
The revision renames the following OpDSL functions: ``` TypeFn.cast -> TypeFn.cast_signed BinaryFn.min -> BinaryFn.min_signed BinaryFn.max -> BinaryFn.max_signed ``` The corresponding enum values on the C++ side are renamed accordingly: ``` #linalg.type_fn<cast> -> #linalg.type_fn<cast_signed> #linalg.binary_fn<min> -> #linalg.binary_fn<min_signed> #linalg.binary_fn<max> -> #linalg.binary_fn<max_signed> ``` Depends On D120110 Reviewed By: aartbik Differential Revision: https://reviews.llvm.org/D120562
70 lines
2.5 KiB
Python
70 lines
2.5 KiB
Python
# RUN: %PYTHON -m mlir.dialects.linalg.opdsl.dump_oplib --file %s | FileCheck %s
|
|
|
|
from mlir.dialects.linalg.opdsl.lang import *
|
|
|
|
|
|
# Verify that simple case with iteration order defined lexically and reduction
|
|
# dims auto discovered emits the right shape, indexing maps and iterator types.
|
|
# CHECK: ---
|
|
# CHECK-LABEL: matmul
|
|
# CHECK: shape_map: affine_map<()[s0, s1, s2] -> (s0, s1)>
|
|
# CHECK: shape_map: affine_map<()[s0, s1, s2] -> (s1, s2)>
|
|
# CHECK: shape_map: affine_map<()[s0, s1, s2] -> (s0, s2)>
|
|
# CHECK: static_indexing_maps:
|
|
# CHECK-NEXT: - affine_map<(d0, d1, d2)[s0, s1, s2] -> (d0, d2)>
|
|
# CHECK-NEXT: - affine_map<(d0, d1, d2)[s0, s1, s2] -> (d2, d1)>
|
|
# CHECK-NEXT: - affine_map<(d0, d1, d2)[s0, s1, s2] -> (d0, d1)>
|
|
# CHECK: iterator_types:
|
|
# CHECK-NEXT: - parallel
|
|
# CHECK-NEXT: - parallel
|
|
# CHECK-NEXT: - reduction
|
|
@linalg_structured_op
|
|
def matmul(
|
|
A=TensorDef(T, S.M, S.K),
|
|
B=TensorDef(T, S.K, S.N),
|
|
C=TensorDef(U, S.M, S.N, output=True)):
|
|
domain(D.m, D.n, D.k)
|
|
C[D.m, D.n] += TypeFn.cast_signed(U, A[D.m, D.k]) * TypeFn.cast_signed(
|
|
U, B[D.k, D.n])
|
|
|
|
|
|
# Verifies that assignment to a scalar (represented as [None]) is represented
|
|
# correctly.
|
|
# CHECK: ---
|
|
# CHECK-LABEL: dot
|
|
# CHECK: shape_map: affine_map<()[s0] -> (s0)>
|
|
# CHECK: shape_map: affine_map<()[s0] -> (s0)>
|
|
# CHECK: shape_map: affine_map<()[s0] -> ()>
|
|
# CHECK: static_indexing_maps:
|
|
# CHECK-NEXT: - affine_map<(d0)[s0] -> (d0)>
|
|
# CHECK-NEXT: - affine_map<(d0)[s0] -> (d0)>
|
|
# CHECK-NEXT: - affine_map<(d0)[s0] -> ()>
|
|
# CHECK: iterator_types:
|
|
# CHECK-NEXT: - reduction
|
|
@linalg_structured_op
|
|
def dot(A=TensorDef(T, S.M), B=TensorDef(T, S.M), C=TensorDef(U, output=True)):
|
|
C[None] += TypeFn.cast_signed(U, A[D.m]) * TypeFn.cast_signed(U, B[D.m])
|
|
|
|
|
|
# Verifies that the index_dims of shape-only operands translate to correct
|
|
# indexing maps.
|
|
# CHECK: ---
|
|
# CHECK-LABEL: pool
|
|
# CHECK: shape_map: affine_map<()[s0, s1, s2] -> (s0)>
|
|
# CHECK: shape_map: affine_map<()[s0, s1, s2] -> (s1)>
|
|
# CHECK: shape_map: affine_map<()[s0, s1, s2] -> (s2)>
|
|
# CHECK: static_indexing_maps:
|
|
# CHECK-NEXT: - affine_map<(d0, d1)[s0, s1, s2] -> (d0 * 2 + d1)>
|
|
# CHECK-NEXT: - affine_map<(d0, d1)[s0, s1, s2] -> (d1)>
|
|
# CHECK-NEXT: - affine_map<(d0, d1)[s0, s1, s2] -> (d0)>
|
|
# CHECK: iterator_types:
|
|
# CHECK-NEXT: - parallel
|
|
# CHECK-NEXT: - reduction
|
|
@linalg_structured_op
|
|
def pool(
|
|
I=TensorDef(T, S.I),
|
|
K=TensorDef(T, S.K, index_dims=[D.k]),
|
|
O=TensorDef(U, S.O, output=True)):
|
|
domain(D.o, D.k)
|
|
O[D.o] += TypeFn.cast_signed(U, I[D.o * 2 + D.k])
|