;
}
void RISCVAsmBackend::relaxInstruction(MCInst &Inst,
const MCSubtargetInfo &STI) const {
if (STI.hasFeature(RISCV::FeatureExactAssembly))
return;
MCInst Res;
switch (Inst.getOpcode()) {
default:
llvm_unreachable("Opcode not expected!");
case RISCV::C_BEQZ:
case RISCV::C_BNEZ:
case RISCV::C_J:
case RISCV::C_JAL: {
[[maybe_unused]] bool Success = RISCVRVC::uncompress(Res, Inst, STI);
assert(Success && "Can't uncompress instruction");
assert(Res.getOpcode() ==
getRelaxedOpcode(Inst.getOpcode(), Inst.getOperands(), STI) &&
"Branch Relaxation Error");
break;
}
case RISCV::JAL: {
// This has to be written manually because the QC.E.J -> JAL is
// compression-only, so that it is not used when printing disassembly.
assert(STI.hasFeature(RISCV::FeatureVendorXqcilb) &&
"JAL is only relaxable with Xqcilb");
assert((Inst.getOperand(0).getReg() == RISCV::X0 ||
Inst.getOperand(0).getReg() == RISCV::X1) &&
"JAL only relaxable with rd=x0 or rd=x1");
Res.setOpcode(getRelaxedOpcode(Inst.getOpcode(), Inst.getOperands(), STI));
Res.addOperand(Inst.getOperand(1));
break;
}
case RISCV::C_LI: {
// This should only be hit when trying to relax a `C.LI` into a `QC.E.LI`
// because the `C.LI` has a bare symbol. We cannot use
// `RISCVRVC::uncompress` because it will use decompression patterns. The
// `QC.E.LI` compression pattern to `C.LI` is compression-only (because we
// don't want `c.li` ever printed as `qc.e.li`, which might be done if the
// pattern applied to decompression), but that doesn't help much becuase
// `C.LI` with a bare symbol will decompress to an `ADDI` anyway (because
// `simm12`'s MCOperandPredicate accepts a bare symbol and that pattern
// comes first), and we still cannot emit an `ADDI` with a bare symbol.
assert(STI.hasFeature(RISCV::FeatureVendorXqcili) &&
"C.LI is only relaxable with Xqcili");
Res.setOpcode(getRelaxedOpcode(Inst.getOpcode(), Inst.getOperands(), STI));
Res.addOperand(Inst.getOperand(0));
Res.addOperand(Inst.getOperand(1));
break;
}
case RISCV::BEQ:
case RISCV::BNE:
case RISCV::BLT:
case RISCV::BGE:
case RISCV::BLTU:
case RISCV::BGEU:
case RISCV::QC_BEQI:
case RISCV::QC_BNEI:
case RISCV::QC_BLTI:
case RISCV::QC_BGEI:
case RISCV::QC_BLTUI:
case RISCV::QC_BGEUI:
case RISCV::QC_E_BEQI:
case RISCV::QC_E_BNEI:
case RISCV::QC_E_BLTI:
case RISCV::QC_E_BGEI:
case RISCV::QC_E_BLTUI:
case RISCV::QC_E_BGEUI:
Res.setOpcode(getRelaxedOpcode(Inst.getOpcode(), Inst.getOperands(), STI));
Res.addOperand(Inst.getOperand(0));
Res.addOperand(Inst.getOperand(1));
Res.addOperand(Inst.getOperand(2));
break;
}
Inst = std::move(Res);
}
// Check if an R_RISCV_ALIGN relocation is needed for an alignment directive.
// If conditions are met, compute the padding size and create a fixup encoding
// the padding size in the addend.
bool RISCVAsmBackend::relaxAlign(MCFragment &F, unsigned &Size) {
// Use default handling unless linker relaxation is enabled and the alignment
// is larger than the nop size.
const MCSubtargetInfo *STI = F.getSubtargetInfo();
if (!STI->hasFeature(RISCV::FeatureRelax))
return false;
unsigned MinNopLen = STI->hasFeature(RISCV::FeatureStdExtZca) ? 2 : 4;
if (F.getAlignment() <= MinNopLen)
return false;
Size = F.getAlignment().value() - MinNopLen;
auto *Expr = MCConstantExpr::create(Size, getContext());
MCFixup Fixup =
MCFixup::create(0, Expr, FirstLiteralRelocationKind + ELF::R_RISCV_ALIGN);
F.setVarFixups({Fixup});
F.setLinkerRelaxable();
F.getParent()->setLinkerRelaxable();
return true;
}
bool RISCVAsmBackend::relaxDwarfLineAddr(MCFragment &F,
bool &WasRelaxed) const {
int64_t LineDelta = F.getDwarfLineDelta();
const MCExpr &AddrDelta = F.getDwarfAddrDelta();
size_t OldSize = F.getVarSize();
int64_t Value;
// If the label difference can be resolved, use the default handling, which
// utilizes a shorter special opcode.
if (AddrDelta.evaluateAsAbsolute(Value, *Asm))
return false;
[[maybe_unused]] bool IsAbsolute =
AddrDelta.evaluateKnownAbsolute(Value, *Asm);
assert(IsAbsolute && "CFA with invalid expression");
SmallVector<char> Data;
raw_svector_ostream OS(Data);
// INT64_MAX is a signal that this is actually a DW_LNE_end_sequence.
if (LineDelta != INT64_MAX) {
OS << uint8_t(dwarf::DW_LNS_advance_line);
encodeSLEB128(LineDelta, OS);
}
// According to the DWARF specification, the `DW_LNS_fixed_advance_pc` opcode
// takes a single unsigned half (unencoded) operand. The maximum encodable
// value is therefore 65535. Set a conservative upper bound for relaxation.
unsigned PCBytes;
if (Value > 60000) {
PCBytes = getContext().getAsmInfo()->getCodePointerSize();
OS << uint8_t(dwarf::DW_LNS_extended_op) << uint8_t(PCBytes + 1)
<< uint8_t(dwarf::DW_LNE_set_address);
OS.write_zeros(PCBytes);
} else {
PCBytes = 2;
OS << uint8_t(dwarf::DW_LNS_fixed_advance_pc);
support::endian::write<uint16_t>(OS, 0, llvm::endianness::little);
}
auto Offset = OS.tell() - PCBytes;
if (LineDelta == INT64_MAX) {
OS << uint8_t(dwarf::DW_LNS_extended_op);
OS << uint8_t(1);
OS << uint8_t(dwarf::DW_LNE_end_sequence);
} else {
OS << uint8_t(dwarf::DW_LNS_copy);
}
F.setVarContents(Data);
F.setVarFixups({MCFixup::create(Offset, &AddrDelta,
MCFixup::getDataKindForSize(PCBytes))});
WasRelaxed = OldSize != Data.size();
return true;
}
bool RISCVAsmBackend::relaxDwarfCFA(MCFragment &F, bool &WasRelaxed) const {
const MCExpr &AddrDelta = F.getDwarfAddrDelta();
SmallVector<MCFixup, 2> Fixups;
size_t OldSize = F.getVarSize();
int64_t Value;
if (AddrDelta.evaluateAsAbsolute(Value, *Asm))
return false;
[[maybe_unused]] bool IsAbsolute =
AddrDelta.evaluateKnownAbsolute(Value, *Asm);
assert(IsAbsolute && "CFA with invalid expression");
assert(getContext().getAsmInfo()->getMinInstAlignment() == 1 &&
"expected 1-byte alignment");
if (Value == 0) {
F.clearVarContents();
F.clearVarFixups();
WasRelaxed = OldSize != 0;
return true;
}
auto AddFixups = [&Fixups, &AddrDelta](unsigned Offset,
std::pair<unsigned, unsigned> Fixup) {
const MCBinaryExpr &MBE = cast<MCBinaryExpr>(AddrDelta);
Fixups.push_back(MCFixup::create(Offset, MBE.getLHS(), std::get<0>(Fixup)));
Fixups.push_back(MCFixup::create(Offset, MBE.getRHS(), std::get<1>(Fixup)));
};
SmallVector<char, 8> Data;
raw_svector_ostream OS(Data);
if (isUIntN(6, Value)) {
OS << uint8_t(dwarf::DW_CFA_advance_loc);
AddFixups(0, {ELF::R_RISCV_SET6, ELF::R_RISCV_SUB6});
} else if (isUInt<8>(Value)) {
OS << uint8_t(dwarf::DW_CFA_advance_loc1);
support::endian::write<uint8_t>(OS, 0, llvm::endianness::little);
AddFixups(1, {ELF::R_RISCV_SET8, ELF::R_RISCV_SUB8});
} else if (isUInt<16>(Value)) {
OS << uint8_t(dwarf::DW_CFA_advance_loc2);
support::endian::write<uint16_t>(OS, 0, llvm::endianness::little);
AddFixups(1, {ELF::R_RISCV_SET16, ELF::R_RISCV_SUB16});
} else if (isUInt<32>(Value)) {
OS << uint8_t(dwarf::DW_CFA_advance_loc4);
support::endian::write<uint32_t>(OS, 0, llvm::endianness::little);
AddFixups(1, {ELF::R_RISCV_SET32, ELF::R_RISCV_SUB32});
} else {
llvm_unreachable("unsupported CFA encoding");
}
F.setVarContents(Data);
F.setVarFixups(Fixups);
WasRelaxed = OldSize != Data.size();
return true;
}
std::pair<bool, bool> RISCVAsmBackend::relaxLEB128(MCFragment &LF,
int64_t &Value) const {
if (LF.isLEBSigned())
return std::make_pair(false, false);
const MCExpr &Expr = LF.getLEBValue();
if (ULEB128Reloc) {
LF.setVarFixups({MCFixup::create(0, &Expr, FK_Data_leb128)});
}
return std::make_pair(Expr.evaluateKnownAbsolute(Value, *Asm), false);
}
bool RISCVAsmBackend::mayNeedRelaxation(unsigned Opcode,
ArrayRef<MCOperand> Operands,
const MCSubtargetInfo &STI) const {
// This function has access to two STIs, the member of the AsmBackend, and the
// one passed as an argument. The latter is more specific, so we query it for
// specific features.
if (STI.hasFeature(RISCV::FeatureExactAssembly))
return false;
return getRelaxedOpcode(Opcode, Operands, STI) != Opcode;
}
bool RISCVAsmBackend::writeNopData(raw_ostream &OS, uint64_t Count,
const MCSubtargetInfo *STI) const {
// We mostly follow binutils' convention here: align to even boundary with a
// 0-fill padding. We emit up to 1 2-byte nop, though we use c.nop if RVC is
// enabled or 0-fill otherwise. The remainder is now padded with 4-byte nops.
// Instructions always are at even addresses. We must be in a data area or
// be unaligned due to some other reason.
if (Count % 2) {
OS.write("\0", 1);
Count -= 1;
}
if (Count % 4 == 2) {
// The canonical nop with Zca is c.nop.
OS.write(STI->hasFeature(RISCV::FeatureStdExtZca) ? "\x01\0" : "\0\0", 2);
Count -= 2;
}
// The canonical nop on RISC-V is addi x0, x0, 0.
for (; Count >= 4; Count -= 4)
OS.write("\x13\0\0\0", 4);
return true;
}
static uint64_t adjustFixupValue(const MCFixup &Fixup, uint64_t Value,
MCContext &Ctx) {
switch (Fixup.getKind()) {
default:
llvm_unreachable("Unknown fixup kind!");
case FK_Data_1:
case FK_Data_2:
case FK_Data_4:
case FK_Data_8:
case FK_Data_leb128:
return Value;
case RISCV::fixup_riscv_lo12_i:
case RISCV::fixup_riscv_pcrel_lo12_i:
return Value & 0xfff;
case RISCV::fixup_riscv_12_i:
if (!isInt<12>(Value)) {
Ctx.reportError(Fixup.getLoc(),
"operand must be a constant 12-bit integer");
}
return Value & 0xfff;
case RISCV::fixup_riscv_lo12_s:
case RISCV::fixup_riscv_pcrel_lo12_s:
return (((Value >> 5) & 0x7f) << 25) | ((Value & 0x1f) << 7);
case RISCV::fixup_riscv_hi20:
case RISCV::fixup_riscv_pcrel_hi20:
// Add 1 if bit 11 is 1, to compensate for low 12 bits being negative.
return ((Value + 0x800) >> 12) & 0xfffff;
case RISCV::fixup_riscv_jal: {
if (!isInt<21>(Value))
Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
if (Value & 0x1)
Ctx.reportError(Fixup.getLoc(), "fixup value must be 2-byte aligned");
// Need to produce imm[19|10:1|11|19:12] from the 21-bit Value.
unsigned Sbit = (Value >> 20) & 0x1;
unsigned Hi8 = (Value >> 12) & 0xff;
unsigned Mid1 = (Value >> 11) & 0x1;
unsigned Lo10 = (Value >> 1) & 0x3ff;
// Inst{31} = Sbit;
// Inst{30-21} = Lo10;
// Inst{20} = Mid1;
// Inst{19-12} = Hi8;
Value = (Sbit << 19) | (Lo10 << 9) | (Mid1 << 8) | Hi8;
return Value;
}
case RISCV::fixup_riscv_qc_e_branch:
case RISCV::fixup_riscv_branch: {
if (!isInt<13>(Value))
Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
if (Value & 0x1)
Ctx.reportError(Fixup.getLoc(), "fixup value must be 2-byte aligned");
// Need to extract imm[12], imm[10:5], imm[4:1], imm[11] from the 13-bit
// Value.
unsigned Sbit = (Value >> 12) & 0x1;
unsigned Hi1 = (Value >> 11) & 0x1;
unsigned Mid6 = (Value >> 5) & 0x3f;
unsigned Lo4 = (Value >> 1) & 0xf;
// Inst{31} = Sbit;
// Inst{30-25} = Mid6;
// Inst{11-8} = Lo4;
// Inst{7} = Hi1;
Value = (Sbit << 31) | (Mid6 << 25) | (Lo4 << 8) | (Hi1 << 7);
return Value;
}
case RISCV::fixup_riscv_call:
case RISCV::fixup_riscv_call_plt: {
// Jalr will add UpperImm with the sign-extended 12-bit LowerImm,
// we need to add 0x800ULL before extract upper bits to reflect the
// effect of the sign extension.
uint64_t UpperImm = (Value + 0x800ULL) & 0xfffff000ULL;
uint64_t LowerImm = Value & 0xfffULL;
return UpperImm | ((LowerImm << 20) << 32);
}
case RISCV::fixup_riscv_rvc_jump: {
if (!isInt<12>(Value))
Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
// Need to produce offset[11|4|9:8|10|6|7|3:1|5] from the 11-bit Value.
unsigned Bit11 = (Value >> 11) & 0x1;
unsigned Bit4 = (Value >> 4) & 0x1;
unsigned Bit9_8 = (Value >> 8) & 0x3;
unsigned Bit10 = (Value >> 10) & 0x1;
unsigned Bit6 = (Value >> 6) & 0x1;
unsigned Bit7 = (Value >> 7) & 0x1;
unsigned Bit3_1 = (Value >> 1) & 0x7;
unsigned Bit5 = (Value >> 5) & 0x1;
Value = (Bit11 << 10) | (Bit4 << 9) | (Bit9_8 << 7) | (Bit10 << 6) |
(Bit6 << 5) | (Bit7 << 4) | (Bit3_1 << 1) | Bit5;
return Value;
}
case RISCV::fixup_riscv_rvc_branch: {
if (!isInt<9>(Value))
Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
// Need to produce offset[8|4:3], [reg 3 bit], offset[7:6|2:1|5]
unsigned Bit8 = (Value >> 8) & 0x1;
unsigned Bit7_6 = (Value >> 6) & 0x3;
unsigned Bit5 = (Value >> 5) & 0x1;
unsigned Bit4_3 = (Value >> 3) & 0x3;
unsigned Bit2_1 = (Value >> 1) & 0x3;
Value = (Bit8 << 12) | (Bit4_3 << 10) | (Bit7_6 << 5) | (Bit2_1 << 3) |
(Bit5 << 2);
return Value;
}
case RISCV::fixup_riscv_rvc_imm: {
if (!isInt<6>(Value))
Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
unsigned Bit5 = (Value >> 5) & 0x1;
unsigned Bit4_0 = Value & 0x1f;
Value = (Bit5 << 12) | (Bit4_0 << 2);
return Value;
}
case RISCV::fixup_riscv_qc_e_32: {
if (!isInt<32>(Value))
Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
return Value & 0xffffffffu;
}
case RISCV::fixup_riscv_qc_abs20_u: {
if (!isInt<20>(Value))
Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
unsigned Bit19 = (Value >> 19) & 0x1;
unsigned Bit14_0 = Value & 0x7fff;
unsigned Bit18_15 = (Value >> 15) & 0xf;
Value = (Bit19 << 31) | (Bit14_0 << 16) | (Bit18_15 << 12);
return Value;
}
case RISCV::fixup_riscv_qc_e_call_plt: {
if (!isInt<32>(Value))
Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
if (Value & 0x1)
Ctx.reportError(Fixup.getLoc(), "fixup value must be 2-byte aligned");
uint64_t Bit31_16 = (Value >> 16) & 0xffff;
uint64_t Bit12 = (Value >> 12) & 0x1;
uint64_t Bit10_5 = (Value >> 5) & 0x3f;
uint64_t Bit15_13 = (Value >> 13) & 0x7;
uint64_t Bit4_1 = (Value >> 1) & 0xf;
uint64_t Bit11 = (Value >> 11) & 0x1;
Value = (Bit31_16 << 32ull) | (Bit12 << 31) | (Bit10_5 << 25) |
(Bit15_13 << 17) | (Bit4_1 << 8) | (Bit11 << 7);
return Value;
}
case RISCV::fixup_riscv_nds_branch_10: {
if (!isInt<11>(Value))
Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
if (Value & 0x1)
Ctx.reportError(Fixup.getLoc(), "fixup value must be 2-byte aligned");
// Need to extract imm[10], imm[9:5], imm[4:1] from the 11-bit Value.
unsigned Sbit = (Value >> 10) & 0x1;
unsigned Hi5 = (Value >> 5) & 0x1f;
unsigned Lo4 = (Value >> 1) & 0xf;
// Inst{31} = Sbit;
// Inst{29-25} = Hi5;
// Inst{11-8} = Lo4;
Value = (Sbit << 31) | (Hi5 << 25) | (Lo4 << 8);
return Value;
}
}
}
bool RISCVAsmBackend::isPCRelFixupResolved(const MCSymbol *SymA,
const MCFragment &F) {
// If the section does not contain linker-relaxable fragments, PC-relative
// fixups can be resolved.
if (!F.getParent()->isLinkerRelaxable())
return true;
// Otherwise, check if the offset between the symbol and fragment is fully
// resolved, unaffected by linker-relaxable fragments (e.g. instructions or
// offset-affected FT_Align fragments). Complements the generic
// isSymbolRefDifferenceFullyResolvedImpl.
if (!PCRelTemp)
PCRelTemp = getContext().createTempSymbol();
PCRelTemp->setFragment(const_cast<MCFragment *>(&F));
MCValue Res;
MCExpr::evaluateSymbolicAdd(Asm, false, MCValue::get(SymA),
MCValue::get(nullptr, PCRelTemp), Res);
return !Res.getSubSym();
}
// Get the corresponding PC-relative HI fixup that a S_PCREL_LO points to, and
// optionally the fragment containing it.
//
// \returns nullptr if this isn't a S_PCREL_LO pointing to a known PC-relative
// HI fixup.
static const MCFixup *getPCRelHiFixup(const MCSpecifierExpr &Expr,
const MCFragment **DFOut) {
MCValue AUIPCLoc;
if (!Expr.getSubExpr()->evaluateAsRelocatable(AUIPCLoc, nullptr))
return nullptr;
const MCSymbol *AUIPCSymbol = AUIPCLoc.getAddSym();
if (!AUIPCSymbol)
return nullptr;
const auto *DF = AUIPCSymbol->getFragment();
if (!DF)
return nullptr;
uint64_t Offset = AUIPCSymbol->getOffset();
if (DF->getContents().size() == Offset) {
DF = DF->getNext();
if (!DF)
return nullptr;
Offset = 0;
}
for (const MCFixup &F : DF->getFixups()) {
if (F.getOffset() != Offset)
continue;
auto Kind = F.getKind();
if (!mc::isRelocation(F.getKind())) {
if (Kind == RISCV::fixup_riscv_pcrel_hi20) {
*DFOut = DF;
return &F;
}
break;
}
switch (Kind) {
case ELF::R_RISCV_GOT_HI20:
case ELF::R_RISCV_TLS_GOT_HI20:
case ELF::R_RISCV_TLS_GD_HI20:
case ELF::R_RISCV_TLSDESC_HI20:
*DFOut = DF;
return &F;
}
}
return nullptr;
}
std::optional<bool> RISCVAsmBackend::evaluateFixup(const MCFragment &,
MCFixup &Fixup,
MCValue &Target,
uint64_t &Value) {
const MCFixup *AUIPCFixup;
const MCFragment *AUIPCDF;
MCValue AUIPCTarget;
switch (Fixup.getKind()) {
default:
// Use default handling for `Value` and `IsResolved`.
return {};
case RISCV::fixup_riscv_pcrel_lo12_i:
case RISCV::fixup_riscv_pcrel_lo12_s: {
AUIPCFixup =
getPCRelHiFixup(cast<MCSpecifierExpr>(*Fixup.getValue()), &AUIPCDF);
if (!AUIPCFixup) {
getContext().reportError(Fixup.getLoc(),
"could not find corresponding %pcrel_hi");
return true;
}
// MCAssembler::evaluateFixup will emit an error for this case when it sees
// the %pcrel_hi, so don't duplicate it when also seeing the %pcrel_lo.
const MCExpr *AUIPCExpr = AUIPCFixup->getValue();
if (!AUIPCExpr->evaluateAsRelocatable(AUIPCTarget, Asm))
return true;
break;
}
}
if (!AUIPCTarget.getAddSym())
return false;
auto &SA = static_cast<const MCSymbolELF &>(*AUIPCTarget.getAddSym());
if (SA.isUndefined())
return false;
bool IsResolved = &SA.getSection() == AUIPCDF->getParent() &&
SA.getBinding() == ELF::STB_LOCAL &&
SA.getType() != ELF::STT_GNU_IFUNC;
if (!IsResolved)
return false;
Value = Asm->getSymbolOffset(SA) + AUIPCTarget.getConstant();
Value -= Asm->getFragmentOffset(*AUIPCDF) + AUIPCFixup->getOffset();
return AUIPCFixup->getKind() == RISCV::fixup_riscv_pcrel_hi20 &&
isPCRelFixupResolved(AUIPCTarget.getAddSym(), *AUIPCDF);
}
void RISCVAsmBackend::maybeAddVendorReloc(const MCFragment &F,
const MCFixup &Fixup) {
StringRef VendorIdentifier;
switch (Fixup.getKind()) {
default:
// No Vendor Relocation Required.
return;
case RISCV::fixup_riscv_qc_e_branch:
case RISCV::fixup_riscv_qc_abs20_u:
case RISCV::fixup_riscv_qc_e_32:
case RISCV::fixup_riscv_qc_e_call_plt:
VendorIdentifier = "QUALCOMM";
break;
case RISCV::fixup_riscv_nds_branch_10:
VendorIdentifier = "ANDES";
break;
}
// Create a local symbol for the vendor relocation to reference. It's fine if
// the symbol has the same name as an existing symbol.
MCContext &Ctx = Asm->getContext();
MCSymbol *VendorSymbol = Ctx.createLocalSymbol(VendorIdentifier);
auto [It, Inserted] =
VendorSymbols.try_emplace(VendorIdentifier, VendorSymbol);
if (Inserted) {
// Setup the just-created symbol
VendorSymbol->setVariableValue(MCConstantExpr::create(0, Ctx));
Asm->registerSymbol(*VendorSymbol);
} else {
// Fetch the existing symbol
VendorSymbol = It->getValue();
}
MCFixup VendorFixup =
MCFixup::create(Fixup.getOffset(), nullptr, ELF::R_RISCV_VENDOR);
// Explicitly create MCValue rather than using an MCExpr and evaluating it so
// that the absolute vendor symbol is not evaluated to constant 0.
MCValue VendorTarget = MCValue::get(VendorSymbol);
uint64_t VendorValue;
Asm->getWriter().recordRelocation(F, VendorFixup, VendorTarget, VendorValue);
}
bool RISCVAsmBackend::addReloc(const MCFragment &F, const MCFixup &Fixup,
const MCValue &Target, uint64_t &FixedValue,
bool IsResolved) {
uint64_t FixedValueA, FixedValueB;
if (Target.getSubSym()) {
assert(Target.getSpecifier() == 0 &&
"relocatable SymA-SymB cannot have relocation specifier");
unsigned TA = 0, TB = 0;
switch (Fixup.getKind()) {
case llvm::FK_Data_1:
TA = ELF::R_RISCV_ADD8;
TB = ELF::R_RISCV_SUB8;
break;
case llvm::FK_Data_2:
TA = ELF::R_RISCV_ADD16;
TB = ELF::R_RISCV_SUB16;
break;
case llvm::FK_Data_4:
TA = ELF::R_RISCV_ADD32;
TB = ELF::R_RISCV_SUB32;
break;
case llvm::FK_Data_8:
TA = ELF::R_RISCV_ADD64;
TB = ELF::R_RISCV_SUB64;
break;
case llvm::FK_Data_leb128:
TA = ELF::R_RISCV_SET_ULEB128;
TB = ELF::R_RISCV_SUB_ULEB128;
break;
default:
llvm_unreachable("unsupported fixup size");
}
MCValue A = MCValue::get(Target.getAddSym(), nullptr, Target.getConstant());
MCValue B = MCValue::get(Target.getSubSym());
auto FA = MCFixup::create(Fixup.getOffset(), nullptr, TA);
auto FB = MCFixup::create(Fixup.getOffset(), nullptr, TB);
Asm->getWriter().recordRelocation(F, FA, A, FixedValueA);
Asm->getWriter().recordRelocation(F, FB, B, FixedValueB);
FixedValue = FixedValueA - FixedValueB;
return false;
}
// If linker relaxation is enabled and supported by the current relocation,
// generate a relocation and then append a RELAX.
if (Fixup.isLinkerRelaxable())
IsResolved = false;
if (IsResolved && Fixup.isPCRel())
IsResolved = isPCRelFixupResolved(Target.getAddSym(), F);
if (!IsResolved) {
// Some Fixups require a vendor relocation, record it (directly) before we
// add the relocation.
maybeAddVendorReloc(F, Fixup);
Asm->getWriter().recordRelocation(F, Fixup, Target, FixedValue);
}
if (Fixup.isLinkerRelaxable()) {
auto FA = MCFixup::create(Fixup.getOffset(), nullptr, ELF::R_RISCV_RELAX);
Asm->getWriter().recordRelocation(F, FA, MCValue::get(nullptr),
FixedValueA);
}
return false;
}
void RISCVAsmBackend::applyFixup(const MCFragment &F, const MCFixup &Fixup,
const MCValue &Target, uint8_t *Data,
uint64_t Value, bool IsResolved) {
IsResolved = addReloc(F, Fixup, Target, Value, IsResolved);
MCFixupKind Kind = Fixup.getKind();
if (mc::isRelocation(Kind))
return;
MCContext &Ctx = getContext();
MCFixupKindInfo Info = getFixupKindInfo(Kind);
if (!Value)
return; // Doesn't change encoding.
// Apply any target-specific value adjustments.
Value = adjustFixupValue(Fixup, Value, Ctx);
// Shift the value into position.
Value <<= Info.TargetOffset;
unsigned NumBytes = alignTo(Info.TargetSize + Info.TargetOffset, 8) / 8;
assert(Fixup.getOffset() + NumBytes <= F.getSize() &&
"Invalid fixup offset!");
// For each byte of the fragment that the fixup touches, mask in the
// bits from the fixup value.
for (unsigned i = 0; i != NumBytes; ++i) {
Data[i] |= uint8_t((Value >> (i * 8)) & 0xff);
}
}
std::unique_ptr<MCObjectTargetWriter>
RISCVAsmBackend::createObjectTargetWriter() const {
return createRISCVELFObjectWriter(OSABI, Is64Bit);
}
MCAsmBackend *llvm::createRISCVAsmBackend(const Target &T,
const MCSubtargetInfo &STI,
const MCRegisterInfo &MRI,
const MCTargetOptions &Options) {
const Triple &TT = STI.getTargetTriple();
uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TT.getOS());
return new RISCVAsmBackend(STI, OSABI, TT.isArch64Bit(), Options);
}