
The revision renames the following OpDSL functions: ``` TypeFn.cast -> TypeFn.cast_signed BinaryFn.min -> BinaryFn.min_signed BinaryFn.max -> BinaryFn.max_signed ``` The corresponding enum values on the C++ side are renamed accordingly: ``` #linalg.type_fn<cast> -> #linalg.type_fn<cast_signed> #linalg.binary_fn<min> -> #linalg.binary_fn<min_signed> #linalg.binary_fn<max> -> #linalg.binary_fn<max_signed> ``` Depends On D120110 Reviewed By: aartbik Differential Revision: https://reviews.llvm.org/D120562
193 lines
6.8 KiB
Python
193 lines
6.8 KiB
Python
# RUN: %PYTHON %s | FileCheck %s
|
|
|
|
from mlir.ir import *
|
|
from mlir.dialects import builtin
|
|
from mlir.dialects import linalg
|
|
from mlir.dialects import std
|
|
from mlir.dialects import arith
|
|
|
|
from mlir.dialects.linalg.opdsl.lang import *
|
|
|
|
|
|
def run(f):
|
|
print("\nTEST:", f.__name__)
|
|
f()
|
|
return f
|
|
|
|
|
|
# CHECK-LABEL: TEST: testInitTensor
|
|
@run
|
|
def testInitTensor():
|
|
with Context() as ctx, Location.unknown():
|
|
module = Module.create()
|
|
f32 = F32Type.get()
|
|
with InsertionPoint(module.body):
|
|
# CHECK-LABEL: func @static_sizes
|
|
# CHECK: %0 = linalg.init_tensor [3, 4] : tensor<3x4xf32>
|
|
@builtin.FuncOp.from_py_func()
|
|
def static_sizes():
|
|
return linalg.InitTensorOp([3, 4], f32)
|
|
|
|
# CHECK-LABEL: func @dynamic_sizes
|
|
# CHECK: %0 = linalg.init_tensor [%arg0, %arg1] : tensor<?x?xf32>
|
|
@builtin.FuncOp.from_py_func(IndexType.get(), IndexType.get())
|
|
def dynamic_sizes(d0, d1):
|
|
return linalg.InitTensorOp([d0, d1], f32)
|
|
|
|
# CHECK-LABEL: func @zero_d
|
|
# CHECK: %0 = linalg.init_tensor [] : tensor<f32>
|
|
@builtin.FuncOp.from_py_func()
|
|
def zero_d():
|
|
return linalg.InitTensorOp([], f32)
|
|
|
|
print(module)
|
|
|
|
|
|
# CHECK-LABEL: TEST: testInitTensorStaticSizesAttribute
|
|
@run
|
|
def testInitTensorStaticSizesAttribute():
|
|
with Context() as ctx, Location.unknown():
|
|
module = Module.create()
|
|
f32 = F32Type.get()
|
|
with InsertionPoint(module.body):
|
|
op = linalg.InitTensorOp([3, 4], f32)
|
|
# CHECK: [3, 4]
|
|
print(op.attributes["static_sizes"])
|
|
|
|
|
|
# CHECK-LABEL: TEST: testFill
|
|
@run
|
|
def testFill():
|
|
with Context() as ctx, Location.unknown():
|
|
module = Module.create()
|
|
f32 = F32Type.get()
|
|
with InsertionPoint(module.body):
|
|
# CHECK-LABEL: func @fill_tensor
|
|
# CHECK-SAME: %[[OUT:[0-9a-z]+]]: tensor<12x?xf32>
|
|
# CHECK-NEXT: %[[CST:.*]] = arith.constant 0.0{{.*}} : f32
|
|
# CHECK-NEXT: %[[RES:.*]] = linalg.fill(%[[CST]], %[[OUT]]) : f32, tensor<12x?xf32> -> tensor<12x?xf32>
|
|
# CHECK-NEXT: return %[[RES]] : tensor<12x?xf32>
|
|
@builtin.FuncOp.from_py_func(RankedTensorType.get((12, -1), f32))
|
|
def fill_tensor(out):
|
|
zero = arith.ConstantOp(value=FloatAttr.get(f32, 0.), result=f32).result
|
|
return linalg.FillOp(output=out, value=zero).result
|
|
|
|
# CHECK-LABEL: func @fill_buffer
|
|
# CHECK-SAME: %[[OUT:[0-9a-z]+]]: memref<12x?xf32>
|
|
# CHECK-NEXT: %[[CST:.*]] = arith.constant 0.0{{.*}} : f32
|
|
# CHECK-NEXT: linalg.fill(%[[CST]], %[[OUT]]) : f32, memref<12x?xf32>
|
|
# CHECK-NEXT: return
|
|
@builtin.FuncOp.from_py_func(MemRefType.get((12, -1), f32))
|
|
def fill_buffer(out):
|
|
zero = arith.ConstantOp(value=FloatAttr.get(f32, 0.), result=f32).result
|
|
linalg.FillOp(output=out, value=zero)
|
|
|
|
print(module)
|
|
|
|
|
|
# CHECK-LABEL: TEST: testNamedStructuredOpCustomForm
|
|
@run
|
|
def testNamedStructuredOpCustomForm():
|
|
with Context() as ctx, Location.unknown():
|
|
module = Module.create()
|
|
f32 = F32Type.get()
|
|
with InsertionPoint(module.body):
|
|
|
|
@builtin.FuncOp.from_py_func(
|
|
RankedTensorType.get((4, 8), f32), RankedTensorType.get((4, 8), f32))
|
|
def named_form(lhs, rhs):
|
|
init_result = linalg.InitTensorOp([4, 8], f32)
|
|
# Check for the named form with custom format
|
|
# CHECK: linalg.elemwise_unary
|
|
# CHECK-SAME: cast = #linalg.type_fn<cast_signed>
|
|
# CHECK-SAME: fun = #linalg.unary_fn<exp>
|
|
# CHECK-SAME: ins(%{{.*}} : tensor<4x8xf32>) outs(%{{.*}} : tensor<4x8xf32>)
|
|
unary_result = linalg.elemwise_unary(lhs, outs=[init_result.result])
|
|
# CHECK: linalg.elemwise_binary
|
|
# CHECK-SAME: cast = #linalg.type_fn<cast_unsigned>
|
|
# CHECK-SAME: fun = #linalg.binary_fn<mul>
|
|
# CHECK-SAME: ins(%{{.*}}, %{{.*}} : tensor<4x8xf32>, tensor<4x8xf32>) outs(%{{.*}} : tensor<4x8xf32>)
|
|
# CHECK: return
|
|
binary_result = linalg.elemwise_binary(
|
|
lhs,
|
|
rhs,
|
|
outs=[init_result.result],
|
|
fun=BinaryFn.mul,
|
|
cast=TypeFn.cast_unsigned)
|
|
return unary_result, binary_result
|
|
|
|
print(module)
|
|
|
|
|
|
# CHECK-LABEL: TEST: testNamedStructuredOpGenericForm
|
|
@run
|
|
def testNamedStructuredOpGenericForm():
|
|
with Context() as ctx, Location.unknown():
|
|
module = Module.create()
|
|
f32 = F32Type.get()
|
|
with InsertionPoint(module.body):
|
|
|
|
@builtin.FuncOp.from_py_func(
|
|
RankedTensorType.get((4, 16), f32), RankedTensorType.get((16, 8),
|
|
f32))
|
|
def named_form(lhs, rhs):
|
|
init_result = linalg.InitTensorOp([4, 8], f32)
|
|
# CHECK: "linalg.matmul"(%{{.*}})
|
|
# CHECK-NEXT: ^bb0(%{{.*}}: f32, %{{.*}}: f32, %{{.*}}: f32):
|
|
# CHECK-NEXT: arith.mulf{{.*}} (f32, f32) -> f32
|
|
# CHECK-NEXT: arith.addf{{.*}} (f32, f32) -> f32
|
|
# CHECK-NEXT: linalg.yield{{.*}} (f32) -> ()
|
|
# CHECK-NEXT: cast = #linalg.type_fn<cast_signed>
|
|
# CHECK-SAME: operand_segment_sizes = dense<[2, 1]> : vector<2xi32>
|
|
# CHECK-SAME: (tensor<4x16xf32>, tensor<16x8xf32>, tensor<4x8xf32>) -> tensor<4x8xf32>
|
|
return linalg.matmul(lhs, rhs, outs=[init_result.result])
|
|
|
|
module.operation.print(print_generic_op_form=True)
|
|
|
|
|
|
# CHECK-LABEL: TEST: testNamedStructuredAsGenericOp
|
|
@run
|
|
def testNamedStructuredAsGenericOp():
|
|
with Context() as ctx, Location.unknown():
|
|
module = Module.create()
|
|
f32 = F32Type.get()
|
|
with InsertionPoint(module.body):
|
|
|
|
@builtin.FuncOp.from_py_func(
|
|
RankedTensorType.get((4, 16), f32), RankedTensorType.get((16, 8),
|
|
f32))
|
|
def generic_form(lhs, rhs):
|
|
init_result = linalg.InitTensorOp([4, 8], f32)
|
|
# CHECK: linalg.generic
|
|
return linalg.matmul(
|
|
lhs, rhs, outs=[init_result.result], emit_generic=True)
|
|
|
|
print(module)
|
|
|
|
|
|
# CHECK-LABEL: TEST: testOpResultFromOtherOp
|
|
@run
|
|
def testOpResultFromOtherOp():
|
|
with Context(), Location.unknown():
|
|
module = Module.create()
|
|
f32 = F32Type.get()
|
|
with InsertionPoint(module.body):
|
|
|
|
@builtin.FuncOp.from_py_func(
|
|
RankedTensorType.get((4, 16), f32), RankedTensorType.get((16, 8),
|
|
f32))
|
|
def pass_an_op_directly(arg0, arg1):
|
|
one = arith.ConstantOp(F32Type.get(), 1.0)
|
|
# CHECK: %[[LHS:.*]] = linalg.fill
|
|
lhs = linalg.FillOp(arg0, one)
|
|
# CHECK: %[[RHS:.*]] = linalg.fill
|
|
rhs = linalg.FillOp(arg1, one)
|
|
# CHECK: %[[INIT:.*]] = linalg.init_tensor
|
|
init = linalg.InitTensorOp([4, 8], f32)
|
|
# CHECK: linalg.matmul
|
|
# CHECK: ins(%[[LHS]], %[[RHS]]
|
|
# CHECK: outs(%[[INIT]]
|
|
return linalg.matmul(lhs, rhs, outs=init)
|
|
|
|
print(module)
|