llvm-project/llvm/lib/Transforms/Scalar/DFAJumpThreading.cpp
Arthur Eubanks 7c3c981442 [Passes] Remove some legacy passes
DFAJumpThreading
JumpThreading
LibCallsShrink
LoopVectorize
SLPVectorizer
DeadStoreElimination
AggressiveDCE
CorrelatedValuePropagation
IndVarSimplify

These are part of the optimization pipeline, of which the legacy version is deprecated and being removed.
2023-03-10 17:17:00 -08:00

1317 lines
46 KiB
C++

//===- DFAJumpThreading.cpp - Threads a switch statement inside a loop ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Transform each threading path to effectively jump thread the DFA. For
// example, the CFG below could be transformed as follows, where the cloned
// blocks unconditionally branch to the next correct case based on what is
// identified in the analysis.
//
// sw.bb sw.bb
// / | \ / | \
// case1 case2 case3 case1 case2 case3
// \ | / | | |
// determinator det.2 det.3 det.1
// br sw.bb / | \
// sw.bb.2 sw.bb.3 sw.bb.1
// br case2 br case3 br case1§
//
// Definitions and Terminology:
//
// * Threading path:
// a list of basic blocks, the exit state, and the block that determines
// the next state, for which the following notation will be used:
// < path of BBs that form a cycle > [ state, determinator ]
//
// * Predictable switch:
// The switch variable is always a known constant so that all conditional
// jumps based on switch variable can be converted to unconditional jump.
//
// * Determinator:
// The basic block that determines the next state of the DFA.
//
// Representing the optimization in C-like pseudocode: the code pattern on the
// left could functionally be transformed to the right pattern if the switch
// condition is predictable.
//
// X = A goto A
// for (...) A:
// switch (X) ...
// case A goto B
// X = B B:
// case B ...
// X = C goto C
//
// The pass first checks that switch variable X is decided by the control flow
// path taken in the loop; for example, in case B, the next value of X is
// decided to be C. It then enumerates through all paths in the loop and labels
// the basic blocks where the next state is decided.
//
// Using this information it creates new paths that unconditionally branch to
// the next case. This involves cloning code, so it only gets triggered if the
// amount of code duplicated is below a threshold.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar/DFAJumpThreading.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/CodeMetrics.h"
#include "llvm/Analysis/DomTreeUpdater.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/SSAUpdaterBulk.h"
#include "llvm/Transforms/Utils/ValueMapper.h"
#include <algorithm>
#include <deque>
#ifdef EXPENSIVE_CHECKS
#include "llvm/IR/Verifier.h"
#endif
using namespace llvm;
#define DEBUG_TYPE "dfa-jump-threading"
STATISTIC(NumTransforms, "Number of transformations done");
STATISTIC(NumCloned, "Number of blocks cloned");
STATISTIC(NumPaths, "Number of individual paths threaded");
static cl::opt<bool>
ClViewCfgBefore("dfa-jump-view-cfg-before",
cl::desc("View the CFG before DFA Jump Threading"),
cl::Hidden, cl::init(false));
static cl::opt<unsigned> MaxPathLength(
"dfa-max-path-length",
cl::desc("Max number of blocks searched to find a threading path"),
cl::Hidden, cl::init(20));
static cl::opt<unsigned> MaxNumPaths(
"dfa-max-num-paths",
cl::desc("Max number of paths enumerated around a switch"),
cl::Hidden, cl::init(200));
static cl::opt<unsigned>
CostThreshold("dfa-cost-threshold",
cl::desc("Maximum cost accepted for the transformation"),
cl::Hidden, cl::init(50));
namespace {
class SelectInstToUnfold {
SelectInst *SI;
PHINode *SIUse;
public:
SelectInstToUnfold(SelectInst *SI, PHINode *SIUse) : SI(SI), SIUse(SIUse) {}
SelectInst *getInst() { return SI; }
PHINode *getUse() { return SIUse; }
explicit operator bool() const { return SI && SIUse; }
};
void unfold(DomTreeUpdater *DTU, SelectInstToUnfold SIToUnfold,
std::vector<SelectInstToUnfold> *NewSIsToUnfold,
std::vector<BasicBlock *> *NewBBs);
class DFAJumpThreading {
public:
DFAJumpThreading(AssumptionCache *AC, DominatorTree *DT,
TargetTransformInfo *TTI, OptimizationRemarkEmitter *ORE)
: AC(AC), DT(DT), TTI(TTI), ORE(ORE) {}
bool run(Function &F);
private:
void
unfoldSelectInstrs(DominatorTree *DT,
const SmallVector<SelectInstToUnfold, 4> &SelectInsts) {
DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
SmallVector<SelectInstToUnfold, 4> Stack;
for (SelectInstToUnfold SIToUnfold : SelectInsts)
Stack.push_back(SIToUnfold);
while (!Stack.empty()) {
SelectInstToUnfold SIToUnfold = Stack.pop_back_val();
std::vector<SelectInstToUnfold> NewSIsToUnfold;
std::vector<BasicBlock *> NewBBs;
unfold(&DTU, SIToUnfold, &NewSIsToUnfold, &NewBBs);
// Put newly discovered select instructions into the work list.
for (const SelectInstToUnfold &NewSIToUnfold : NewSIsToUnfold)
Stack.push_back(NewSIToUnfold);
}
}
AssumptionCache *AC;
DominatorTree *DT;
TargetTransformInfo *TTI;
OptimizationRemarkEmitter *ORE;
};
} // end anonymous namespace
namespace {
/// Create a new basic block and sink \p SIToSink into it.
void createBasicBlockAndSinkSelectInst(
DomTreeUpdater *DTU, SelectInst *SI, PHINode *SIUse, SelectInst *SIToSink,
BasicBlock *EndBlock, StringRef NewBBName, BasicBlock **NewBlock,
BranchInst **NewBranch, std::vector<SelectInstToUnfold> *NewSIsToUnfold,
std::vector<BasicBlock *> *NewBBs) {
assert(SIToSink->hasOneUse());
assert(NewBlock);
assert(NewBranch);
*NewBlock = BasicBlock::Create(SI->getContext(), NewBBName,
EndBlock->getParent(), EndBlock);
NewBBs->push_back(*NewBlock);
*NewBranch = BranchInst::Create(EndBlock, *NewBlock);
SIToSink->moveBefore(*NewBranch);
NewSIsToUnfold->push_back(SelectInstToUnfold(SIToSink, SIUse));
DTU->applyUpdates({{DominatorTree::Insert, *NewBlock, EndBlock}});
}
/// Unfold the select instruction held in \p SIToUnfold by replacing it with
/// control flow.
///
/// Put newly discovered select instructions into \p NewSIsToUnfold. Put newly
/// created basic blocks into \p NewBBs.
///
/// TODO: merge it with CodeGenPrepare::optimizeSelectInst() if possible.
void unfold(DomTreeUpdater *DTU, SelectInstToUnfold SIToUnfold,
std::vector<SelectInstToUnfold> *NewSIsToUnfold,
std::vector<BasicBlock *> *NewBBs) {
SelectInst *SI = SIToUnfold.getInst();
PHINode *SIUse = SIToUnfold.getUse();
BasicBlock *StartBlock = SI->getParent();
BasicBlock *EndBlock = SIUse->getParent();
BranchInst *StartBlockTerm =
dyn_cast<BranchInst>(StartBlock->getTerminator());
assert(StartBlockTerm && StartBlockTerm->isUnconditional());
assert(SI->hasOneUse());
// These are the new basic blocks for the conditional branch.
// At least one will become an actual new basic block.
BasicBlock *TrueBlock = nullptr;
BasicBlock *FalseBlock = nullptr;
BranchInst *TrueBranch = nullptr;
BranchInst *FalseBranch = nullptr;
// Sink select instructions to be able to unfold them later.
if (SelectInst *SIOp = dyn_cast<SelectInst>(SI->getTrueValue())) {
createBasicBlockAndSinkSelectInst(DTU, SI, SIUse, SIOp, EndBlock,
"si.unfold.true", &TrueBlock, &TrueBranch,
NewSIsToUnfold, NewBBs);
}
if (SelectInst *SIOp = dyn_cast<SelectInst>(SI->getFalseValue())) {
createBasicBlockAndSinkSelectInst(DTU, SI, SIUse, SIOp, EndBlock,
"si.unfold.false", &FalseBlock,
&FalseBranch, NewSIsToUnfold, NewBBs);
}
// If there was nothing to sink, then arbitrarily choose the 'false' side
// for a new input value to the PHI.
if (!TrueBlock && !FalseBlock) {
FalseBlock = BasicBlock::Create(SI->getContext(), "si.unfold.false",
EndBlock->getParent(), EndBlock);
NewBBs->push_back(FalseBlock);
BranchInst::Create(EndBlock, FalseBlock);
DTU->applyUpdates({{DominatorTree::Insert, FalseBlock, EndBlock}});
}
// Insert the real conditional branch based on the original condition.
// If we did not create a new block for one of the 'true' or 'false' paths
// of the condition, it means that side of the branch goes to the end block
// directly and the path originates from the start block from the point of
// view of the new PHI.
BasicBlock *TT = EndBlock;
BasicBlock *FT = EndBlock;
if (TrueBlock && FalseBlock) {
// A diamond.
TT = TrueBlock;
FT = FalseBlock;
// Update the phi node of SI.
SIUse->removeIncomingValue(StartBlock, /* DeletePHIIfEmpty = */ false);
SIUse->addIncoming(SI->getTrueValue(), TrueBlock);
SIUse->addIncoming(SI->getFalseValue(), FalseBlock);
// Update any other PHI nodes in EndBlock.
for (PHINode &Phi : EndBlock->phis()) {
if (&Phi != SIUse) {
Phi.addIncoming(Phi.getIncomingValueForBlock(StartBlock), TrueBlock);
Phi.addIncoming(Phi.getIncomingValueForBlock(StartBlock), FalseBlock);
}
}
} else {
BasicBlock *NewBlock = nullptr;
Value *SIOp1 = SI->getTrueValue();
Value *SIOp2 = SI->getFalseValue();
// A triangle pointing right.
if (!TrueBlock) {
NewBlock = FalseBlock;
FT = FalseBlock;
}
// A triangle pointing left.
else {
NewBlock = TrueBlock;
TT = TrueBlock;
std::swap(SIOp1, SIOp2);
}
// Update the phi node of SI.
for (unsigned Idx = 0; Idx < SIUse->getNumIncomingValues(); ++Idx) {
if (SIUse->getIncomingBlock(Idx) == StartBlock)
SIUse->setIncomingValue(Idx, SIOp1);
}
SIUse->addIncoming(SIOp2, NewBlock);
// Update any other PHI nodes in EndBlock.
for (auto II = EndBlock->begin(); PHINode *Phi = dyn_cast<PHINode>(II);
++II) {
if (Phi != SIUse)
Phi->addIncoming(Phi->getIncomingValueForBlock(StartBlock), NewBlock);
}
}
StartBlockTerm->eraseFromParent();
BranchInst::Create(TT, FT, SI->getCondition(), StartBlock);
DTU->applyUpdates({{DominatorTree::Insert, StartBlock, TT},
{DominatorTree::Insert, StartBlock, FT}});
// The select is now dead.
SI->eraseFromParent();
}
struct ClonedBlock {
BasicBlock *BB;
uint64_t State; ///< \p State corresponds to the next value of a switch stmnt.
};
typedef std::deque<BasicBlock *> PathType;
typedef std::vector<PathType> PathsType;
typedef SmallPtrSet<const BasicBlock *, 8> VisitedBlocks;
typedef std::vector<ClonedBlock> CloneList;
// This data structure keeps track of all blocks that have been cloned. If two
// different ThreadingPaths clone the same block for a certain state it should
// be reused, and it can be looked up in this map.
typedef DenseMap<BasicBlock *, CloneList> DuplicateBlockMap;
// This map keeps track of all the new definitions for an instruction. This
// information is needed when restoring SSA form after cloning blocks.
typedef MapVector<Instruction *, std::vector<Instruction *>> DefMap;
inline raw_ostream &operator<<(raw_ostream &OS, const PathType &Path) {
OS << "< ";
for (const BasicBlock *BB : Path) {
std::string BBName;
if (BB->hasName())
raw_string_ostream(BBName) << BB->getName();
else
raw_string_ostream(BBName) << BB;
OS << BBName << " ";
}
OS << ">";
return OS;
}
/// ThreadingPath is a path in the control flow of a loop that can be threaded
/// by cloning necessary basic blocks and replacing conditional branches with
/// unconditional ones. A threading path includes a list of basic blocks, the
/// exit state, and the block that determines the next state.
struct ThreadingPath {
/// Exit value is DFA's exit state for the given path.
uint64_t getExitValue() const { return ExitVal; }
void setExitValue(const ConstantInt *V) {
ExitVal = V->getZExtValue();
IsExitValSet = true;
}
bool isExitValueSet() const { return IsExitValSet; }
/// Determinator is the basic block that determines the next state of the DFA.
const BasicBlock *getDeterminatorBB() const { return DBB; }
void setDeterminator(const BasicBlock *BB) { DBB = BB; }
/// Path is a list of basic blocks.
const PathType &getPath() const { return Path; }
void setPath(const PathType &NewPath) { Path = NewPath; }
void print(raw_ostream &OS) const {
OS << Path << " [ " << ExitVal << ", " << DBB->getName() << " ]";
}
private:
PathType Path;
uint64_t ExitVal;
const BasicBlock *DBB = nullptr;
bool IsExitValSet = false;
};
#ifndef NDEBUG
inline raw_ostream &operator<<(raw_ostream &OS, const ThreadingPath &TPath) {
TPath.print(OS);
return OS;
}
#endif
struct MainSwitch {
MainSwitch(SwitchInst *SI, OptimizationRemarkEmitter *ORE) {
if (isCandidate(SI)) {
Instr = SI;
} else {
ORE->emit([&]() {
return OptimizationRemarkMissed(DEBUG_TYPE, "SwitchNotPredictable", SI)
<< "Switch instruction is not predictable.";
});
}
}
virtual ~MainSwitch() = default;
SwitchInst *getInstr() const { return Instr; }
const SmallVector<SelectInstToUnfold, 4> getSelectInsts() {
return SelectInsts;
}
private:
/// Do a use-def chain traversal starting from the switch condition to see if
/// \p SI is a potential condidate.
///
/// Also, collect select instructions to unfold.
bool isCandidate(const SwitchInst *SI) {
std::deque<Value *> Q;
SmallSet<Value *, 16> SeenValues;
SelectInsts.clear();
Value *SICond = SI->getCondition();
LLVM_DEBUG(dbgs() << "\tSICond: " << *SICond << "\n");
if (!isa<PHINode>(SICond))
return false;
addToQueue(SICond, Q, SeenValues);
while (!Q.empty()) {
Value *Current = Q.front();
Q.pop_front();
if (auto *Phi = dyn_cast<PHINode>(Current)) {
for (Value *Incoming : Phi->incoming_values()) {
addToQueue(Incoming, Q, SeenValues);
}
LLVM_DEBUG(dbgs() << "\tphi: " << *Phi << "\n");
} else if (SelectInst *SelI = dyn_cast<SelectInst>(Current)) {
if (!isValidSelectInst(SelI))
return false;
addToQueue(SelI->getTrueValue(), Q, SeenValues);
addToQueue(SelI->getFalseValue(), Q, SeenValues);
LLVM_DEBUG(dbgs() << "\tselect: " << *SelI << "\n");
if (auto *SelIUse = dyn_cast<PHINode>(SelI->user_back()))
SelectInsts.push_back(SelectInstToUnfold(SelI, SelIUse));
} else if (isa<Constant>(Current)) {
LLVM_DEBUG(dbgs() << "\tconst: " << *Current << "\n");
continue;
} else {
LLVM_DEBUG(dbgs() << "\tother: " << *Current << "\n");
// Allow unpredictable values. The hope is that those will be the
// initial switch values that can be ignored (they will hit the
// unthreaded switch) but this assumption will get checked later after
// paths have been enumerated (in function getStateDefMap).
continue;
}
}
return true;
}
void addToQueue(Value *Val, std::deque<Value *> &Q,
SmallSet<Value *, 16> &SeenValues) {
if (SeenValues.contains(Val))
return;
Q.push_back(Val);
SeenValues.insert(Val);
}
bool isValidSelectInst(SelectInst *SI) {
if (!SI->hasOneUse())
return false;
Instruction *SIUse = dyn_cast<Instruction>(SI->user_back());
// The use of the select inst should be either a phi or another select.
if (!SIUse && !(isa<PHINode>(SIUse) || isa<SelectInst>(SIUse)))
return false;
BasicBlock *SIBB = SI->getParent();
// Currently, we can only expand select instructions in basic blocks with
// one successor.
BranchInst *SITerm = dyn_cast<BranchInst>(SIBB->getTerminator());
if (!SITerm || !SITerm->isUnconditional())
return false;
if (isa<PHINode>(SIUse) &&
SIBB->getSingleSuccessor() != cast<Instruction>(SIUse)->getParent())
return false;
// If select will not be sunk during unfolding, and it is in the same basic
// block as another state defining select, then cannot unfold both.
for (SelectInstToUnfold SIToUnfold : SelectInsts) {
SelectInst *PrevSI = SIToUnfold.getInst();
if (PrevSI->getTrueValue() != SI && PrevSI->getFalseValue() != SI &&
PrevSI->getParent() == SI->getParent())
return false;
}
return true;
}
SwitchInst *Instr = nullptr;
SmallVector<SelectInstToUnfold, 4> SelectInsts;
};
struct AllSwitchPaths {
AllSwitchPaths(const MainSwitch *MSwitch, OptimizationRemarkEmitter *ORE)
: Switch(MSwitch->getInstr()), SwitchBlock(Switch->getParent()),
ORE(ORE) {}
std::vector<ThreadingPath> &getThreadingPaths() { return TPaths; }
unsigned getNumThreadingPaths() { return TPaths.size(); }
SwitchInst *getSwitchInst() { return Switch; }
BasicBlock *getSwitchBlock() { return SwitchBlock; }
void run() {
VisitedBlocks Visited;
PathsType LoopPaths = paths(SwitchBlock, Visited, /* PathDepth = */ 1);
StateDefMap StateDef = getStateDefMap(LoopPaths);
if (StateDef.empty()) {
ORE->emit([&]() {
return OptimizationRemarkMissed(DEBUG_TYPE, "SwitchNotPredictable",
Switch)
<< "Switch instruction is not predictable.";
});
return;
}
for (PathType Path : LoopPaths) {
ThreadingPath TPath;
const BasicBlock *PrevBB = Path.back();
for (const BasicBlock *BB : Path) {
if (StateDef.count(BB) != 0) {
const PHINode *Phi = dyn_cast<PHINode>(StateDef[BB]);
assert(Phi && "Expected a state-defining instr to be a phi node.");
const Value *V = Phi->getIncomingValueForBlock(PrevBB);
if (const ConstantInt *C = dyn_cast<const ConstantInt>(V)) {
TPath.setExitValue(C);
TPath.setDeterminator(BB);
TPath.setPath(Path);
}
}
// Switch block is the determinator, this is the final exit value.
if (TPath.isExitValueSet() && BB == Path.front())
break;
PrevBB = BB;
}
if (TPath.isExitValueSet() && isSupported(TPath))
TPaths.push_back(TPath);
}
}
private:
// Value: an instruction that defines a switch state;
// Key: the parent basic block of that instruction.
typedef DenseMap<const BasicBlock *, const PHINode *> StateDefMap;
PathsType paths(BasicBlock *BB, VisitedBlocks &Visited,
unsigned PathDepth) const {
PathsType Res;
// Stop exploring paths after visiting MaxPathLength blocks
if (PathDepth > MaxPathLength) {
ORE->emit([&]() {
return OptimizationRemarkAnalysis(DEBUG_TYPE, "MaxPathLengthReached",
Switch)
<< "Exploration stopped after visiting MaxPathLength="
<< ore::NV("MaxPathLength", MaxPathLength) << " blocks.";
});
return Res;
}
Visited.insert(BB);
// Some blocks have multiple edges to the same successor, and this set
// is used to prevent a duplicate path from being generated
SmallSet<BasicBlock *, 4> Successors;
for (BasicBlock *Succ : successors(BB)) {
if (!Successors.insert(Succ).second)
continue;
// Found a cycle through the SwitchBlock
if (Succ == SwitchBlock) {
Res.push_back({BB});
continue;
}
// We have encountered a cycle, do not get caught in it
if (Visited.contains(Succ))
continue;
PathsType SuccPaths = paths(Succ, Visited, PathDepth + 1);
for (PathType Path : SuccPaths) {
PathType NewPath(Path);
NewPath.push_front(BB);
Res.push_back(NewPath);
if (Res.size() >= MaxNumPaths) {
return Res;
}
}
}
// This block could now be visited again from a different predecessor. Note
// that this will result in exponential runtime. Subpaths could possibly be
// cached but it takes a lot of memory to store them.
Visited.erase(BB);
return Res;
}
/// Walk the use-def chain and collect all the state-defining instructions.
///
/// Return an empty map if unpredictable values encountered inside the basic
/// blocks of \p LoopPaths.
StateDefMap getStateDefMap(const PathsType &LoopPaths) const {
StateDefMap Res;
// Basic blocks belonging to any of the loops around the switch statement.
SmallPtrSet<BasicBlock *, 16> LoopBBs;
for (const PathType &Path : LoopPaths) {
for (BasicBlock *BB : Path)
LoopBBs.insert(BB);
}
Value *FirstDef = Switch->getOperand(0);
assert(isa<PHINode>(FirstDef) && "The first definition must be a phi.");
SmallVector<PHINode *, 8> Stack;
Stack.push_back(dyn_cast<PHINode>(FirstDef));
SmallSet<Value *, 16> SeenValues;
while (!Stack.empty()) {
PHINode *CurPhi = Stack.pop_back_val();
Res[CurPhi->getParent()] = CurPhi;
SeenValues.insert(CurPhi);
for (BasicBlock *IncomingBB : CurPhi->blocks()) {
Value *Incoming = CurPhi->getIncomingValueForBlock(IncomingBB);
bool IsOutsideLoops = LoopBBs.count(IncomingBB) == 0;
if (Incoming == FirstDef || isa<ConstantInt>(Incoming) ||
SeenValues.contains(Incoming) || IsOutsideLoops) {
continue;
}
// Any unpredictable value inside the loops means we must bail out.
if (!isa<PHINode>(Incoming))
return StateDefMap();
Stack.push_back(cast<PHINode>(Incoming));
}
}
return Res;
}
/// The determinator BB should precede the switch-defining BB.
///
/// Otherwise, it is possible that the state defined in the determinator block
/// defines the state for the next iteration of the loop, rather than for the
/// current one.
///
/// Currently supported paths:
/// \code
/// < switch bb1 determ def > [ 42, determ ]
/// < switch_and_def bb1 determ > [ 42, determ ]
/// < switch_and_def_and_determ bb1 > [ 42, switch_and_def_and_determ ]
/// \endcode
///
/// Unsupported paths:
/// \code
/// < switch bb1 def determ > [ 43, determ ]
/// < switch_and_determ bb1 def > [ 43, switch_and_determ ]
/// \endcode
bool isSupported(const ThreadingPath &TPath) {
Instruction *SwitchCondI = dyn_cast<Instruction>(Switch->getCondition());
assert(SwitchCondI);
if (!SwitchCondI)
return false;
const BasicBlock *SwitchCondDefBB = SwitchCondI->getParent();
const BasicBlock *SwitchCondUseBB = Switch->getParent();
const BasicBlock *DeterminatorBB = TPath.getDeterminatorBB();
assert(
SwitchCondUseBB == TPath.getPath().front() &&
"The first BB in a threading path should have the switch instruction");
if (SwitchCondUseBB != TPath.getPath().front())
return false;
// Make DeterminatorBB the first element in Path.
PathType Path = TPath.getPath();
auto ItDet = llvm::find(Path, DeterminatorBB);
std::rotate(Path.begin(), ItDet, Path.end());
bool IsDetBBSeen = false;
bool IsDefBBSeen = false;
bool IsUseBBSeen = false;
for (BasicBlock *BB : Path) {
if (BB == DeterminatorBB)
IsDetBBSeen = true;
if (BB == SwitchCondDefBB)
IsDefBBSeen = true;
if (BB == SwitchCondUseBB)
IsUseBBSeen = true;
if (IsDetBBSeen && IsUseBBSeen && !IsDefBBSeen)
return false;
}
return true;
}
SwitchInst *Switch;
BasicBlock *SwitchBlock;
OptimizationRemarkEmitter *ORE;
std::vector<ThreadingPath> TPaths;
};
struct TransformDFA {
TransformDFA(AllSwitchPaths *SwitchPaths, DominatorTree *DT,
AssumptionCache *AC, TargetTransformInfo *TTI,
OptimizationRemarkEmitter *ORE,
SmallPtrSet<const Value *, 32> EphValues)
: SwitchPaths(SwitchPaths), DT(DT), AC(AC), TTI(TTI), ORE(ORE),
EphValues(EphValues) {}
void run() {
if (isLegalAndProfitableToTransform()) {
createAllExitPaths();
NumTransforms++;
}
}
private:
/// This function performs both a legality check and profitability check at
/// the same time since it is convenient to do so. It iterates through all
/// blocks that will be cloned, and keeps track of the duplication cost. It
/// also returns false if it is illegal to clone some required block.
bool isLegalAndProfitableToTransform() {
CodeMetrics Metrics;
SwitchInst *Switch = SwitchPaths->getSwitchInst();
// Note that DuplicateBlockMap is not being used as intended here. It is
// just being used to ensure (BB, State) pairs are only counted once.
DuplicateBlockMap DuplicateMap;
for (ThreadingPath &TPath : SwitchPaths->getThreadingPaths()) {
PathType PathBBs = TPath.getPath();
uint64_t NextState = TPath.getExitValue();
const BasicBlock *Determinator = TPath.getDeterminatorBB();
// Update Metrics for the Switch block, this is always cloned
BasicBlock *BB = SwitchPaths->getSwitchBlock();
BasicBlock *VisitedBB = getClonedBB(BB, NextState, DuplicateMap);
if (!VisitedBB) {
Metrics.analyzeBasicBlock(BB, *TTI, EphValues);
DuplicateMap[BB].push_back({BB, NextState});
}
// If the Switch block is the Determinator, then we can continue since
// this is the only block that is cloned and we already counted for it.
if (PathBBs.front() == Determinator)
continue;
// Otherwise update Metrics for all blocks that will be cloned. If any
// block is already cloned and would be reused, don't double count it.
auto DetIt = llvm::find(PathBBs, Determinator);
for (auto BBIt = DetIt; BBIt != PathBBs.end(); BBIt++) {
BB = *BBIt;
VisitedBB = getClonedBB(BB, NextState, DuplicateMap);
if (VisitedBB)
continue;
Metrics.analyzeBasicBlock(BB, *TTI, EphValues);
DuplicateMap[BB].push_back({BB, NextState});
}
if (Metrics.notDuplicatable) {
LLVM_DEBUG(dbgs() << "DFA Jump Threading: Not jump threading, contains "
<< "non-duplicatable instructions.\n");
ORE->emit([&]() {
return OptimizationRemarkMissed(DEBUG_TYPE, "NonDuplicatableInst",
Switch)
<< "Contains non-duplicatable instructions.";
});
return false;
}
if (Metrics.convergent) {
LLVM_DEBUG(dbgs() << "DFA Jump Threading: Not jump threading, contains "
<< "convergent instructions.\n");
ORE->emit([&]() {
return OptimizationRemarkMissed(DEBUG_TYPE, "ConvergentInst", Switch)
<< "Contains convergent instructions.";
});
return false;
}
if (!Metrics.NumInsts.isValid()) {
LLVM_DEBUG(dbgs() << "DFA Jump Threading: Not jump threading, contains "
<< "instructions with invalid cost.\n");
ORE->emit([&]() {
return OptimizationRemarkMissed(DEBUG_TYPE, "ConvergentInst", Switch)
<< "Contains instructions with invalid cost.";
});
return false;
}
}
InstructionCost DuplicationCost = 0;
unsigned JumpTableSize = 0;
TTI->getEstimatedNumberOfCaseClusters(*Switch, JumpTableSize, nullptr,
nullptr);
if (JumpTableSize == 0) {
// Factor in the number of conditional branches reduced from jump
// threading. Assume that lowering the switch block is implemented by
// using binary search, hence the LogBase2().
unsigned CondBranches =
APInt(32, Switch->getNumSuccessors()).ceilLogBase2();
DuplicationCost = Metrics.NumInsts / CondBranches;
} else {
// Compared with jump tables, the DFA optimizer removes an indirect branch
// on each loop iteration, thus making branch prediction more precise. The
// more branch targets there are, the more likely it is for the branch
// predictor to make a mistake, and the more benefit there is in the DFA
// optimizer. Thus, the more branch targets there are, the lower is the
// cost of the DFA opt.
DuplicationCost = Metrics.NumInsts / JumpTableSize;
}
LLVM_DEBUG(dbgs() << "\nDFA Jump Threading: Cost to jump thread block "
<< SwitchPaths->getSwitchBlock()->getName()
<< " is: " << DuplicationCost << "\n\n");
if (DuplicationCost > CostThreshold) {
LLVM_DEBUG(dbgs() << "Not jump threading, duplication cost exceeds the "
<< "cost threshold.\n");
ORE->emit([&]() {
return OptimizationRemarkMissed(DEBUG_TYPE, "NotProfitable", Switch)
<< "Duplication cost exceeds the cost threshold (cost="
<< ore::NV("Cost", DuplicationCost)
<< ", threshold=" << ore::NV("Threshold", CostThreshold) << ").";
});
return false;
}
ORE->emit([&]() {
return OptimizationRemark(DEBUG_TYPE, "JumpThreaded", Switch)
<< "Switch statement jump-threaded.";
});
return true;
}
/// Transform each threading path to effectively jump thread the DFA.
void createAllExitPaths() {
DomTreeUpdater DTU(*DT, DomTreeUpdater::UpdateStrategy::Eager);
// Move the switch block to the end of the path, since it will be duplicated
BasicBlock *SwitchBlock = SwitchPaths->getSwitchBlock();
for (ThreadingPath &TPath : SwitchPaths->getThreadingPaths()) {
LLVM_DEBUG(dbgs() << TPath << "\n");
PathType NewPath(TPath.getPath());
NewPath.push_back(SwitchBlock);
TPath.setPath(NewPath);
}
// Transform the ThreadingPaths and keep track of the cloned values
DuplicateBlockMap DuplicateMap;
DefMap NewDefs;
SmallSet<BasicBlock *, 16> BlocksToClean;
for (BasicBlock *BB : successors(SwitchBlock))
BlocksToClean.insert(BB);
for (ThreadingPath &TPath : SwitchPaths->getThreadingPaths()) {
createExitPath(NewDefs, TPath, DuplicateMap, BlocksToClean, &DTU);
NumPaths++;
}
// After all paths are cloned, now update the last successor of the cloned
// path so it skips over the switch statement
for (ThreadingPath &TPath : SwitchPaths->getThreadingPaths())
updateLastSuccessor(TPath, DuplicateMap, &DTU);
// For each instruction that was cloned and used outside, update its uses
updateSSA(NewDefs);
// Clean PHI Nodes for the newly created blocks
for (BasicBlock *BB : BlocksToClean)
cleanPhiNodes(BB);
}
/// For a specific ThreadingPath \p Path, create an exit path starting from
/// the determinator block.
///
/// To remember the correct destination, we have to duplicate blocks
/// corresponding to each state. Also update the terminating instruction of
/// the predecessors, and phis in the successor blocks.
void createExitPath(DefMap &NewDefs, ThreadingPath &Path,
DuplicateBlockMap &DuplicateMap,
SmallSet<BasicBlock *, 16> &BlocksToClean,
DomTreeUpdater *DTU) {
uint64_t NextState = Path.getExitValue();
const BasicBlock *Determinator = Path.getDeterminatorBB();
PathType PathBBs = Path.getPath();
// Don't select the placeholder block in front
if (PathBBs.front() == Determinator)
PathBBs.pop_front();
auto DetIt = llvm::find(PathBBs, Determinator);
auto Prev = std::prev(DetIt);
BasicBlock *PrevBB = *Prev;
for (auto BBIt = DetIt; BBIt != PathBBs.end(); BBIt++) {
BasicBlock *BB = *BBIt;
BlocksToClean.insert(BB);
// We already cloned BB for this NextState, now just update the branch
// and continue.
BasicBlock *NextBB = getClonedBB(BB, NextState, DuplicateMap);
if (NextBB) {
updatePredecessor(PrevBB, BB, NextBB, DTU);
PrevBB = NextBB;
continue;
}
// Clone the BB and update the successor of Prev to jump to the new block
BasicBlock *NewBB = cloneBlockAndUpdatePredecessor(
BB, PrevBB, NextState, DuplicateMap, NewDefs, DTU);
DuplicateMap[BB].push_back({NewBB, NextState});
BlocksToClean.insert(NewBB);
PrevBB = NewBB;
}
}
/// Restore SSA form after cloning blocks.
///
/// Each cloned block creates new defs for a variable, and the uses need to be
/// updated to reflect this. The uses may be replaced with a cloned value, or
/// some derived phi instruction. Note that all uses of a value defined in the
/// same block were already remapped when cloning the block.
void updateSSA(DefMap &NewDefs) {
SSAUpdaterBulk SSAUpdate;
SmallVector<Use *, 16> UsesToRename;
for (auto KV : NewDefs) {
Instruction *I = KV.first;
BasicBlock *BB = I->getParent();
std::vector<Instruction *> Cloned = KV.second;
// Scan all uses of this instruction to see if it is used outside of its
// block, and if so, record them in UsesToRename.
for (Use &U : I->uses()) {
Instruction *User = cast<Instruction>(U.getUser());
if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
if (UserPN->getIncomingBlock(U) == BB)
continue;
} else if (User->getParent() == BB) {
continue;
}
UsesToRename.push_back(&U);
}
// If there are no uses outside the block, we're done with this
// instruction.
if (UsesToRename.empty())
continue;
LLVM_DEBUG(dbgs() << "DFA-JT: Renaming non-local uses of: " << *I
<< "\n");
// We found a use of I outside of BB. Rename all uses of I that are
// outside its block to be uses of the appropriate PHI node etc. See
// ValuesInBlocks with the values we know.
unsigned VarNum = SSAUpdate.AddVariable(I->getName(), I->getType());
SSAUpdate.AddAvailableValue(VarNum, BB, I);
for (Instruction *New : Cloned)
SSAUpdate.AddAvailableValue(VarNum, New->getParent(), New);
while (!UsesToRename.empty())
SSAUpdate.AddUse(VarNum, UsesToRename.pop_back_val());
LLVM_DEBUG(dbgs() << "\n");
}
// SSAUpdater handles phi placement and renaming uses with the appropriate
// value.
SSAUpdate.RewriteAllUses(DT);
}
/// Clones a basic block, and adds it to the CFG.
///
/// This function also includes updating phi nodes in the successors of the
/// BB, and remapping uses that were defined locally in the cloned BB.
BasicBlock *cloneBlockAndUpdatePredecessor(BasicBlock *BB, BasicBlock *PrevBB,
uint64_t NextState,
DuplicateBlockMap &DuplicateMap,
DefMap &NewDefs,
DomTreeUpdater *DTU) {
ValueToValueMapTy VMap;
BasicBlock *NewBB = CloneBasicBlock(
BB, VMap, ".jt" + std::to_string(NextState), BB->getParent());
NewBB->moveAfter(BB);
NumCloned++;
for (Instruction &I : *NewBB) {
// Do not remap operands of PHINode in case a definition in BB is an
// incoming value to a phi in the same block. This incoming value will
// be renamed later while restoring SSA.
if (isa<PHINode>(&I))
continue;
RemapInstruction(&I, VMap,
RF_IgnoreMissingLocals | RF_NoModuleLevelChanges);
if (AssumeInst *II = dyn_cast<AssumeInst>(&I))
AC->registerAssumption(II);
}
updateSuccessorPhis(BB, NewBB, NextState, VMap, DuplicateMap);
updatePredecessor(PrevBB, BB, NewBB, DTU);
updateDefMap(NewDefs, VMap);
// Add all successors to the DominatorTree
SmallPtrSet<BasicBlock *, 4> SuccSet;
for (auto *SuccBB : successors(NewBB)) {
if (SuccSet.insert(SuccBB).second)
DTU->applyUpdates({{DominatorTree::Insert, NewBB, SuccBB}});
}
SuccSet.clear();
return NewBB;
}
/// Update the phi nodes in BB's successors.
///
/// This means creating a new incoming value from NewBB with the new
/// instruction wherever there is an incoming value from BB.
void updateSuccessorPhis(BasicBlock *BB, BasicBlock *ClonedBB,
uint64_t NextState, ValueToValueMapTy &VMap,
DuplicateBlockMap &DuplicateMap) {
std::vector<BasicBlock *> BlocksToUpdate;
// If BB is the last block in the path, we can simply update the one case
// successor that will be reached.
if (BB == SwitchPaths->getSwitchBlock()) {
SwitchInst *Switch = SwitchPaths->getSwitchInst();
BasicBlock *NextCase = getNextCaseSuccessor(Switch, NextState);
BlocksToUpdate.push_back(NextCase);
BasicBlock *ClonedSucc = getClonedBB(NextCase, NextState, DuplicateMap);
if (ClonedSucc)
BlocksToUpdate.push_back(ClonedSucc);
}
// Otherwise update phis in all successors.
else {
for (BasicBlock *Succ : successors(BB)) {
BlocksToUpdate.push_back(Succ);
// Check if a successor has already been cloned for the particular exit
// value. In this case if a successor was already cloned, the phi nodes
// in the cloned block should be updated directly.
BasicBlock *ClonedSucc = getClonedBB(Succ, NextState, DuplicateMap);
if (ClonedSucc)
BlocksToUpdate.push_back(ClonedSucc);
}
}
// If there is a phi with an incoming value from BB, create a new incoming
// value for the new predecessor ClonedBB. The value will either be the same
// value from BB or a cloned value.
for (BasicBlock *Succ : BlocksToUpdate) {
for (auto II = Succ->begin(); PHINode *Phi = dyn_cast<PHINode>(II);
++II) {
Value *Incoming = Phi->getIncomingValueForBlock(BB);
if (Incoming) {
if (isa<Constant>(Incoming)) {
Phi->addIncoming(Incoming, ClonedBB);
continue;
}
Value *ClonedVal = VMap[Incoming];
if (ClonedVal)
Phi->addIncoming(ClonedVal, ClonedBB);
else
Phi->addIncoming(Incoming, ClonedBB);
}
}
}
}
/// Sets the successor of PrevBB to be NewBB instead of OldBB. Note that all
/// other successors are kept as well.
void updatePredecessor(BasicBlock *PrevBB, BasicBlock *OldBB,
BasicBlock *NewBB, DomTreeUpdater *DTU) {
// When a path is reused, there is a chance that predecessors were already
// updated before. Check if the predecessor needs to be updated first.
if (!isPredecessor(OldBB, PrevBB))
return;
Instruction *PrevTerm = PrevBB->getTerminator();
for (unsigned Idx = 0; Idx < PrevTerm->getNumSuccessors(); Idx++) {
if (PrevTerm->getSuccessor(Idx) == OldBB) {
OldBB->removePredecessor(PrevBB, /* KeepOneInputPHIs = */ true);
PrevTerm->setSuccessor(Idx, NewBB);
}
}
DTU->applyUpdates({{DominatorTree::Delete, PrevBB, OldBB},
{DominatorTree::Insert, PrevBB, NewBB}});
}
/// Add new value mappings to the DefMap to keep track of all new definitions
/// for a particular instruction. These will be used while updating SSA form.
void updateDefMap(DefMap &NewDefs, ValueToValueMapTy &VMap) {
SmallVector<std::pair<Instruction *, Instruction *>> NewDefsVector;
NewDefsVector.reserve(VMap.size());
for (auto Entry : VMap) {
Instruction *Inst =
dyn_cast<Instruction>(const_cast<Value *>(Entry.first));
if (!Inst || !Entry.second || isa<BranchInst>(Inst) ||
isa<SwitchInst>(Inst)) {
continue;
}
Instruction *Cloned = dyn_cast<Instruction>(Entry.second);
if (!Cloned)
continue;
NewDefsVector.push_back({Inst, Cloned});
}
// Sort the defs to get deterministic insertion order into NewDefs.
sort(NewDefsVector, [](const auto &LHS, const auto &RHS) {
if (LHS.first == RHS.first)
return LHS.second->comesBefore(RHS.second);
return LHS.first->comesBefore(RHS.first);
});
for (const auto &KV : NewDefsVector)
NewDefs[KV.first].push_back(KV.second);
}
/// Update the last branch of a particular cloned path to point to the correct
/// case successor.
///
/// Note that this is an optional step and would have been done in later
/// optimizations, but it makes the CFG significantly easier to work with.
void updateLastSuccessor(ThreadingPath &TPath,
DuplicateBlockMap &DuplicateMap,
DomTreeUpdater *DTU) {
uint64_t NextState = TPath.getExitValue();
BasicBlock *BB = TPath.getPath().back();
BasicBlock *LastBlock = getClonedBB(BB, NextState, DuplicateMap);
// Note multiple paths can end at the same block so check that it is not
// updated yet
if (!isa<SwitchInst>(LastBlock->getTerminator()))
return;
SwitchInst *Switch = cast<SwitchInst>(LastBlock->getTerminator());
BasicBlock *NextCase = getNextCaseSuccessor(Switch, NextState);
std::vector<DominatorTree::UpdateType> DTUpdates;
SmallPtrSet<BasicBlock *, 4> SuccSet;
for (BasicBlock *Succ : successors(LastBlock)) {
if (Succ != NextCase && SuccSet.insert(Succ).second)
DTUpdates.push_back({DominatorTree::Delete, LastBlock, Succ});
}
Switch->eraseFromParent();
BranchInst::Create(NextCase, LastBlock);
DTU->applyUpdates(DTUpdates);
}
/// After cloning blocks, some of the phi nodes have extra incoming values
/// that are no longer used. This function removes them.
void cleanPhiNodes(BasicBlock *BB) {
// If BB is no longer reachable, remove any remaining phi nodes
if (pred_empty(BB)) {
std::vector<PHINode *> PhiToRemove;
for (auto II = BB->begin(); PHINode *Phi = dyn_cast<PHINode>(II); ++II) {
PhiToRemove.push_back(Phi);
}
for (PHINode *PN : PhiToRemove) {
PN->replaceAllUsesWith(PoisonValue::get(PN->getType()));
PN->eraseFromParent();
}
return;
}
// Remove any incoming values that come from an invalid predecessor
for (auto II = BB->begin(); PHINode *Phi = dyn_cast<PHINode>(II); ++II) {
std::vector<BasicBlock *> BlocksToRemove;
for (BasicBlock *IncomingBB : Phi->blocks()) {
if (!isPredecessor(BB, IncomingBB))
BlocksToRemove.push_back(IncomingBB);
}
for (BasicBlock *BB : BlocksToRemove)
Phi->removeIncomingValue(BB);
}
}
/// Checks if BB was already cloned for a particular next state value. If it
/// was then it returns this cloned block, and otherwise null.
BasicBlock *getClonedBB(BasicBlock *BB, uint64_t NextState,
DuplicateBlockMap &DuplicateMap) {
CloneList ClonedBBs = DuplicateMap[BB];
// Find an entry in the CloneList with this NextState. If it exists then
// return the corresponding BB
auto It = llvm::find_if(ClonedBBs, [NextState](const ClonedBlock &C) {
return C.State == NextState;
});
return It != ClonedBBs.end() ? (*It).BB : nullptr;
}
/// Helper to get the successor corresponding to a particular case value for
/// a switch statement.
BasicBlock *getNextCaseSuccessor(SwitchInst *Switch, uint64_t NextState) {
BasicBlock *NextCase = nullptr;
for (auto Case : Switch->cases()) {
if (Case.getCaseValue()->getZExtValue() == NextState) {
NextCase = Case.getCaseSuccessor();
break;
}
}
if (!NextCase)
NextCase = Switch->getDefaultDest();
return NextCase;
}
/// Returns true if IncomingBB is a predecessor of BB.
bool isPredecessor(BasicBlock *BB, BasicBlock *IncomingBB) {
return llvm::is_contained(predecessors(BB), IncomingBB);
}
AllSwitchPaths *SwitchPaths;
DominatorTree *DT;
AssumptionCache *AC;
TargetTransformInfo *TTI;
OptimizationRemarkEmitter *ORE;
SmallPtrSet<const Value *, 32> EphValues;
std::vector<ThreadingPath> TPaths;
};
bool DFAJumpThreading::run(Function &F) {
LLVM_DEBUG(dbgs() << "\nDFA Jump threading: " << F.getName() << "\n");
if (F.hasOptSize()) {
LLVM_DEBUG(dbgs() << "Skipping due to the 'minsize' attribute\n");
return false;
}
if (ClViewCfgBefore)
F.viewCFG();
SmallVector<AllSwitchPaths, 2> ThreadableLoops;
bool MadeChanges = false;
for (BasicBlock &BB : F) {
auto *SI = dyn_cast<SwitchInst>(BB.getTerminator());
if (!SI)
continue;
LLVM_DEBUG(dbgs() << "\nCheck if SwitchInst in BB " << BB.getName()
<< " is a candidate\n");
MainSwitch Switch(SI, ORE);
if (!Switch.getInstr())
continue;
LLVM_DEBUG(dbgs() << "\nSwitchInst in BB " << BB.getName() << " is a "
<< "candidate for jump threading\n");
LLVM_DEBUG(SI->dump());
unfoldSelectInstrs(DT, Switch.getSelectInsts());
if (!Switch.getSelectInsts().empty())
MadeChanges = true;
AllSwitchPaths SwitchPaths(&Switch, ORE);
SwitchPaths.run();
if (SwitchPaths.getNumThreadingPaths() > 0) {
ThreadableLoops.push_back(SwitchPaths);
// For the time being limit this optimization to occurring once in a
// function since it can change the CFG significantly. This is not a
// strict requirement but it can cause buggy behavior if there is an
// overlap of blocks in different opportunities. There is a lot of room to
// experiment with catching more opportunities here.
break;
}
}
SmallPtrSet<const Value *, 32> EphValues;
if (ThreadableLoops.size() > 0)
CodeMetrics::collectEphemeralValues(&F, AC, EphValues);
for (AllSwitchPaths SwitchPaths : ThreadableLoops) {
TransformDFA Transform(&SwitchPaths, DT, AC, TTI, ORE, EphValues);
Transform.run();
MadeChanges = true;
}
#ifdef EXPENSIVE_CHECKS
assert(DT->verify(DominatorTree::VerificationLevel::Full));
verifyFunction(F, &dbgs());
#endif
return MadeChanges;
}
} // end anonymous namespace
/// Integrate with the new Pass Manager
PreservedAnalyses DFAJumpThreadingPass::run(Function &F,
FunctionAnalysisManager &AM) {
AssumptionCache &AC = AM.getResult<AssumptionAnalysis>(F);
DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F);
TargetTransformInfo &TTI = AM.getResult<TargetIRAnalysis>(F);
OptimizationRemarkEmitter ORE(&F);
if (!DFAJumpThreading(&AC, &DT, &TTI, &ORE).run(F))
return PreservedAnalyses::all();
PreservedAnalyses PA;
PA.preserve<DominatorTreeAnalysis>();
return PA;
}