
Affine scalar replacement (and other affine passes, though not fixed here) don't properly handle operations with nested regions. This patch fixes the pass and two affine utilities to function properly given a non-affine internal region This patch prevents the pass from throwing an internal compiler error when running on the added test case. Differential Revision: https://reviews.llvm.org/D105058
1282 lines
50 KiB
C++
1282 lines
50 KiB
C++
//===- Utils.cpp ---- Misc utilities for analysis -------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements miscellaneous analysis routines for non-loop IR
|
|
// structures.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Analysis/Utils.h"
|
|
#include "mlir/Analysis/AffineAnalysis.h"
|
|
#include "mlir/Analysis/PresburgerSet.h"
|
|
#include "mlir/Dialect/Affine/IR/AffineOps.h"
|
|
#include "mlir/Dialect/Affine/IR/AffineValueMap.h"
|
|
#include "mlir/Dialect/StandardOps/IR/Ops.h"
|
|
#include "mlir/IR/IntegerSet.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
#define DEBUG_TYPE "analysis-utils"
|
|
|
|
using namespace mlir;
|
|
|
|
using llvm::SmallDenseMap;
|
|
|
|
/// Populates 'loops' with IVs of the loops surrounding 'op' ordered from
|
|
/// the outermost 'affine.for' operation to the innermost one.
|
|
void mlir::getLoopIVs(Operation &op, SmallVectorImpl<AffineForOp> *loops) {
|
|
auto *currOp = op.getParentOp();
|
|
AffineForOp currAffineForOp;
|
|
// Traverse up the hierarchy collecting all 'affine.for' operation while
|
|
// skipping over 'affine.if' operations.
|
|
while (currOp) {
|
|
if (AffineForOp currAffineForOp = dyn_cast<AffineForOp>(currOp))
|
|
loops->push_back(currAffineForOp);
|
|
currOp = currOp->getParentOp();
|
|
}
|
|
std::reverse(loops->begin(), loops->end());
|
|
}
|
|
|
|
/// Populates 'ops' with IVs of the loops surrounding `op`, along with
|
|
/// `affine.if` operations interleaved between these loops, ordered from the
|
|
/// outermost `affine.for` operation to the innermost one.
|
|
void mlir::getEnclosingAffineForAndIfOps(Operation &op,
|
|
SmallVectorImpl<Operation *> *ops) {
|
|
ops->clear();
|
|
Operation *currOp = op.getParentOp();
|
|
|
|
// Traverse up the hierarchy collecting all `affine.for` and `affine.if`
|
|
// operations.
|
|
while (currOp) {
|
|
if (isa<AffineIfOp, AffineForOp>(currOp))
|
|
ops->push_back(currOp);
|
|
currOp = currOp->getParentOp();
|
|
}
|
|
std::reverse(ops->begin(), ops->end());
|
|
}
|
|
|
|
// Populates 'cst' with FlatAffineConstraints which represent original domain of
|
|
// the loop bounds that define 'ivs'.
|
|
LogicalResult
|
|
ComputationSliceState::getSourceAsConstraints(FlatAffineConstraints &cst) {
|
|
assert(!ivs.empty() && "Cannot have a slice without its IVs");
|
|
cst.reset(/*numDims=*/ivs.size(), /*numSymbols=*/0, /*numLocals=*/0, ivs);
|
|
for (Value iv : ivs) {
|
|
AffineForOp loop = getForInductionVarOwner(iv);
|
|
assert(loop && "Expected affine for");
|
|
if (failed(cst.addAffineForOpDomain(loop)))
|
|
return failure();
|
|
}
|
|
return success();
|
|
}
|
|
|
|
// Populates 'cst' with FlatAffineConstraints which represent slice bounds.
|
|
LogicalResult
|
|
ComputationSliceState::getAsConstraints(FlatAffineConstraints *cst) {
|
|
assert(!lbOperands.empty());
|
|
// Adds src 'ivs' as dimension identifiers in 'cst'.
|
|
unsigned numDims = ivs.size();
|
|
// Adds operands (dst ivs and symbols) as symbols in 'cst'.
|
|
unsigned numSymbols = lbOperands[0].size();
|
|
|
|
SmallVector<Value, 4> values(ivs);
|
|
// Append 'ivs' then 'operands' to 'values'.
|
|
values.append(lbOperands[0].begin(), lbOperands[0].end());
|
|
cst->reset(numDims, numSymbols, 0, values);
|
|
|
|
// Add loop bound constraints for values which are loop IVs of the destination
|
|
// of fusion and equality constraints for symbols which are constants.
|
|
for (unsigned i = numDims, end = values.size(); i < end; ++i) {
|
|
Value value = values[i];
|
|
assert(cst->containsId(value) && "value expected to be present");
|
|
if (isValidSymbol(value)) {
|
|
// Check if the symbol is a constant.
|
|
if (auto cOp = value.getDefiningOp<ConstantIndexOp>())
|
|
cst->setIdToConstant(value, cOp.getValue());
|
|
} else if (auto loop = getForInductionVarOwner(value)) {
|
|
if (failed(cst->addAffineForOpDomain(loop)))
|
|
return failure();
|
|
}
|
|
}
|
|
|
|
// Add slices bounds on 'ivs' using maps 'lbs'/'ubs' with 'lbOperands[0]'
|
|
LogicalResult ret = cst->addSliceBounds(ivs, lbs, ubs, lbOperands[0]);
|
|
assert(succeeded(ret) &&
|
|
"should not fail as we never have semi-affine slice maps");
|
|
(void)ret;
|
|
return success();
|
|
}
|
|
|
|
// Clears state bounds and operand state.
|
|
void ComputationSliceState::clearBounds() {
|
|
lbs.clear();
|
|
ubs.clear();
|
|
lbOperands.clear();
|
|
ubOperands.clear();
|
|
}
|
|
|
|
void ComputationSliceState::dump() const {
|
|
llvm::errs() << "\tIVs:\n";
|
|
for (Value iv : ivs)
|
|
llvm::errs() << "\t\t" << iv << "\n";
|
|
|
|
llvm::errs() << "\tLBs:\n";
|
|
for (auto &en : llvm::enumerate(lbs)) {
|
|
llvm::errs() << "\t\t" << en.value() << "\n";
|
|
llvm::errs() << "\t\tOperands:\n";
|
|
for (Value lbOp : lbOperands[en.index()])
|
|
llvm::errs() << "\t\t\t" << lbOp << "\n";
|
|
}
|
|
|
|
llvm::errs() << "\tUBs:\n";
|
|
for (auto &en : llvm::enumerate(ubs)) {
|
|
llvm::errs() << "\t\t" << en.value() << "\n";
|
|
llvm::errs() << "\t\tOperands:\n";
|
|
for (Value ubOp : ubOperands[en.index()])
|
|
llvm::errs() << "\t\t\t" << ubOp << "\n";
|
|
}
|
|
}
|
|
|
|
/// Fast check to determine if the computation slice is maximal. Returns true if
|
|
/// each slice dimension maps to an existing dst dimension and both the src
|
|
/// and the dst loops for those dimensions have the same bounds. Returns false
|
|
/// if both the src and the dst loops don't have the same bounds. Returns
|
|
/// llvm::None if none of the above can be proven.
|
|
Optional<bool> ComputationSliceState::isSliceMaximalFastCheck() const {
|
|
assert(lbs.size() == ubs.size() && lbs.size() && ivs.size() &&
|
|
"Unexpected number of lbs, ubs and ivs in slice");
|
|
|
|
for (unsigned i = 0, end = lbs.size(); i < end; ++i) {
|
|
AffineMap lbMap = lbs[i];
|
|
AffineMap ubMap = ubs[i];
|
|
|
|
// Check if this slice is just an equality along this dimension.
|
|
if (!lbMap || !ubMap || lbMap.getNumResults() != 1 ||
|
|
ubMap.getNumResults() != 1 ||
|
|
lbMap.getResult(0) + 1 != ubMap.getResult(0) ||
|
|
// The condition above will be true for maps describing a single
|
|
// iteration (e.g., lbMap.getResult(0) = 0, ubMap.getResult(0) = 1).
|
|
// Make sure we skip those cases by checking that the lb result is not
|
|
// just a constant.
|
|
lbMap.getResult(0).isa<AffineConstantExpr>())
|
|
return llvm::None;
|
|
|
|
// Limited support: we expect the lb result to be just a loop dimension for
|
|
// now.
|
|
AffineDimExpr result = lbMap.getResult(0).dyn_cast<AffineDimExpr>();
|
|
if (!result)
|
|
return llvm::None;
|
|
|
|
// Retrieve dst loop bounds.
|
|
AffineForOp dstLoop =
|
|
getForInductionVarOwner(lbOperands[i][result.getPosition()]);
|
|
if (!dstLoop)
|
|
return llvm::None;
|
|
AffineMap dstLbMap = dstLoop.getLowerBoundMap();
|
|
AffineMap dstUbMap = dstLoop.getUpperBoundMap();
|
|
|
|
// Retrieve src loop bounds.
|
|
AffineForOp srcLoop = getForInductionVarOwner(ivs[i]);
|
|
assert(srcLoop && "Expected affine for");
|
|
AffineMap srcLbMap = srcLoop.getLowerBoundMap();
|
|
AffineMap srcUbMap = srcLoop.getUpperBoundMap();
|
|
|
|
// Limited support: we expect simple src and dst loops with a single
|
|
// constant component per bound for now.
|
|
if (srcLbMap.getNumResults() != 1 || srcUbMap.getNumResults() != 1 ||
|
|
dstLbMap.getNumResults() != 1 || dstUbMap.getNumResults() != 1)
|
|
return llvm::None;
|
|
|
|
AffineExpr srcLbResult = srcLbMap.getResult(0);
|
|
AffineExpr dstLbResult = dstLbMap.getResult(0);
|
|
AffineExpr srcUbResult = srcUbMap.getResult(0);
|
|
AffineExpr dstUbResult = dstUbMap.getResult(0);
|
|
if (!srcLbResult.isa<AffineConstantExpr>() ||
|
|
!srcUbResult.isa<AffineConstantExpr>() ||
|
|
!dstLbResult.isa<AffineConstantExpr>() ||
|
|
!dstUbResult.isa<AffineConstantExpr>())
|
|
return llvm::None;
|
|
|
|
// Check if src and dst loop bounds are the same. If not, we can guarantee
|
|
// that the slice is not maximal.
|
|
if (srcLbResult != dstLbResult || srcUbResult != dstUbResult)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Returns true if it is deterministically verified that the original iteration
|
|
/// space of the slice is contained within the new iteration space that is
|
|
/// created after fusing 'this' slice into its destination.
|
|
Optional<bool> ComputationSliceState::isSliceValid() {
|
|
// Fast check to determine if the slice is valid. If the following conditions
|
|
// are verified to be true, slice is declared valid by the fast check:
|
|
// 1. Each slice loop is a single iteration loop bound in terms of a single
|
|
// destination loop IV.
|
|
// 2. Loop bounds of the destination loop IV (from above) and those of the
|
|
// source loop IV are exactly the same.
|
|
// If the fast check is inconclusive or false, we proceed with a more
|
|
// expensive analysis.
|
|
// TODO: Store the result of the fast check, as it might be used again in
|
|
// `canRemoveSrcNodeAfterFusion`.
|
|
Optional<bool> isValidFastCheck = isSliceMaximalFastCheck();
|
|
if (isValidFastCheck.hasValue() && isValidFastCheck.getValue())
|
|
return true;
|
|
|
|
// Create constraints for the source loop nest using which slice is computed.
|
|
FlatAffineConstraints srcConstraints;
|
|
// TODO: Store the source's domain to avoid computation at each depth.
|
|
if (failed(getSourceAsConstraints(srcConstraints))) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Unable to compute source's domain\n");
|
|
return llvm::None;
|
|
}
|
|
// As the set difference utility currently cannot handle symbols in its
|
|
// operands, validity of the slice cannot be determined.
|
|
if (srcConstraints.getNumSymbolIds() > 0) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Cannot handle symbols in source domain\n");
|
|
return llvm::None;
|
|
}
|
|
// TODO: Handle local ids in the source domains while using the 'projectOut'
|
|
// utility below. Currently, aligning is not done assuming that there will be
|
|
// no local ids in the source domain.
|
|
if (srcConstraints.getNumLocalIds() != 0) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Cannot handle locals in source domain\n");
|
|
return llvm::None;
|
|
}
|
|
|
|
// Create constraints for the slice loop nest that would be created if the
|
|
// fusion succeeds.
|
|
FlatAffineConstraints sliceConstraints;
|
|
if (failed(getAsConstraints(&sliceConstraints))) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Unable to compute slice's domain\n");
|
|
return llvm::None;
|
|
}
|
|
|
|
// Projecting out every dimension other than the 'ivs' to express slice's
|
|
// domain completely in terms of source's IVs.
|
|
sliceConstraints.projectOut(ivs.size(),
|
|
sliceConstraints.getNumIds() - ivs.size());
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "Domain of the source of the slice:\n");
|
|
LLVM_DEBUG(srcConstraints.dump());
|
|
LLVM_DEBUG(llvm::dbgs() << "Domain of the slice if this fusion succeeds "
|
|
"(expressed in terms of its source's IVs):\n");
|
|
LLVM_DEBUG(sliceConstraints.dump());
|
|
|
|
// TODO: Store 'srcSet' to avoid recalculating for each depth.
|
|
PresburgerSet srcSet(srcConstraints);
|
|
PresburgerSet sliceSet(sliceConstraints);
|
|
PresburgerSet diffSet = sliceSet.subtract(srcSet);
|
|
|
|
if (!diffSet.isIntegerEmpty()) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Incorrect slice\n");
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Returns true if the computation slice encloses all the iterations of the
|
|
/// sliced loop nest. Returns false if it does not. Returns llvm::None if it
|
|
/// cannot determine if the slice is maximal or not.
|
|
Optional<bool> ComputationSliceState::isMaximal() const {
|
|
// Fast check to determine if the computation slice is maximal. If the result
|
|
// is inconclusive, we proceed with a more expensive analysis.
|
|
Optional<bool> isMaximalFastCheck = isSliceMaximalFastCheck();
|
|
if (isMaximalFastCheck.hasValue())
|
|
return isMaximalFastCheck;
|
|
|
|
// Create constraints for the src loop nest being sliced.
|
|
FlatAffineConstraints srcConstraints;
|
|
srcConstraints.reset(/*numDims=*/ivs.size(), /*numSymbols=*/0,
|
|
/*numLocals=*/0, ivs);
|
|
for (Value iv : ivs) {
|
|
AffineForOp loop = getForInductionVarOwner(iv);
|
|
assert(loop && "Expected affine for");
|
|
if (failed(srcConstraints.addAffineForOpDomain(loop)))
|
|
return llvm::None;
|
|
}
|
|
|
|
// Create constraints for the slice using the dst loop nest information. We
|
|
// retrieve existing dst loops from the lbOperands.
|
|
SmallVector<Value, 8> consumerIVs;
|
|
for (Value lbOp : lbOperands[0])
|
|
if (getForInductionVarOwner(lbOp))
|
|
consumerIVs.push_back(lbOp);
|
|
|
|
// Add empty IV Values for those new loops that are not equalities and,
|
|
// therefore, are not yet materialized in the IR.
|
|
for (int i = consumerIVs.size(), end = ivs.size(); i < end; ++i)
|
|
consumerIVs.push_back(Value());
|
|
|
|
FlatAffineConstraints sliceConstraints;
|
|
sliceConstraints.reset(/*numDims=*/consumerIVs.size(), /*numSymbols=*/0,
|
|
/*numLocals=*/0, consumerIVs);
|
|
|
|
if (failed(sliceConstraints.addDomainFromSliceMaps(lbs, ubs, lbOperands[0])))
|
|
return llvm::None;
|
|
|
|
if (srcConstraints.getNumDimIds() != sliceConstraints.getNumDimIds())
|
|
// Constraint dims are different. The integer set difference can't be
|
|
// computed so we don't know if the slice is maximal.
|
|
return llvm::None;
|
|
|
|
// Compute the difference between the src loop nest and the slice integer
|
|
// sets.
|
|
PresburgerSet srcSet(srcConstraints);
|
|
PresburgerSet sliceSet(sliceConstraints);
|
|
PresburgerSet diffSet = srcSet.subtract(sliceSet);
|
|
return diffSet.isIntegerEmpty();
|
|
}
|
|
|
|
unsigned MemRefRegion::getRank() const {
|
|
return memref.getType().cast<MemRefType>().getRank();
|
|
}
|
|
|
|
Optional<int64_t> MemRefRegion::getConstantBoundingSizeAndShape(
|
|
SmallVectorImpl<int64_t> *shape, std::vector<SmallVector<int64_t, 4>> *lbs,
|
|
SmallVectorImpl<int64_t> *lbDivisors) const {
|
|
auto memRefType = memref.getType().cast<MemRefType>();
|
|
unsigned rank = memRefType.getRank();
|
|
if (shape)
|
|
shape->reserve(rank);
|
|
|
|
assert(rank == cst.getNumDimIds() && "inconsistent memref region");
|
|
|
|
// Use a copy of the region constraints that has upper/lower bounds for each
|
|
// memref dimension with static size added to guard against potential
|
|
// over-approximation from projection or union bounding box. We may not add
|
|
// this on the region itself since they might just be redundant constraints
|
|
// that will need non-trivials means to eliminate.
|
|
FlatAffineConstraints cstWithShapeBounds(cst);
|
|
for (unsigned r = 0; r < rank; r++) {
|
|
cstWithShapeBounds.addConstantLowerBound(r, 0);
|
|
int64_t dimSize = memRefType.getDimSize(r);
|
|
if (ShapedType::isDynamic(dimSize))
|
|
continue;
|
|
cstWithShapeBounds.addConstantUpperBound(r, dimSize - 1);
|
|
}
|
|
|
|
// Find a constant upper bound on the extent of this memref region along each
|
|
// dimension.
|
|
int64_t numElements = 1;
|
|
int64_t diffConstant;
|
|
int64_t lbDivisor;
|
|
for (unsigned d = 0; d < rank; d++) {
|
|
SmallVector<int64_t, 4> lb;
|
|
Optional<int64_t> diff =
|
|
cstWithShapeBounds.getConstantBoundOnDimSize(d, &lb, &lbDivisor);
|
|
if (diff.hasValue()) {
|
|
diffConstant = diff.getValue();
|
|
assert(lbDivisor > 0);
|
|
} else {
|
|
// If no constant bound is found, then it can always be bound by the
|
|
// memref's dim size if the latter has a constant size along this dim.
|
|
auto dimSize = memRefType.getDimSize(d);
|
|
if (dimSize == -1)
|
|
return None;
|
|
diffConstant = dimSize;
|
|
// Lower bound becomes 0.
|
|
lb.resize(cstWithShapeBounds.getNumSymbolIds() + 1, 0);
|
|
lbDivisor = 1;
|
|
}
|
|
numElements *= diffConstant;
|
|
if (lbs) {
|
|
lbs->push_back(lb);
|
|
assert(lbDivisors && "both lbs and lbDivisor or none");
|
|
lbDivisors->push_back(lbDivisor);
|
|
}
|
|
if (shape) {
|
|
shape->push_back(diffConstant);
|
|
}
|
|
}
|
|
return numElements;
|
|
}
|
|
|
|
void MemRefRegion::getLowerAndUpperBound(unsigned pos, AffineMap &lbMap,
|
|
AffineMap &ubMap) const {
|
|
assert(pos < cst.getNumDimIds() && "invalid position");
|
|
auto memRefType = memref.getType().cast<MemRefType>();
|
|
unsigned rank = memRefType.getRank();
|
|
|
|
assert(rank == cst.getNumDimIds() && "inconsistent memref region");
|
|
|
|
auto boundPairs = cst.getLowerAndUpperBound(
|
|
pos, /*offset=*/0, /*num=*/rank, cst.getNumDimAndSymbolIds(),
|
|
/*localExprs=*/{}, memRefType.getContext());
|
|
lbMap = boundPairs.first;
|
|
ubMap = boundPairs.second;
|
|
assert(lbMap && "lower bound for a region must exist");
|
|
assert(ubMap && "upper bound for a region must exist");
|
|
assert(lbMap.getNumInputs() == cst.getNumDimAndSymbolIds() - rank);
|
|
assert(ubMap.getNumInputs() == cst.getNumDimAndSymbolIds() - rank);
|
|
}
|
|
|
|
LogicalResult MemRefRegion::unionBoundingBox(const MemRefRegion &other) {
|
|
assert(memref == other.memref);
|
|
return cst.unionBoundingBox(*other.getConstraints());
|
|
}
|
|
|
|
/// Computes the memory region accessed by this memref with the region
|
|
/// represented as constraints symbolic/parametric in 'loopDepth' loops
|
|
/// surrounding opInst and any additional Function symbols.
|
|
// For example, the memref region for this load operation at loopDepth = 1 will
|
|
// be as below:
|
|
//
|
|
// affine.for %i = 0 to 32 {
|
|
// affine.for %ii = %i to (d0) -> (d0 + 8) (%i) {
|
|
// load %A[%ii]
|
|
// }
|
|
// }
|
|
//
|
|
// region: {memref = %A, write = false, {%i <= m0 <= %i + 7} }
|
|
// The last field is a 2-d FlatAffineConstraints symbolic in %i.
|
|
//
|
|
// TODO: extend this to any other memref dereferencing ops
|
|
// (dma_start, dma_wait).
|
|
LogicalResult MemRefRegion::compute(Operation *op, unsigned loopDepth,
|
|
const ComputationSliceState *sliceState,
|
|
bool addMemRefDimBounds) {
|
|
assert((isa<AffineReadOpInterface, AffineWriteOpInterface>(op)) &&
|
|
"affine read/write op expected");
|
|
|
|
MemRefAccess access(op);
|
|
memref = access.memref;
|
|
write = access.isStore();
|
|
|
|
unsigned rank = access.getRank();
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "MemRefRegion::compute: " << *op
|
|
<< "depth: " << loopDepth << "\n";);
|
|
|
|
// 0-d memrefs.
|
|
if (rank == 0) {
|
|
SmallVector<AffineForOp, 4> ivs;
|
|
getLoopIVs(*op, &ivs);
|
|
assert(loopDepth <= ivs.size() && "invalid 'loopDepth'");
|
|
// The first 'loopDepth' IVs are symbols for this region.
|
|
ivs.resize(loopDepth);
|
|
SmallVector<Value, 4> regionSymbols;
|
|
extractForInductionVars(ivs, ®ionSymbols);
|
|
// A 0-d memref has a 0-d region.
|
|
cst.reset(rank, loopDepth, /*numLocals=*/0, regionSymbols);
|
|
return success();
|
|
}
|
|
|
|
// Build the constraints for this region.
|
|
AffineValueMap accessValueMap;
|
|
access.getAccessMap(&accessValueMap);
|
|
AffineMap accessMap = accessValueMap.getAffineMap();
|
|
|
|
unsigned numDims = accessMap.getNumDims();
|
|
unsigned numSymbols = accessMap.getNumSymbols();
|
|
unsigned numOperands = accessValueMap.getNumOperands();
|
|
// Merge operands with slice operands.
|
|
SmallVector<Value, 4> operands;
|
|
operands.resize(numOperands);
|
|
for (unsigned i = 0; i < numOperands; ++i)
|
|
operands[i] = accessValueMap.getOperand(i);
|
|
|
|
if (sliceState != nullptr) {
|
|
operands.reserve(operands.size() + sliceState->lbOperands[0].size());
|
|
// Append slice operands to 'operands' as symbols.
|
|
for (auto extraOperand : sliceState->lbOperands[0]) {
|
|
if (!llvm::is_contained(operands, extraOperand)) {
|
|
operands.push_back(extraOperand);
|
|
numSymbols++;
|
|
}
|
|
}
|
|
}
|
|
// We'll first associate the dims and symbols of the access map to the dims
|
|
// and symbols resp. of cst. This will change below once cst is
|
|
// fully constructed out.
|
|
cst.reset(numDims, numSymbols, 0, operands);
|
|
|
|
// Add equality constraints.
|
|
// Add inequalities for loop lower/upper bounds.
|
|
for (unsigned i = 0; i < numDims + numSymbols; ++i) {
|
|
auto operand = operands[i];
|
|
if (auto loop = getForInductionVarOwner(operand)) {
|
|
// Note that cst can now have more dimensions than accessMap if the
|
|
// bounds expressions involve outer loops or other symbols.
|
|
// TODO: rewrite this to use getInstIndexSet; this way
|
|
// conditionals will be handled when the latter supports it.
|
|
if (failed(cst.addAffineForOpDomain(loop)))
|
|
return failure();
|
|
} else {
|
|
// Has to be a valid symbol.
|
|
auto symbol = operand;
|
|
assert(isValidSymbol(symbol));
|
|
// Check if the symbol is a constant.
|
|
if (auto *op = symbol.getDefiningOp()) {
|
|
if (auto constOp = dyn_cast<ConstantIndexOp>(op)) {
|
|
cst.setIdToConstant(symbol, constOp.getValue());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Add lower/upper bounds on loop IVs using bounds from 'sliceState'.
|
|
if (sliceState != nullptr) {
|
|
// Add dim and symbol slice operands.
|
|
for (auto operand : sliceState->lbOperands[0]) {
|
|
cst.addInductionVarOrTerminalSymbol(operand);
|
|
}
|
|
// Add upper/lower bounds from 'sliceState' to 'cst'.
|
|
LogicalResult ret =
|
|
cst.addSliceBounds(sliceState->ivs, sliceState->lbs, sliceState->ubs,
|
|
sliceState->lbOperands[0]);
|
|
assert(succeeded(ret) &&
|
|
"should not fail as we never have semi-affine slice maps");
|
|
(void)ret;
|
|
}
|
|
|
|
// Add access function equalities to connect loop IVs to data dimensions.
|
|
if (failed(cst.composeMap(&accessValueMap))) {
|
|
op->emitError("getMemRefRegion: compose affine map failed");
|
|
LLVM_DEBUG(accessValueMap.getAffineMap().dump());
|
|
return failure();
|
|
}
|
|
|
|
// Set all identifiers appearing after the first 'rank' identifiers as
|
|
// symbolic identifiers - so that the ones corresponding to the memref
|
|
// dimensions are the dimensional identifiers for the memref region.
|
|
cst.setDimSymbolSeparation(cst.getNumDimAndSymbolIds() - rank);
|
|
|
|
// Eliminate any loop IVs other than the outermost 'loopDepth' IVs, on which
|
|
// this memref region is symbolic.
|
|
SmallVector<AffineForOp, 4> enclosingIVs;
|
|
getLoopIVs(*op, &enclosingIVs);
|
|
assert(loopDepth <= enclosingIVs.size() && "invalid loop depth");
|
|
enclosingIVs.resize(loopDepth);
|
|
SmallVector<Value, 4> ids;
|
|
cst.getIdValues(cst.getNumDimIds(), cst.getNumDimAndSymbolIds(), &ids);
|
|
for (auto id : ids) {
|
|
AffineForOp iv;
|
|
if ((iv = getForInductionVarOwner(id)) &&
|
|
llvm::is_contained(enclosingIVs, iv) == false) {
|
|
cst.projectOut(id);
|
|
}
|
|
}
|
|
|
|
// Project out any local variables (these would have been added for any
|
|
// mod/divs).
|
|
cst.projectOut(cst.getNumDimAndSymbolIds(), cst.getNumLocalIds());
|
|
|
|
// Constant fold any symbolic identifiers.
|
|
cst.constantFoldIdRange(/*pos=*/cst.getNumDimIds(),
|
|
/*num=*/cst.getNumSymbolIds());
|
|
|
|
assert(cst.getNumDimIds() == rank && "unexpected MemRefRegion format");
|
|
|
|
// Add upper/lower bounds for each memref dimension with static size
|
|
// to guard against potential over-approximation from projection.
|
|
// TODO: Support dynamic memref dimensions.
|
|
if (addMemRefDimBounds) {
|
|
auto memRefType = memref.getType().cast<MemRefType>();
|
|
for (unsigned r = 0; r < rank; r++) {
|
|
cst.addConstantLowerBound(/*pos=*/r, /*lb=*/0);
|
|
if (memRefType.isDynamicDim(r))
|
|
continue;
|
|
cst.addConstantUpperBound(/*pos=*/r, memRefType.getDimSize(r) - 1);
|
|
}
|
|
}
|
|
cst.removeTrivialRedundancy();
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "Memory region:\n");
|
|
LLVM_DEBUG(cst.dump());
|
|
return success();
|
|
}
|
|
|
|
static unsigned getMemRefEltSizeInBytes(MemRefType memRefType) {
|
|
auto elementType = memRefType.getElementType();
|
|
|
|
unsigned sizeInBits;
|
|
if (elementType.isIntOrFloat()) {
|
|
sizeInBits = elementType.getIntOrFloatBitWidth();
|
|
} else {
|
|
auto vectorType = elementType.cast<VectorType>();
|
|
sizeInBits =
|
|
vectorType.getElementTypeBitWidth() * vectorType.getNumElements();
|
|
}
|
|
return llvm::divideCeil(sizeInBits, 8);
|
|
}
|
|
|
|
// Returns the size of the region.
|
|
Optional<int64_t> MemRefRegion::getRegionSize() {
|
|
auto memRefType = memref.getType().cast<MemRefType>();
|
|
|
|
auto layoutMaps = memRefType.getAffineMaps();
|
|
if (layoutMaps.size() > 1 ||
|
|
(layoutMaps.size() == 1 && !layoutMaps[0].isIdentity())) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Non-identity layout map not yet supported\n");
|
|
return false;
|
|
}
|
|
|
|
// Indices to use for the DmaStart op.
|
|
// Indices for the original memref being DMAed from/to.
|
|
SmallVector<Value, 4> memIndices;
|
|
// Indices for the faster buffer being DMAed into/from.
|
|
SmallVector<Value, 4> bufIndices;
|
|
|
|
// Compute the extents of the buffer.
|
|
Optional<int64_t> numElements = getConstantBoundingSizeAndShape();
|
|
if (!numElements.hasValue()) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Dynamic shapes not yet supported\n");
|
|
return None;
|
|
}
|
|
return getMemRefEltSizeInBytes(memRefType) * numElements.getValue();
|
|
}
|
|
|
|
/// Returns the size of memref data in bytes if it's statically shaped, None
|
|
/// otherwise. If the element of the memref has vector type, takes into account
|
|
/// size of the vector as well.
|
|
// TODO: improve/complete this when we have target data.
|
|
Optional<uint64_t> mlir::getMemRefSizeInBytes(MemRefType memRefType) {
|
|
if (!memRefType.hasStaticShape())
|
|
return None;
|
|
auto elementType = memRefType.getElementType();
|
|
if (!elementType.isIntOrFloat() && !elementType.isa<VectorType>())
|
|
return None;
|
|
|
|
uint64_t sizeInBytes = getMemRefEltSizeInBytes(memRefType);
|
|
for (unsigned i = 0, e = memRefType.getRank(); i < e; i++) {
|
|
sizeInBytes = sizeInBytes * memRefType.getDimSize(i);
|
|
}
|
|
return sizeInBytes;
|
|
}
|
|
|
|
template <typename LoadOrStoreOp>
|
|
LogicalResult mlir::boundCheckLoadOrStoreOp(LoadOrStoreOp loadOrStoreOp,
|
|
bool emitError) {
|
|
static_assert(llvm::is_one_of<LoadOrStoreOp, AffineReadOpInterface,
|
|
AffineWriteOpInterface>::value,
|
|
"argument should be either a AffineReadOpInterface or a "
|
|
"AffineWriteOpInterface");
|
|
|
|
Operation *op = loadOrStoreOp.getOperation();
|
|
MemRefRegion region(op->getLoc());
|
|
if (failed(region.compute(op, /*loopDepth=*/0, /*sliceState=*/nullptr,
|
|
/*addMemRefDimBounds=*/false)))
|
|
return success();
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "Memory region");
|
|
LLVM_DEBUG(region.getConstraints()->dump());
|
|
|
|
bool outOfBounds = false;
|
|
unsigned rank = loadOrStoreOp.getMemRefType().getRank();
|
|
|
|
// For each dimension, check for out of bounds.
|
|
for (unsigned r = 0; r < rank; r++) {
|
|
FlatAffineConstraints ucst(*region.getConstraints());
|
|
|
|
// Intersect memory region with constraint capturing out of bounds (both out
|
|
// of upper and out of lower), and check if the constraint system is
|
|
// feasible. If it is, there is at least one point out of bounds.
|
|
SmallVector<int64_t, 4> ineq(rank + 1, 0);
|
|
int64_t dimSize = loadOrStoreOp.getMemRefType().getDimSize(r);
|
|
// TODO: handle dynamic dim sizes.
|
|
if (dimSize == -1)
|
|
continue;
|
|
|
|
// Check for overflow: d_i >= memref dim size.
|
|
ucst.addConstantLowerBound(r, dimSize);
|
|
outOfBounds = !ucst.isEmpty();
|
|
if (outOfBounds && emitError) {
|
|
loadOrStoreOp.emitOpError()
|
|
<< "memref out of upper bound access along dimension #" << (r + 1);
|
|
}
|
|
|
|
// Check for a negative index.
|
|
FlatAffineConstraints lcst(*region.getConstraints());
|
|
std::fill(ineq.begin(), ineq.end(), 0);
|
|
// d_i <= -1;
|
|
lcst.addConstantUpperBound(r, -1);
|
|
outOfBounds = !lcst.isEmpty();
|
|
if (outOfBounds && emitError) {
|
|
loadOrStoreOp.emitOpError()
|
|
<< "memref out of lower bound access along dimension #" << (r + 1);
|
|
}
|
|
}
|
|
return failure(outOfBounds);
|
|
}
|
|
|
|
// Explicitly instantiate the template so that the compiler knows we need them!
|
|
template LogicalResult
|
|
mlir::boundCheckLoadOrStoreOp(AffineReadOpInterface loadOp, bool emitError);
|
|
template LogicalResult
|
|
mlir::boundCheckLoadOrStoreOp(AffineWriteOpInterface storeOp, bool emitError);
|
|
|
|
// Returns in 'positions' the Block positions of 'op' in each ancestor
|
|
// Block from the Block containing operation, stopping at 'limitBlock'.
|
|
static void findInstPosition(Operation *op, Block *limitBlock,
|
|
SmallVectorImpl<unsigned> *positions) {
|
|
Block *block = op->getBlock();
|
|
while (block != limitBlock) {
|
|
// FIXME: This algorithm is unnecessarily O(n) and should be improved to not
|
|
// rely on linear scans.
|
|
int instPosInBlock = std::distance(block->begin(), op->getIterator());
|
|
positions->push_back(instPosInBlock);
|
|
op = block->getParentOp();
|
|
block = op->getBlock();
|
|
}
|
|
std::reverse(positions->begin(), positions->end());
|
|
}
|
|
|
|
// Returns the Operation in a possibly nested set of Blocks, where the
|
|
// position of the operation is represented by 'positions', which has a
|
|
// Block position for each level of nesting.
|
|
static Operation *getInstAtPosition(ArrayRef<unsigned> positions,
|
|
unsigned level, Block *block) {
|
|
unsigned i = 0;
|
|
for (auto &op : *block) {
|
|
if (i != positions[level]) {
|
|
++i;
|
|
continue;
|
|
}
|
|
if (level == positions.size() - 1)
|
|
return &op;
|
|
if (auto childAffineForOp = dyn_cast<AffineForOp>(op))
|
|
return getInstAtPosition(positions, level + 1,
|
|
childAffineForOp.getBody());
|
|
|
|
for (auto ®ion : op.getRegions()) {
|
|
for (auto &b : region)
|
|
if (auto *ret = getInstAtPosition(positions, level + 1, &b))
|
|
return ret;
|
|
}
|
|
return nullptr;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
// Adds loop IV bounds to 'cst' for loop IVs not found in 'ivs'.
|
|
static LogicalResult addMissingLoopIVBounds(SmallPtrSet<Value, 8> &ivs,
|
|
FlatAffineConstraints *cst) {
|
|
for (unsigned i = 0, e = cst->getNumDimIds(); i < e; ++i) {
|
|
auto value = cst->getIdValue(i);
|
|
if (ivs.count(value) == 0) {
|
|
assert(isForInductionVar(value));
|
|
auto loop = getForInductionVarOwner(value);
|
|
if (failed(cst->addAffineForOpDomain(loop)))
|
|
return failure();
|
|
}
|
|
}
|
|
return success();
|
|
}
|
|
|
|
/// Returns the innermost common loop depth for the set of operations in 'ops'.
|
|
// TODO: Move this to LoopUtils.
|
|
unsigned mlir::getInnermostCommonLoopDepth(
|
|
ArrayRef<Operation *> ops, SmallVectorImpl<AffineForOp> *surroundingLoops) {
|
|
unsigned numOps = ops.size();
|
|
assert(numOps > 0 && "Expected at least one operation");
|
|
|
|
std::vector<SmallVector<AffineForOp, 4>> loops(numOps);
|
|
unsigned loopDepthLimit = std::numeric_limits<unsigned>::max();
|
|
for (unsigned i = 0; i < numOps; ++i) {
|
|
getLoopIVs(*ops[i], &loops[i]);
|
|
loopDepthLimit =
|
|
std::min(loopDepthLimit, static_cast<unsigned>(loops[i].size()));
|
|
}
|
|
|
|
unsigned loopDepth = 0;
|
|
for (unsigned d = 0; d < loopDepthLimit; ++d) {
|
|
unsigned i;
|
|
for (i = 1; i < numOps; ++i) {
|
|
if (loops[i - 1][d] != loops[i][d])
|
|
return loopDepth;
|
|
}
|
|
if (surroundingLoops)
|
|
surroundingLoops->push_back(loops[i - 1][d]);
|
|
++loopDepth;
|
|
}
|
|
return loopDepth;
|
|
}
|
|
|
|
/// Computes in 'sliceUnion' the union of all slice bounds computed at
|
|
/// 'loopDepth' between all dependent pairs of ops in 'opsA' and 'opsB', and
|
|
/// then verifies if it is valid. Returns 'SliceComputationResult::Success' if
|
|
/// union was computed correctly, an appropriate failure otherwise.
|
|
SliceComputationResult
|
|
mlir::computeSliceUnion(ArrayRef<Operation *> opsA, ArrayRef<Operation *> opsB,
|
|
unsigned loopDepth, unsigned numCommonLoops,
|
|
bool isBackwardSlice,
|
|
ComputationSliceState *sliceUnion) {
|
|
// Compute the union of slice bounds between all pairs in 'opsA' and
|
|
// 'opsB' in 'sliceUnionCst'.
|
|
FlatAffineConstraints sliceUnionCst;
|
|
assert(sliceUnionCst.getNumDimAndSymbolIds() == 0);
|
|
std::vector<std::pair<Operation *, Operation *>> dependentOpPairs;
|
|
for (unsigned i = 0, numOpsA = opsA.size(); i < numOpsA; ++i) {
|
|
MemRefAccess srcAccess(opsA[i]);
|
|
for (unsigned j = 0, numOpsB = opsB.size(); j < numOpsB; ++j) {
|
|
MemRefAccess dstAccess(opsB[j]);
|
|
if (srcAccess.memref != dstAccess.memref)
|
|
continue;
|
|
// Check if 'loopDepth' exceeds nesting depth of src/dst ops.
|
|
if ((!isBackwardSlice && loopDepth > getNestingDepth(opsA[i])) ||
|
|
(isBackwardSlice && loopDepth > getNestingDepth(opsB[j]))) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Invalid loop depth\n");
|
|
return SliceComputationResult::GenericFailure;
|
|
}
|
|
|
|
bool readReadAccesses = isa<AffineReadOpInterface>(srcAccess.opInst) &&
|
|
isa<AffineReadOpInterface>(dstAccess.opInst);
|
|
FlatAffineConstraints dependenceConstraints;
|
|
// Check dependence between 'srcAccess' and 'dstAccess'.
|
|
DependenceResult result = checkMemrefAccessDependence(
|
|
srcAccess, dstAccess, /*loopDepth=*/numCommonLoops + 1,
|
|
&dependenceConstraints, /*dependenceComponents=*/nullptr,
|
|
/*allowRAR=*/readReadAccesses);
|
|
if (result.value == DependenceResult::Failure) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Dependence check failed\n");
|
|
return SliceComputationResult::GenericFailure;
|
|
}
|
|
if (result.value == DependenceResult::NoDependence)
|
|
continue;
|
|
dependentOpPairs.push_back({opsA[i], opsB[j]});
|
|
|
|
// Compute slice bounds for 'srcAccess' and 'dstAccess'.
|
|
ComputationSliceState tmpSliceState;
|
|
mlir::getComputationSliceState(opsA[i], opsB[j], &dependenceConstraints,
|
|
loopDepth, isBackwardSlice,
|
|
&tmpSliceState);
|
|
|
|
if (sliceUnionCst.getNumDimAndSymbolIds() == 0) {
|
|
// Initialize 'sliceUnionCst' with the bounds computed in previous step.
|
|
if (failed(tmpSliceState.getAsConstraints(&sliceUnionCst))) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "Unable to compute slice bound constraints\n");
|
|
return SliceComputationResult::GenericFailure;
|
|
}
|
|
assert(sliceUnionCst.getNumDimAndSymbolIds() > 0);
|
|
continue;
|
|
}
|
|
|
|
// Compute constraints for 'tmpSliceState' in 'tmpSliceCst'.
|
|
FlatAffineConstraints tmpSliceCst;
|
|
if (failed(tmpSliceState.getAsConstraints(&tmpSliceCst))) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "Unable to compute slice bound constraints\n");
|
|
return SliceComputationResult::GenericFailure;
|
|
}
|
|
|
|
// Align coordinate spaces of 'sliceUnionCst' and 'tmpSliceCst' if needed.
|
|
if (!sliceUnionCst.areIdsAlignedWithOther(tmpSliceCst)) {
|
|
|
|
// Pre-constraint id alignment: record loop IVs used in each constraint
|
|
// system.
|
|
SmallPtrSet<Value, 8> sliceUnionIVs;
|
|
for (unsigned k = 0, l = sliceUnionCst.getNumDimIds(); k < l; ++k)
|
|
sliceUnionIVs.insert(sliceUnionCst.getIdValue(k));
|
|
SmallPtrSet<Value, 8> tmpSliceIVs;
|
|
for (unsigned k = 0, l = tmpSliceCst.getNumDimIds(); k < l; ++k)
|
|
tmpSliceIVs.insert(tmpSliceCst.getIdValue(k));
|
|
|
|
sliceUnionCst.mergeAndAlignIdsWithOther(/*offset=*/0, &tmpSliceCst);
|
|
|
|
// Post-constraint id alignment: add loop IV bounds missing after
|
|
// id alignment to constraint systems. This can occur if one constraint
|
|
// system uses an loop IV that is not used by the other. The call
|
|
// to unionBoundingBox below expects constraints for each Loop IV, even
|
|
// if they are the unsliced full loop bounds added here.
|
|
if (failed(addMissingLoopIVBounds(sliceUnionIVs, &sliceUnionCst)))
|
|
return SliceComputationResult::GenericFailure;
|
|
if (failed(addMissingLoopIVBounds(tmpSliceIVs, &tmpSliceCst)))
|
|
return SliceComputationResult::GenericFailure;
|
|
}
|
|
// Compute union bounding box of 'sliceUnionCst' and 'tmpSliceCst'.
|
|
if (sliceUnionCst.getNumLocalIds() > 0 ||
|
|
tmpSliceCst.getNumLocalIds() > 0 ||
|
|
failed(sliceUnionCst.unionBoundingBox(tmpSliceCst))) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "Unable to compute union bounding box of slice bounds\n");
|
|
return SliceComputationResult::GenericFailure;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Empty union.
|
|
if (sliceUnionCst.getNumDimAndSymbolIds() == 0)
|
|
return SliceComputationResult::GenericFailure;
|
|
|
|
// Gather loops surrounding ops from loop nest where slice will be inserted.
|
|
SmallVector<Operation *, 4> ops;
|
|
for (auto &dep : dependentOpPairs) {
|
|
ops.push_back(isBackwardSlice ? dep.second : dep.first);
|
|
}
|
|
SmallVector<AffineForOp, 4> surroundingLoops;
|
|
unsigned innermostCommonLoopDepth =
|
|
getInnermostCommonLoopDepth(ops, &surroundingLoops);
|
|
if (loopDepth > innermostCommonLoopDepth) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Exceeds max loop depth\n");
|
|
return SliceComputationResult::GenericFailure;
|
|
}
|
|
|
|
// Store 'numSliceLoopIVs' before converting dst loop IVs to dims.
|
|
unsigned numSliceLoopIVs = sliceUnionCst.getNumDimIds();
|
|
|
|
// Convert any dst loop IVs which are symbol identifiers to dim identifiers.
|
|
sliceUnionCst.convertLoopIVSymbolsToDims();
|
|
sliceUnion->clearBounds();
|
|
sliceUnion->lbs.resize(numSliceLoopIVs, AffineMap());
|
|
sliceUnion->ubs.resize(numSliceLoopIVs, AffineMap());
|
|
|
|
// Get slice bounds from slice union constraints 'sliceUnionCst'.
|
|
sliceUnionCst.getSliceBounds(/*offset=*/0, numSliceLoopIVs,
|
|
opsA[0]->getContext(), &sliceUnion->lbs,
|
|
&sliceUnion->ubs);
|
|
|
|
// Add slice bound operands of union.
|
|
SmallVector<Value, 4> sliceBoundOperands;
|
|
sliceUnionCst.getIdValues(numSliceLoopIVs,
|
|
sliceUnionCst.getNumDimAndSymbolIds(),
|
|
&sliceBoundOperands);
|
|
|
|
// Copy src loop IVs from 'sliceUnionCst' to 'sliceUnion'.
|
|
sliceUnion->ivs.clear();
|
|
sliceUnionCst.getIdValues(0, numSliceLoopIVs, &sliceUnion->ivs);
|
|
|
|
// Set loop nest insertion point to block start at 'loopDepth'.
|
|
sliceUnion->insertPoint =
|
|
isBackwardSlice
|
|
? surroundingLoops[loopDepth - 1].getBody()->begin()
|
|
: std::prev(surroundingLoops[loopDepth - 1].getBody()->end());
|
|
|
|
// Give each bound its own copy of 'sliceBoundOperands' for subsequent
|
|
// canonicalization.
|
|
sliceUnion->lbOperands.resize(numSliceLoopIVs, sliceBoundOperands);
|
|
sliceUnion->ubOperands.resize(numSliceLoopIVs, sliceBoundOperands);
|
|
|
|
// Check if the slice computed is valid. Return success only if it is verified
|
|
// that the slice is valid, otherwise return appropriate failure status.
|
|
Optional<bool> isSliceValid = sliceUnion->isSliceValid();
|
|
if (!isSliceValid.hasValue()) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Cannot determine if the slice is valid\n");
|
|
return SliceComputationResult::GenericFailure;
|
|
}
|
|
if (!isSliceValid.getValue())
|
|
return SliceComputationResult::IncorrectSliceFailure;
|
|
|
|
return SliceComputationResult::Success;
|
|
}
|
|
|
|
const char *const kSliceFusionBarrierAttrName = "slice_fusion_barrier";
|
|
// Computes slice bounds by projecting out any loop IVs from
|
|
// 'dependenceConstraints' at depth greater than 'loopDepth', and computes slice
|
|
// bounds in 'sliceState' which represent the one loop nest's IVs in terms of
|
|
// the other loop nest's IVs, symbols and constants (using 'isBackwardsSlice').
|
|
void mlir::getComputationSliceState(
|
|
Operation *depSourceOp, Operation *depSinkOp,
|
|
FlatAffineConstraints *dependenceConstraints, unsigned loopDepth,
|
|
bool isBackwardSlice, ComputationSliceState *sliceState) {
|
|
// Get loop nest surrounding src operation.
|
|
SmallVector<AffineForOp, 4> srcLoopIVs;
|
|
getLoopIVs(*depSourceOp, &srcLoopIVs);
|
|
unsigned numSrcLoopIVs = srcLoopIVs.size();
|
|
|
|
// Get loop nest surrounding dst operation.
|
|
SmallVector<AffineForOp, 4> dstLoopIVs;
|
|
getLoopIVs(*depSinkOp, &dstLoopIVs);
|
|
unsigned numDstLoopIVs = dstLoopIVs.size();
|
|
|
|
assert((!isBackwardSlice && loopDepth <= numSrcLoopIVs) ||
|
|
(isBackwardSlice && loopDepth <= numDstLoopIVs));
|
|
|
|
// Project out dimensions other than those up to 'loopDepth'.
|
|
unsigned pos = isBackwardSlice ? numSrcLoopIVs + loopDepth : loopDepth;
|
|
unsigned num =
|
|
isBackwardSlice ? numDstLoopIVs - loopDepth : numSrcLoopIVs - loopDepth;
|
|
dependenceConstraints->projectOut(pos, num);
|
|
|
|
// Add slice loop IV values to 'sliceState'.
|
|
unsigned offset = isBackwardSlice ? 0 : loopDepth;
|
|
unsigned numSliceLoopIVs = isBackwardSlice ? numSrcLoopIVs : numDstLoopIVs;
|
|
dependenceConstraints->getIdValues(offset, offset + numSliceLoopIVs,
|
|
&sliceState->ivs);
|
|
|
|
// Set up lower/upper bound affine maps for the slice.
|
|
sliceState->lbs.resize(numSliceLoopIVs, AffineMap());
|
|
sliceState->ubs.resize(numSliceLoopIVs, AffineMap());
|
|
|
|
// Get bounds for slice IVs in terms of other IVs, symbols, and constants.
|
|
dependenceConstraints->getSliceBounds(offset, numSliceLoopIVs,
|
|
depSourceOp->getContext(),
|
|
&sliceState->lbs, &sliceState->ubs);
|
|
|
|
// Set up bound operands for the slice's lower and upper bounds.
|
|
SmallVector<Value, 4> sliceBoundOperands;
|
|
unsigned numDimsAndSymbols = dependenceConstraints->getNumDimAndSymbolIds();
|
|
for (unsigned i = 0; i < numDimsAndSymbols; ++i) {
|
|
if (i < offset || i >= offset + numSliceLoopIVs) {
|
|
sliceBoundOperands.push_back(dependenceConstraints->getIdValue(i));
|
|
}
|
|
}
|
|
|
|
// Give each bound its own copy of 'sliceBoundOperands' for subsequent
|
|
// canonicalization.
|
|
sliceState->lbOperands.resize(numSliceLoopIVs, sliceBoundOperands);
|
|
sliceState->ubOperands.resize(numSliceLoopIVs, sliceBoundOperands);
|
|
|
|
// Set destination loop nest insertion point to block start at 'dstLoopDepth'.
|
|
sliceState->insertPoint =
|
|
isBackwardSlice ? dstLoopIVs[loopDepth - 1].getBody()->begin()
|
|
: std::prev(srcLoopIVs[loopDepth - 1].getBody()->end());
|
|
|
|
llvm::SmallDenseSet<Value, 8> sequentialLoops;
|
|
if (isa<AffineReadOpInterface>(depSourceOp) &&
|
|
isa<AffineReadOpInterface>(depSinkOp)) {
|
|
// For read-read access pairs, clear any slice bounds on sequential loops.
|
|
// Get sequential loops in loop nest rooted at 'srcLoopIVs[0]'.
|
|
getSequentialLoops(isBackwardSlice ? srcLoopIVs[0] : dstLoopIVs[0],
|
|
&sequentialLoops);
|
|
}
|
|
// Clear all sliced loop bounds beginning at the first sequential loop, or
|
|
// first loop with a slice fusion barrier attribute..
|
|
// TODO: Use MemRef read/write regions instead of
|
|
// using 'kSliceFusionBarrierAttrName'.
|
|
auto getSliceLoop = [&](unsigned i) {
|
|
return isBackwardSlice ? srcLoopIVs[i] : dstLoopIVs[i];
|
|
};
|
|
for (unsigned i = 0; i < numSliceLoopIVs; ++i) {
|
|
Value iv = getSliceLoop(i).getInductionVar();
|
|
if (sequentialLoops.count(iv) == 0 &&
|
|
getSliceLoop(i)->getAttr(kSliceFusionBarrierAttrName) == nullptr)
|
|
continue;
|
|
for (unsigned j = i; j < numSliceLoopIVs; ++j) {
|
|
sliceState->lbs[j] = AffineMap();
|
|
sliceState->ubs[j] = AffineMap();
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
/// Creates a computation slice of the loop nest surrounding 'srcOpInst',
|
|
/// updates the slice loop bounds with any non-null bound maps specified in
|
|
/// 'sliceState', and inserts this slice into the loop nest surrounding
|
|
/// 'dstOpInst' at loop depth 'dstLoopDepth'.
|
|
// TODO: extend the slicing utility to compute slices that
|
|
// aren't necessarily a one-to-one relation b/w the source and destination. The
|
|
// relation between the source and destination could be many-to-many in general.
|
|
// TODO: the slice computation is incorrect in the cases
|
|
// where the dependence from the source to the destination does not cover the
|
|
// entire destination index set. Subtract out the dependent destination
|
|
// iterations from destination index set and check for emptiness --- this is one
|
|
// solution.
|
|
AffineForOp
|
|
mlir::insertBackwardComputationSlice(Operation *srcOpInst, Operation *dstOpInst,
|
|
unsigned dstLoopDepth,
|
|
ComputationSliceState *sliceState) {
|
|
// Get loop nest surrounding src operation.
|
|
SmallVector<AffineForOp, 4> srcLoopIVs;
|
|
getLoopIVs(*srcOpInst, &srcLoopIVs);
|
|
unsigned numSrcLoopIVs = srcLoopIVs.size();
|
|
|
|
// Get loop nest surrounding dst operation.
|
|
SmallVector<AffineForOp, 4> dstLoopIVs;
|
|
getLoopIVs(*dstOpInst, &dstLoopIVs);
|
|
unsigned dstLoopIVsSize = dstLoopIVs.size();
|
|
if (dstLoopDepth > dstLoopIVsSize) {
|
|
dstOpInst->emitError("invalid destination loop depth");
|
|
return AffineForOp();
|
|
}
|
|
|
|
// Find the op block positions of 'srcOpInst' within 'srcLoopIVs'.
|
|
SmallVector<unsigned, 4> positions;
|
|
// TODO: This code is incorrect since srcLoopIVs can be 0-d.
|
|
findInstPosition(srcOpInst, srcLoopIVs[0]->getBlock(), &positions);
|
|
|
|
// Clone src loop nest and insert it a the beginning of the operation block
|
|
// of the loop at 'dstLoopDepth' in 'dstLoopIVs'.
|
|
auto dstAffineForOp = dstLoopIVs[dstLoopDepth - 1];
|
|
OpBuilder b(dstAffineForOp.getBody(), dstAffineForOp.getBody()->begin());
|
|
auto sliceLoopNest =
|
|
cast<AffineForOp>(b.clone(*srcLoopIVs[0].getOperation()));
|
|
|
|
Operation *sliceInst =
|
|
getInstAtPosition(positions, /*level=*/0, sliceLoopNest.getBody());
|
|
// Get loop nest surrounding 'sliceInst'.
|
|
SmallVector<AffineForOp, 4> sliceSurroundingLoops;
|
|
getLoopIVs(*sliceInst, &sliceSurroundingLoops);
|
|
|
|
// Sanity check.
|
|
unsigned sliceSurroundingLoopsSize = sliceSurroundingLoops.size();
|
|
(void)sliceSurroundingLoopsSize;
|
|
assert(dstLoopDepth + numSrcLoopIVs >= sliceSurroundingLoopsSize);
|
|
unsigned sliceLoopLimit = dstLoopDepth + numSrcLoopIVs;
|
|
(void)sliceLoopLimit;
|
|
assert(sliceLoopLimit >= sliceSurroundingLoopsSize);
|
|
|
|
// Update loop bounds for loops in 'sliceLoopNest'.
|
|
for (unsigned i = 0; i < numSrcLoopIVs; ++i) {
|
|
auto forOp = sliceSurroundingLoops[dstLoopDepth + i];
|
|
if (AffineMap lbMap = sliceState->lbs[i])
|
|
forOp.setLowerBound(sliceState->lbOperands[i], lbMap);
|
|
if (AffineMap ubMap = sliceState->ubs[i])
|
|
forOp.setUpperBound(sliceState->ubOperands[i], ubMap);
|
|
}
|
|
return sliceLoopNest;
|
|
}
|
|
|
|
// Constructs MemRefAccess populating it with the memref, its indices and
|
|
// opinst from 'loadOrStoreOpInst'.
|
|
MemRefAccess::MemRefAccess(Operation *loadOrStoreOpInst) {
|
|
if (auto loadOp = dyn_cast<AffineReadOpInterface>(loadOrStoreOpInst)) {
|
|
memref = loadOp.getMemRef();
|
|
opInst = loadOrStoreOpInst;
|
|
auto loadMemrefType = loadOp.getMemRefType();
|
|
indices.reserve(loadMemrefType.getRank());
|
|
for (auto index : loadOp.getMapOperands()) {
|
|
indices.push_back(index);
|
|
}
|
|
} else {
|
|
assert(isa<AffineWriteOpInterface>(loadOrStoreOpInst) &&
|
|
"Affine read/write op expected");
|
|
auto storeOp = cast<AffineWriteOpInterface>(loadOrStoreOpInst);
|
|
opInst = loadOrStoreOpInst;
|
|
memref = storeOp.getMemRef();
|
|
auto storeMemrefType = storeOp.getMemRefType();
|
|
indices.reserve(storeMemrefType.getRank());
|
|
for (auto index : storeOp.getMapOperands()) {
|
|
indices.push_back(index);
|
|
}
|
|
}
|
|
}
|
|
|
|
unsigned MemRefAccess::getRank() const {
|
|
return memref.getType().cast<MemRefType>().getRank();
|
|
}
|
|
|
|
bool MemRefAccess::isStore() const {
|
|
return isa<AffineWriteOpInterface>(opInst);
|
|
}
|
|
|
|
/// Returns the nesting depth of this statement, i.e., the number of loops
|
|
/// surrounding this statement.
|
|
unsigned mlir::getNestingDepth(Operation *op) {
|
|
Operation *currOp = op;
|
|
unsigned depth = 0;
|
|
while ((currOp = currOp->getParentOp())) {
|
|
if (isa<AffineForOp>(currOp))
|
|
depth++;
|
|
}
|
|
return depth;
|
|
}
|
|
|
|
/// Equal if both affine accesses are provably equivalent (at compile
|
|
/// time) when considering the memref, the affine maps and their respective
|
|
/// operands. The equality of access functions + operands is checked by
|
|
/// subtracting fully composed value maps, and then simplifying the difference
|
|
/// using the expression flattener.
|
|
/// TODO: this does not account for aliasing of memrefs.
|
|
bool MemRefAccess::operator==(const MemRefAccess &rhs) const {
|
|
if (memref != rhs.memref)
|
|
return false;
|
|
|
|
AffineValueMap diff, thisMap, rhsMap;
|
|
getAccessMap(&thisMap);
|
|
rhs.getAccessMap(&rhsMap);
|
|
AffineValueMap::difference(thisMap, rhsMap, &diff);
|
|
return llvm::all_of(diff.getAffineMap().getResults(),
|
|
[](AffineExpr e) { return e == 0; });
|
|
}
|
|
|
|
/// Returns the number of surrounding loops common to 'loopsA' and 'loopsB',
|
|
/// where each lists loops from outer-most to inner-most in loop nest.
|
|
unsigned mlir::getNumCommonSurroundingLoops(Operation &A, Operation &B) {
|
|
SmallVector<AffineForOp, 4> loopsA, loopsB;
|
|
getLoopIVs(A, &loopsA);
|
|
getLoopIVs(B, &loopsB);
|
|
|
|
unsigned minNumLoops = std::min(loopsA.size(), loopsB.size());
|
|
unsigned numCommonLoops = 0;
|
|
for (unsigned i = 0; i < minNumLoops; ++i) {
|
|
if (loopsA[i].getOperation() != loopsB[i].getOperation())
|
|
break;
|
|
++numCommonLoops;
|
|
}
|
|
return numCommonLoops;
|
|
}
|
|
|
|
static Optional<int64_t> getMemoryFootprintBytes(Block &block,
|
|
Block::iterator start,
|
|
Block::iterator end,
|
|
int memorySpace) {
|
|
SmallDenseMap<Value, std::unique_ptr<MemRefRegion>, 4> regions;
|
|
|
|
// Walk this 'affine.for' operation to gather all memory regions.
|
|
auto result = block.walk(start, end, [&](Operation *opInst) -> WalkResult {
|
|
if (!isa<AffineReadOpInterface, AffineWriteOpInterface>(opInst)) {
|
|
// Neither load nor a store op.
|
|
return WalkResult::advance();
|
|
}
|
|
|
|
// Compute the memref region symbolic in any IVs enclosing this block.
|
|
auto region = std::make_unique<MemRefRegion>(opInst->getLoc());
|
|
if (failed(
|
|
region->compute(opInst,
|
|
/*loopDepth=*/getNestingDepth(&*block.begin())))) {
|
|
return opInst->emitError("error obtaining memory region\n");
|
|
}
|
|
|
|
auto it = regions.find(region->memref);
|
|
if (it == regions.end()) {
|
|
regions[region->memref] = std::move(region);
|
|
} else if (failed(it->second->unionBoundingBox(*region))) {
|
|
return opInst->emitWarning(
|
|
"getMemoryFootprintBytes: unable to perform a union on a memory "
|
|
"region");
|
|
}
|
|
return WalkResult::advance();
|
|
});
|
|
if (result.wasInterrupted())
|
|
return None;
|
|
|
|
int64_t totalSizeInBytes = 0;
|
|
for (const auto ®ion : regions) {
|
|
Optional<int64_t> size = region.second->getRegionSize();
|
|
if (!size.hasValue())
|
|
return None;
|
|
totalSizeInBytes += size.getValue();
|
|
}
|
|
return totalSizeInBytes;
|
|
}
|
|
|
|
Optional<int64_t> mlir::getMemoryFootprintBytes(AffineForOp forOp,
|
|
int memorySpace) {
|
|
auto *forInst = forOp.getOperation();
|
|
return ::getMemoryFootprintBytes(
|
|
*forInst->getBlock(), Block::iterator(forInst),
|
|
std::next(Block::iterator(forInst)), memorySpace);
|
|
}
|
|
|
|
/// Returns in 'sequentialLoops' all sequential loops in loop nest rooted
|
|
/// at 'forOp'.
|
|
void mlir::getSequentialLoops(AffineForOp forOp,
|
|
llvm::SmallDenseSet<Value, 8> *sequentialLoops) {
|
|
forOp->walk([&](Operation *op) {
|
|
if (auto innerFor = dyn_cast<AffineForOp>(op))
|
|
if (!isLoopParallel(innerFor))
|
|
sequentialLoops->insert(innerFor.getInductionVar());
|
|
});
|
|
}
|
|
|
|
IntegerSet mlir::simplifyIntegerSet(IntegerSet set) {
|
|
FlatAffineConstraints fac(set);
|
|
if (fac.isEmpty())
|
|
return IntegerSet::getEmptySet(set.getNumDims(), set.getNumSymbols(),
|
|
set.getContext());
|
|
fac.removeTrivialRedundancy();
|
|
|
|
auto simplifiedSet = fac.getAsIntegerSet(set.getContext());
|
|
assert(simplifiedSet && "guaranteed to succeed while roundtripping");
|
|
return simplifiedSet;
|
|
}
|