llvm-project/llvm/lib/Transforms/IPO/SampleProfileProbe.cpp
Rong Xu ebe09e2a95 [FSAFDO] Improve FS discriminator encoding
This change improves FS discriminators in the following ways:
(1) use call-stack debug information in the the to generate
discriminators: the same (src/line) DILs can now have same
discriminator value if they come from different call-stacks.
This effectively increases the usable discriminator values
for each round of FS discriminator pass.
(2) don't generate the FS discriminator for meta instructions
(i.e. instructions not emitted). This reduces the number
discriminators conflicts (for the case we run out of discriminator
bits for that pass).
(3) use less expensive hashing of xxHash64.

These improvements should bring better performance for FSAFDO
and they should be used by default. But this change creates
incompatible FS discriminators. For the iterative profile users,
they might see a performance drop in the first release with
this change (due to the fact that the profiles have the old
discriminators and the compiler uses the new discriminator).
We have measured that this is not more than 1.5% on several
benchmarks. Note the degradation should be gone in the second
release and one should expect a performance gain over the binary
without this change.

One possible solution to the iterative profile issue would be
separating discriminators for profile-use and the ones emitted to
the binary. This would require a mechanism to allow two sets of
discriminators to be maintained and then phasing out the first
approach. This is too much churn in the compiler and the
performance implications do not seem to be worth the effort.

Instead, we put the changes under an option so iterative profile
users can do a gradual rollout of this change. We will make the
option default value to true in a later patch and eventually
purge this option from the code base.

Differential Revision: https://reviews.llvm.org/D145171
2023-03-09 23:18:48 -08:00

460 lines
17 KiB
C++

//===- SampleProfileProbe.cpp - Pseudo probe Instrumentation -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the SampleProfileProber transformation.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/IPO/SampleProfileProbe.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/EHUtils.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/PseudoProbe.h"
#include "llvm/ProfileData/SampleProf.h"
#include "llvm/Support/CRC.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Transforms/Instrumentation.h"
#include "llvm/Transforms/Utils/ModuleUtils.h"
#include <unordered_set>
#include <vector>
using namespace llvm;
#define DEBUG_TYPE "pseudo-probe"
STATISTIC(ArtificialDbgLine,
"Number of probes that have an artificial debug line");
static cl::opt<bool>
VerifyPseudoProbe("verify-pseudo-probe", cl::init(false), cl::Hidden,
cl::desc("Do pseudo probe verification"));
static cl::list<std::string> VerifyPseudoProbeFuncList(
"verify-pseudo-probe-funcs", cl::Hidden,
cl::desc("The option to specify the name of the functions to verify."));
static cl::opt<bool>
UpdatePseudoProbe("update-pseudo-probe", cl::init(true), cl::Hidden,
cl::desc("Update pseudo probe distribution factor"));
static uint64_t getCallStackHash(const DILocation *DIL) {
uint64_t Hash = 0;
const DILocation *InlinedAt = DIL ? DIL->getInlinedAt() : nullptr;
while (InlinedAt) {
Hash ^= MD5Hash(std::to_string(InlinedAt->getLine()));
Hash ^= MD5Hash(std::to_string(InlinedAt->getColumn()));
auto Name = InlinedAt->getSubprogramLinkageName();
Hash ^= MD5Hash(Name);
InlinedAt = InlinedAt->getInlinedAt();
}
return Hash;
}
static uint64_t computeCallStackHash(const Instruction &Inst) {
return getCallStackHash(Inst.getDebugLoc());
}
bool PseudoProbeVerifier::shouldVerifyFunction(const Function *F) {
// Skip function declaration.
if (F->isDeclaration())
return false;
// Skip function that will not be emitted into object file. The prevailing
// defintion will be verified instead.
if (F->hasAvailableExternallyLinkage())
return false;
// Do a name matching.
static std::unordered_set<std::string> VerifyFuncNames(
VerifyPseudoProbeFuncList.begin(), VerifyPseudoProbeFuncList.end());
return VerifyFuncNames.empty() || VerifyFuncNames.count(F->getName().str());
}
void PseudoProbeVerifier::registerCallbacks(PassInstrumentationCallbacks &PIC) {
if (VerifyPseudoProbe) {
PIC.registerAfterPassCallback(
[this](StringRef P, Any IR, const PreservedAnalyses &) {
this->runAfterPass(P, IR);
});
}
}
// Callback to run after each transformation for the new pass manager.
void PseudoProbeVerifier::runAfterPass(StringRef PassID, Any IR) {
std::string Banner =
"\n*** Pseudo Probe Verification After " + PassID.str() + " ***\n";
dbgs() << Banner;
if (const auto **M = any_cast<const Module *>(&IR))
runAfterPass(*M);
else if (const auto **F = any_cast<const Function *>(&IR))
runAfterPass(*F);
else if (const auto **C = any_cast<const LazyCallGraph::SCC *>(&IR))
runAfterPass(*C);
else if (const auto **L = any_cast<const Loop *>(&IR))
runAfterPass(*L);
else
llvm_unreachable("Unknown IR unit");
}
void PseudoProbeVerifier::runAfterPass(const Module *M) {
for (const Function &F : *M)
runAfterPass(&F);
}
void PseudoProbeVerifier::runAfterPass(const LazyCallGraph::SCC *C) {
for (const LazyCallGraph::Node &N : *C)
runAfterPass(&N.getFunction());
}
void PseudoProbeVerifier::runAfterPass(const Function *F) {
if (!shouldVerifyFunction(F))
return;
ProbeFactorMap ProbeFactors;
for (const auto &BB : *F)
collectProbeFactors(&BB, ProbeFactors);
verifyProbeFactors(F, ProbeFactors);
}
void PseudoProbeVerifier::runAfterPass(const Loop *L) {
const Function *F = L->getHeader()->getParent();
runAfterPass(F);
}
void PseudoProbeVerifier::collectProbeFactors(const BasicBlock *Block,
ProbeFactorMap &ProbeFactors) {
for (const auto &I : *Block) {
if (std::optional<PseudoProbe> Probe = extractProbe(I)) {
uint64_t Hash = computeCallStackHash(I);
ProbeFactors[{Probe->Id, Hash}] += Probe->Factor;
}
}
}
void PseudoProbeVerifier::verifyProbeFactors(
const Function *F, const ProbeFactorMap &ProbeFactors) {
bool BannerPrinted = false;
auto &PrevProbeFactors = FunctionProbeFactors[F->getName()];
for (const auto &I : ProbeFactors) {
float CurProbeFactor = I.second;
if (PrevProbeFactors.count(I.first)) {
float PrevProbeFactor = PrevProbeFactors[I.first];
if (std::abs(CurProbeFactor - PrevProbeFactor) >
DistributionFactorVariance) {
if (!BannerPrinted) {
dbgs() << "Function " << F->getName() << ":\n";
BannerPrinted = true;
}
dbgs() << "Probe " << I.first.first << "\tprevious factor "
<< format("%0.2f", PrevProbeFactor) << "\tcurrent factor "
<< format("%0.2f", CurProbeFactor) << "\n";
}
}
// Update
PrevProbeFactors[I.first] = I.second;
}
}
PseudoProbeManager::PseudoProbeManager(const Module &M) {
if (NamedMDNode *FuncInfo = M.getNamedMetadata(PseudoProbeDescMetadataName)) {
for (const auto *Operand : FuncInfo->operands()) {
const auto *MD = cast<MDNode>(Operand);
auto GUID =
mdconst::dyn_extract<ConstantInt>(MD->getOperand(0))->getZExtValue();
auto Hash =
mdconst::dyn_extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
GUIDToProbeDescMap.try_emplace(GUID, PseudoProbeDescriptor(GUID, Hash));
}
}
}
const PseudoProbeDescriptor *
PseudoProbeManager::getDesc(const Function &F) const {
auto I = GUIDToProbeDescMap.find(
Function::getGUID(FunctionSamples::getCanonicalFnName(F)));
return I == GUIDToProbeDescMap.end() ? nullptr : &I->second;
}
bool PseudoProbeManager::moduleIsProbed(const Module &M) const {
return M.getNamedMetadata(PseudoProbeDescMetadataName);
}
bool PseudoProbeManager::profileIsValid(const Function &F,
const FunctionSamples &Samples) const {
const auto *Desc = getDesc(F);
if (!Desc) {
LLVM_DEBUG(dbgs() << "Probe descriptor missing for Function " << F.getName()
<< "\n");
return false;
} else {
if (Desc->getFunctionHash() != Samples.getFunctionHash()) {
LLVM_DEBUG(dbgs() << "Hash mismatch for Function " << F.getName()
<< "\n");
return false;
}
}
return true;
}
SampleProfileProber::SampleProfileProber(Function &Func,
const std::string &CurModuleUniqueId)
: F(&Func), CurModuleUniqueId(CurModuleUniqueId) {
BlockProbeIds.clear();
CallProbeIds.clear();
LastProbeId = (uint32_t)PseudoProbeReservedId::Last;
computeProbeIdForBlocks();
computeProbeIdForCallsites();
computeCFGHash();
}
// Compute Hash value for the CFG: the lower 32 bits are CRC32 of the index
// value of each BB in the CFG. The higher 32 bits record the number of edges
// preceded by the number of indirect calls.
// This is derived from FuncPGOInstrumentation<Edge, BBInfo>::computeCFGHash().
void SampleProfileProber::computeCFGHash() {
std::vector<uint8_t> Indexes;
JamCRC JC;
for (auto &BB : *F) {
auto *TI = BB.getTerminator();
for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I) {
auto *Succ = TI->getSuccessor(I);
auto Index = getBlockId(Succ);
for (int J = 0; J < 4; J++)
Indexes.push_back((uint8_t)(Index >> (J * 8)));
}
}
JC.update(Indexes);
FunctionHash = (uint64_t)CallProbeIds.size() << 48 |
(uint64_t)Indexes.size() << 32 | JC.getCRC();
// Reserve bit 60-63 for other information purpose.
FunctionHash &= 0x0FFFFFFFFFFFFFFF;
assert(FunctionHash && "Function checksum should not be zero");
LLVM_DEBUG(dbgs() << "\nFunction Hash Computation for " << F->getName()
<< ":\n"
<< " CRC = " << JC.getCRC() << ", Edges = "
<< Indexes.size() << ", ICSites = " << CallProbeIds.size()
<< ", Hash = " << FunctionHash << "\n");
}
void SampleProfileProber::computeProbeIdForBlocks() {
DenseSet<BasicBlock *> KnownColdBlocks;
computeEHOnlyBlocks(*F, KnownColdBlocks);
// Insert pseudo probe to non-cold blocks only. This will reduce IR size as
// well as the binary size while retaining the profile quality.
for (auto &BB : *F) {
++LastProbeId;
if (!KnownColdBlocks.contains(&BB))
BlockProbeIds[&BB] = LastProbeId;
}
}
void SampleProfileProber::computeProbeIdForCallsites() {
for (auto &BB : *F) {
for (auto &I : BB) {
if (!isa<CallBase>(I))
continue;
if (isa<IntrinsicInst>(&I))
continue;
CallProbeIds[&I] = ++LastProbeId;
}
}
}
uint32_t SampleProfileProber::getBlockId(const BasicBlock *BB) const {
auto I = BlockProbeIds.find(const_cast<BasicBlock *>(BB));
return I == BlockProbeIds.end() ? 0 : I->second;
}
uint32_t SampleProfileProber::getCallsiteId(const Instruction *Call) const {
auto Iter = CallProbeIds.find(const_cast<Instruction *>(Call));
return Iter == CallProbeIds.end() ? 0 : Iter->second;
}
void SampleProfileProber::instrumentOneFunc(Function &F, TargetMachine *TM) {
Module *M = F.getParent();
MDBuilder MDB(F.getContext());
// Compute a GUID without considering the function's linkage type. This is
// fine since function name is the only key in the profile database.
uint64_t Guid = Function::getGUID(F.getName());
// Assign an artificial debug line to a probe that doesn't come with a real
// line. A probe not having a debug line will get an incomplete inline
// context. This will cause samples collected on the probe to be counted
// into the base profile instead of a context profile. The line number
// itself is not important though.
auto AssignDebugLoc = [&](Instruction *I) {
assert((isa<PseudoProbeInst>(I) || isa<CallBase>(I)) &&
"Expecting pseudo probe or call instructions");
if (!I->getDebugLoc()) {
if (auto *SP = F.getSubprogram()) {
auto DIL = DILocation::get(SP->getContext(), 0, 0, SP);
I->setDebugLoc(DIL);
ArtificialDbgLine++;
LLVM_DEBUG({
dbgs() << "\nIn Function " << F.getName()
<< " Probe gets an artificial debug line\n";
I->dump();
});
}
}
};
// Probe basic blocks.
for (auto &I : BlockProbeIds) {
BasicBlock *BB = I.first;
uint32_t Index = I.second;
// Insert a probe before an instruction with a valid debug line number which
// will be assigned to the probe. The line number will be used later to
// model the inline context when the probe is inlined into other functions.
// Debug instructions, phi nodes and lifetime markers do not have an valid
// line number. Real instructions generated by optimizations may not come
// with a line number either.
auto HasValidDbgLine = [](Instruction *J) {
return !isa<PHINode>(J) && !isa<DbgInfoIntrinsic>(J) &&
!J->isLifetimeStartOrEnd() && J->getDebugLoc();
};
Instruction *J = &*BB->getFirstInsertionPt();
while (J != BB->getTerminator() && !HasValidDbgLine(J)) {
J = J->getNextNode();
}
IRBuilder<> Builder(J);
assert(Builder.GetInsertPoint() != BB->end() &&
"Cannot get the probing point");
Function *ProbeFn =
llvm::Intrinsic::getDeclaration(M, Intrinsic::pseudoprobe);
Value *Args[] = {Builder.getInt64(Guid), Builder.getInt64(Index),
Builder.getInt32(0),
Builder.getInt64(PseudoProbeFullDistributionFactor)};
auto *Probe = Builder.CreateCall(ProbeFn, Args);
AssignDebugLoc(Probe);
}
// Probe both direct calls and indirect calls. Direct calls are probed so that
// their probe ID can be used as an call site identifier to represent a
// calling context.
for (auto &I : CallProbeIds) {
auto *Call = I.first;
uint32_t Index = I.second;
uint32_t Type = cast<CallBase>(Call)->getCalledFunction()
? (uint32_t)PseudoProbeType::DirectCall
: (uint32_t)PseudoProbeType::IndirectCall;
AssignDebugLoc(Call);
// Levarge the 32-bit discriminator field of debug data to store the ID and
// type of a callsite probe. This gets rid of the dependency on plumbing a
// customized metadata through the codegen pipeline.
uint32_t V = PseudoProbeDwarfDiscriminator::packProbeData(
Index, Type, 0, PseudoProbeDwarfDiscriminator::FullDistributionFactor);
if (auto DIL = Call->getDebugLoc()) {
DIL = DIL->cloneWithDiscriminator(V);
Call->setDebugLoc(DIL);
}
}
// Create module-level metadata that contains function info necessary to
// synthesize probe-based sample counts, which are
// - FunctionGUID
// - FunctionHash.
// - FunctionName
auto Hash = getFunctionHash();
auto *MD = MDB.createPseudoProbeDesc(Guid, Hash, &F);
auto *NMD = M->getNamedMetadata(PseudoProbeDescMetadataName);
assert(NMD && "llvm.pseudo_probe_desc should be pre-created");
NMD->addOperand(MD);
// Preserve a comdat group to hold all probes materialized later. This
// allows that when the function is considered dead and removed, the
// materialized probes are disposed too.
// Imported functions are defined in another module. They do not need
// the following handling since same care will be taken for them in their
// original module. The pseudo probes inserted into an imported functions
// above will naturally not be emitted since the imported function is free
// from object emission. However they will be emitted together with the
// inliner functions that the imported function is inlined into. We are not
// creating a comdat group for an import function since it's useless anyway.
if (!F.isDeclarationForLinker()) {
if (TM) {
auto Triple = TM->getTargetTriple();
if (Triple.supportsCOMDAT() && TM->getFunctionSections())
getOrCreateFunctionComdat(F, Triple);
}
}
}
PreservedAnalyses SampleProfileProbePass::run(Module &M,
ModuleAnalysisManager &AM) {
auto ModuleId = getUniqueModuleId(&M);
// Create the pseudo probe desc metadata beforehand.
// Note that modules with only data but no functions will require this to
// be set up so that they will be known as probed later.
M.getOrInsertNamedMetadata(PseudoProbeDescMetadataName);
for (auto &F : M) {
if (F.isDeclaration())
continue;
SampleProfileProber ProbeManager(F, ModuleId);
ProbeManager.instrumentOneFunc(F, TM);
}
return PreservedAnalyses::none();
}
void PseudoProbeUpdatePass::runOnFunction(Function &F,
FunctionAnalysisManager &FAM) {
BlockFrequencyInfo &BFI = FAM.getResult<BlockFrequencyAnalysis>(F);
auto BBProfileCount = [&BFI](BasicBlock *BB) {
return BFI.getBlockProfileCount(BB).value_or(0);
};
// Collect the sum of execution weight for each probe.
ProbeFactorMap ProbeFactors;
for (auto &Block : F) {
for (auto &I : Block) {
if (std::optional<PseudoProbe> Probe = extractProbe(I)) {
uint64_t Hash = computeCallStackHash(I);
ProbeFactors[{Probe->Id, Hash}] += BBProfileCount(&Block);
}
}
}
// Fix up over-counted probes.
for (auto &Block : F) {
for (auto &I : Block) {
if (std::optional<PseudoProbe> Probe = extractProbe(I)) {
uint64_t Hash = computeCallStackHash(I);
float Sum = ProbeFactors[{Probe->Id, Hash}];
if (Sum != 0)
setProbeDistributionFactor(I, BBProfileCount(&Block) / Sum);
}
}
}
}
PreservedAnalyses PseudoProbeUpdatePass::run(Module &M,
ModuleAnalysisManager &AM) {
if (UpdatePseudoProbe) {
for (auto &F : M) {
if (F.isDeclaration())
continue;
FunctionAnalysisManager &FAM =
AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
runOnFunction(F, FAM);
}
}
return PreservedAnalyses::none();
}