Greg Clayton e996fd30be LLDB now has "Platform" plug-ins. Platform plug-ins are plug-ins that provide
an interface to a local or remote debugging platform. By default each host OS
that supports LLDB should be registering a "default" platform that will be
used unless a new platform is selected. Platforms are responsible for things
such as:
- getting process information by name or by processs ID
- finding platform files. This is useful for remote debugging where there is 
  an SDK with files that might already or need to be cached for debug access.
- getting a list of platform supported architectures in the exact order they
  should be selected. This helps the native x86 platform on MacOSX select the
  correct x86_64/i386 slice from universal binaries.
- Connect to remote platforms for remote debugging
- Resolving an executable including finding an executable inside platform
  specific bundles (macosx uses .app bundles that contain files) and also
  selecting the appropriate slice of universal files for a given platform.

So by default there is always a local platform, but remote platforms can be
connected to. I will soon be adding a new "platform" command that will support
the following commands:
(lldb) platform connect --name machine1 macosx connect://host:port
Connected to "machine1" platform.
(lldb) platform disconnect macosx

This allows LLDB to be well setup to do remote debugging and also once 
connected process listing and finding for things like:
(lldb) process attach --name x<TAB>

The currently selected platform plug-in can now auto complete any available
processes that start with "x". The responsibilities for the platform plug-in
will soon grow and expand.

llvm-svn: 127286
2011-03-08 22:40:15 +00:00

1601 lines
79 KiB
C++

//===-- ObjectFileMachO.cpp -------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/Support/MachO.h"
#include "ObjectFileMachO.h"
#include "lldb/Core/ArchSpec.h"
#include "lldb/Core/DataBuffer.h"
#include "lldb/Host/FileSpec.h"
#include "lldb/Core/FileSpecList.h"
#include "lldb/Core/Module.h"
#include "lldb/Core/PluginManager.h"
#include "lldb/Core/Section.h"
#include "lldb/Core/StreamFile.h"
#include "lldb/Core/StreamString.h"
#include "lldb/Core/Timer.h"
#include "lldb/Core/UUID.h"
#include "lldb/Symbol/ObjectFile.h"
using namespace lldb;
using namespace lldb_private;
using namespace llvm::MachO;
void
ObjectFileMachO::Initialize()
{
PluginManager::RegisterPlugin (GetPluginNameStatic(),
GetPluginDescriptionStatic(),
CreateInstance);
}
void
ObjectFileMachO::Terminate()
{
PluginManager::UnregisterPlugin (CreateInstance);
}
const char *
ObjectFileMachO::GetPluginNameStatic()
{
return "object-file.mach-o";
}
const char *
ObjectFileMachO::GetPluginDescriptionStatic()
{
return "Mach-o object file reader (32 and 64 bit)";
}
ObjectFile *
ObjectFileMachO::CreateInstance (Module* module, DataBufferSP& dataSP, const FileSpec* file, addr_t offset, addr_t length)
{
if (ObjectFileMachO::MagicBytesMatch(dataSP))
{
std::auto_ptr<ObjectFile> objfile_ap(new ObjectFileMachO (module, dataSP, file, offset, length));
if (objfile_ap.get() && objfile_ap->ParseHeader())
return objfile_ap.release();
}
return NULL;
}
static uint32_t
MachHeaderSizeFromMagic(uint32_t magic)
{
switch (magic)
{
case HeaderMagic32:
case HeaderMagic32Swapped:
return sizeof(struct mach_header);
case HeaderMagic64:
case HeaderMagic64Swapped:
return sizeof(struct mach_header_64);
break;
default:
break;
}
return 0;
}
bool
ObjectFileMachO::MagicBytesMatch (DataBufferSP& dataSP)
{
DataExtractor data(dataSP, lldb::endian::InlHostByteOrder(), 4);
uint32_t offset = 0;
uint32_t magic = data.GetU32(&offset);
return MachHeaderSizeFromMagic(magic) != 0;
}
ObjectFileMachO::ObjectFileMachO(Module* module, DataBufferSP& dataSP, const FileSpec* file, addr_t offset, addr_t length) :
ObjectFile(module, file, offset, length, dataSP),
m_mutex (Mutex::eMutexTypeRecursive),
m_header(),
m_sections_ap(),
m_symtab_ap(),
m_entry_point_address ()
{
::memset (&m_header, 0, sizeof(m_header));
::memset (&m_dysymtab, 0, sizeof(m_dysymtab));
}
ObjectFileMachO::~ObjectFileMachO()
{
}
bool
ObjectFileMachO::ParseHeader ()
{
lldb_private::Mutex::Locker locker(m_mutex);
bool can_parse = false;
uint32_t offset = 0;
m_data.SetByteOrder (lldb::endian::InlHostByteOrder());
// Leave magic in the original byte order
m_header.magic = m_data.GetU32(&offset);
switch (m_header.magic)
{
case HeaderMagic32:
m_data.SetByteOrder (lldb::endian::InlHostByteOrder());
m_data.SetAddressByteSize(4);
can_parse = true;
break;
case HeaderMagic64:
m_data.SetByteOrder (lldb::endian::InlHostByteOrder());
m_data.SetAddressByteSize(8);
can_parse = true;
break;
case HeaderMagic32Swapped:
m_data.SetByteOrder(lldb::endian::InlHostByteOrder() == eByteOrderBig ? eByteOrderLittle : eByteOrderBig);
m_data.SetAddressByteSize(4);
can_parse = true;
break;
case HeaderMagic64Swapped:
m_data.SetByteOrder(lldb::endian::InlHostByteOrder() == eByteOrderBig ? eByteOrderLittle : eByteOrderBig);
m_data.SetAddressByteSize(8);
can_parse = true;
break;
default:
break;
}
if (can_parse)
{
m_data.GetU32(&offset, &m_header.cputype, 6);
ArchSpec mach_arch(eArchTypeMachO, m_header.cputype, m_header.cpusubtype);
if (SetModulesArchitecture (mach_arch))
{
// Read in all only the load command data
DataBufferSP data_sp(m_file.ReadFileContents(m_offset, m_header.sizeofcmds + MachHeaderSizeFromMagic(m_header.magic)));
m_data.SetData (data_sp);
return true;
}
}
else
{
memset(&m_header, 0, sizeof(struct mach_header));
}
return false;
}
ByteOrder
ObjectFileMachO::GetByteOrder () const
{
lldb_private::Mutex::Locker locker(m_mutex);
return m_data.GetByteOrder ();
}
bool
ObjectFileMachO::IsExecutable() const
{
return m_header.filetype == HeaderFileTypeExecutable;
}
size_t
ObjectFileMachO::GetAddressByteSize () const
{
lldb_private::Mutex::Locker locker(m_mutex);
return m_data.GetAddressByteSize ();
}
Symtab *
ObjectFileMachO::GetSymtab()
{
lldb_private::Mutex::Locker symfile_locker(m_mutex);
if (m_symtab_ap.get() == NULL)
{
m_symtab_ap.reset(new Symtab(this));
Mutex::Locker symtab_locker (m_symtab_ap->GetMutex());
ParseSymtab (true);
}
return m_symtab_ap.get();
}
SectionList *
ObjectFileMachO::GetSectionList()
{
lldb_private::Mutex::Locker locker(m_mutex);
if (m_sections_ap.get() == NULL)
{
m_sections_ap.reset(new SectionList());
ParseSections();
}
return m_sections_ap.get();
}
size_t
ObjectFileMachO::ParseSections ()
{
lldb::user_id_t segID = 0;
lldb::user_id_t sectID = 0;
struct segment_command_64 load_cmd;
uint32_t offset = MachHeaderSizeFromMagic(m_header.magic);
uint32_t i;
//bool dump_sections = false;
for (i=0; i<m_header.ncmds; ++i)
{
const uint32_t load_cmd_offset = offset;
if (m_data.GetU32(&offset, &load_cmd, 2) == NULL)
break;
if (load_cmd.cmd == LoadCommandSegment32 || load_cmd.cmd == LoadCommandSegment64)
{
if (m_data.GetU8(&offset, (uint8_t*)load_cmd.segname, 16))
{
load_cmd.vmaddr = m_data.GetAddress(&offset);
load_cmd.vmsize = m_data.GetAddress(&offset);
load_cmd.fileoff = m_data.GetAddress(&offset);
load_cmd.filesize = m_data.GetAddress(&offset);
if (m_data.GetU32(&offset, &load_cmd.maxprot, 4))
{
const bool segment_is_encrypted = (load_cmd.flags & SegmentCommandFlagBitProtectedVersion1) != 0;
// Keep a list of mach segments around in case we need to
// get at data that isn't stored in the abstracted Sections.
m_mach_segments.push_back (load_cmd);
ConstString segment_name (load_cmd.segname, std::min<int>(strlen(load_cmd.segname), sizeof(load_cmd.segname)));
// Use a segment ID of the segment index shifted left by 8 so they
// never conflict with any of the sections.
SectionSP segment_sp;
if (segment_name)
{
segment_sp.reset(new Section (NULL,
GetModule(), // Module to which this section belongs
++segID << 8, // Section ID is the 1 based segment index shifted right by 8 bits as not to collide with any of the 256 section IDs that are possible
segment_name, // Name of this section
eSectionTypeContainer, // This section is a container of other sections.
load_cmd.vmaddr, // File VM address == addresses as they are found in the object file
load_cmd.vmsize, // VM size in bytes of this section
load_cmd.fileoff, // Offset to the data for this section in the file
load_cmd.filesize, // Size in bytes of this section as found in the the file
load_cmd.flags)); // Flags for this section
segment_sp->SetIsEncrypted (segment_is_encrypted);
m_sections_ap->AddSection(segment_sp);
}
struct section_64 sect64;
::memset (&sect64, 0, sizeof(sect64));
// Push a section into our mach sections for the section at
// index zero (NListSectionNoSection) if we don't have any
// mach sections yet...
if (m_mach_sections.empty())
m_mach_sections.push_back(sect64);
uint32_t segment_sect_idx;
const lldb::user_id_t first_segment_sectID = sectID + 1;
const uint32_t num_u32s = load_cmd.cmd == LoadCommandSegment32 ? 7 : 8;
for (segment_sect_idx=0; segment_sect_idx<load_cmd.nsects; ++segment_sect_idx)
{
if (m_data.GetU8(&offset, (uint8_t*)sect64.sectname, sizeof(sect64.sectname)) == NULL)
break;
if (m_data.GetU8(&offset, (uint8_t*)sect64.segname, sizeof(sect64.segname)) == NULL)
break;
sect64.addr = m_data.GetAddress(&offset);
sect64.size = m_data.GetAddress(&offset);
if (m_data.GetU32(&offset, &sect64.offset, num_u32s) == NULL)
break;
// Keep a list of mach sections around in case we need to
// get at data that isn't stored in the abstracted Sections.
m_mach_sections.push_back (sect64);
ConstString section_name (sect64.sectname, std::min<size_t>(strlen(sect64.sectname), sizeof(sect64.sectname)));
if (!segment_name)
{
// We have a segment with no name so we need to conjure up
// segments that correspond to the section's segname if there
// isn't already such a section. If there is such a section,
// we resize the section so that it spans all sections.
// We also mark these sections as fake so address matches don't
// hit if they land in the gaps between the child sections.
segment_name.SetTrimmedCStringWithLength(sect64.segname, sizeof(sect64.segname));
segment_sp = m_sections_ap->FindSectionByName (segment_name);
if (segment_sp.get())
{
Section *segment = segment_sp.get();
// Grow the section size as needed.
const lldb::addr_t sect64_min_addr = sect64.addr;
const lldb::addr_t sect64_max_addr = sect64_min_addr + sect64.size;
const lldb::addr_t curr_seg_byte_size = segment->GetByteSize();
const lldb::addr_t curr_seg_min_addr = segment->GetFileAddress();
const lldb::addr_t curr_seg_max_addr = curr_seg_min_addr + curr_seg_byte_size;
if (sect64_min_addr >= curr_seg_min_addr)
{
const lldb::addr_t new_seg_byte_size = sect64_max_addr - curr_seg_min_addr;
// Only grow the section size if needed
if (new_seg_byte_size > curr_seg_byte_size)
segment->SetByteSize (new_seg_byte_size);
}
else
{
// We need to change the base address of the segment and
// adjust the child section offsets for all existing children.
const lldb::addr_t slide_amount = sect64_min_addr - curr_seg_min_addr;
segment->Slide(slide_amount, false);
segment->GetChildren().Slide (-slide_amount, false);
segment->SetByteSize (curr_seg_max_addr - sect64_min_addr);
}
// Grow the section size as needed.
if (sect64.offset)
{
const lldb::addr_t segment_min_file_offset = segment->GetFileOffset();
const lldb::addr_t segment_max_file_offset = segment_min_file_offset + segment->GetFileSize();
const lldb::addr_t section_min_file_offset = sect64.offset;
const lldb::addr_t section_max_file_offset = section_min_file_offset + sect64.size;
const lldb::addr_t new_file_offset = std::min (section_min_file_offset, segment_min_file_offset);
const lldb::addr_t new_file_size = std::max (section_max_file_offset, segment_max_file_offset) - new_file_offset;
segment->SetFileOffset (new_file_offset);
segment->SetFileSize (new_file_size);
}
}
else
{
// Create a fake section for the section's named segment
segment_sp.reset(new Section(segment_sp.get(), // Parent section
GetModule(), // Module to which this section belongs
++segID << 8, // Section ID is the 1 based segment index shifted right by 8 bits as not to collide with any of the 256 section IDs that are possible
segment_name, // Name of this section
eSectionTypeContainer, // This section is a container of other sections.
sect64.addr, // File VM address == addresses as they are found in the object file
sect64.size, // VM size in bytes of this section
sect64.offset, // Offset to the data for this section in the file
sect64.offset ? sect64.size : 0, // Size in bytes of this section as found in the the file
load_cmd.flags)); // Flags for this section
segment_sp->SetIsFake(true);
m_sections_ap->AddSection(segment_sp);
segment_sp->SetIsEncrypted (segment_is_encrypted);
}
}
assert (segment_sp.get());
uint32_t mach_sect_type = sect64.flags & SectionFlagMaskSectionType;
static ConstString g_sect_name_objc_data ("__objc_data");
static ConstString g_sect_name_objc_msgrefs ("__objc_msgrefs");
static ConstString g_sect_name_objc_selrefs ("__objc_selrefs");
static ConstString g_sect_name_objc_classrefs ("__objc_classrefs");
static ConstString g_sect_name_objc_superrefs ("__objc_superrefs");
static ConstString g_sect_name_objc_const ("__objc_const");
static ConstString g_sect_name_objc_classlist ("__objc_classlist");
static ConstString g_sect_name_cfstring ("__cfstring");
static ConstString g_sect_name_dwarf_debug_abbrev ("__debug_abbrev");
static ConstString g_sect_name_dwarf_debug_aranges ("__debug_aranges");
static ConstString g_sect_name_dwarf_debug_frame ("__debug_frame");
static ConstString g_sect_name_dwarf_debug_info ("__debug_info");
static ConstString g_sect_name_dwarf_debug_line ("__debug_line");
static ConstString g_sect_name_dwarf_debug_loc ("__debug_loc");
static ConstString g_sect_name_dwarf_debug_macinfo ("__debug_macinfo");
static ConstString g_sect_name_dwarf_debug_pubnames ("__debug_pubnames");
static ConstString g_sect_name_dwarf_debug_pubtypes ("__debug_pubtypes");
static ConstString g_sect_name_dwarf_debug_ranges ("__debug_ranges");
static ConstString g_sect_name_dwarf_debug_str ("__debug_str");
static ConstString g_sect_name_eh_frame ("__eh_frame");
static ConstString g_sect_name_DATA ("__DATA");
static ConstString g_sect_name_TEXT ("__TEXT");
SectionType sect_type = eSectionTypeOther;
if (section_name == g_sect_name_dwarf_debug_abbrev)
sect_type = eSectionTypeDWARFDebugAbbrev;
else if (section_name == g_sect_name_dwarf_debug_aranges)
sect_type = eSectionTypeDWARFDebugAranges;
else if (section_name == g_sect_name_dwarf_debug_frame)
sect_type = eSectionTypeDWARFDebugFrame;
else if (section_name == g_sect_name_dwarf_debug_info)
sect_type = eSectionTypeDWARFDebugInfo;
else if (section_name == g_sect_name_dwarf_debug_line)
sect_type = eSectionTypeDWARFDebugLine;
else if (section_name == g_sect_name_dwarf_debug_loc)
sect_type = eSectionTypeDWARFDebugLoc;
else if (section_name == g_sect_name_dwarf_debug_macinfo)
sect_type = eSectionTypeDWARFDebugMacInfo;
else if (section_name == g_sect_name_dwarf_debug_pubnames)
sect_type = eSectionTypeDWARFDebugPubNames;
else if (section_name == g_sect_name_dwarf_debug_pubtypes)
sect_type = eSectionTypeDWARFDebugPubTypes;
else if (section_name == g_sect_name_dwarf_debug_ranges)
sect_type = eSectionTypeDWARFDebugRanges;
else if (section_name == g_sect_name_dwarf_debug_str)
sect_type = eSectionTypeDWARFDebugStr;
else if (section_name == g_sect_name_objc_selrefs)
sect_type = eSectionTypeDataCStringPointers;
else if (section_name == g_sect_name_objc_msgrefs)
sect_type = eSectionTypeDataObjCMessageRefs;
else if (section_name == g_sect_name_eh_frame)
sect_type = eSectionTypeEHFrame;
else if (section_name == g_sect_name_cfstring)
sect_type = eSectionTypeDataObjCCFStrings;
else if (section_name == g_sect_name_objc_data ||
section_name == g_sect_name_objc_classrefs ||
section_name == g_sect_name_objc_superrefs ||
section_name == g_sect_name_objc_const ||
section_name == g_sect_name_objc_classlist)
{
sect_type = eSectionTypeDataPointers;
}
if (sect_type == eSectionTypeOther)
{
switch (mach_sect_type)
{
// TODO: categorize sections by other flags for regular sections
case SectionTypeRegular:
if (segment_sp->GetName() == g_sect_name_TEXT)
sect_type = eSectionTypeCode;
else if (segment_sp->GetName() == g_sect_name_DATA)
sect_type = eSectionTypeData;
else
sect_type = eSectionTypeOther;
break;
case SectionTypeZeroFill: sect_type = eSectionTypeZeroFill; break;
case SectionTypeCStringLiterals: sect_type = eSectionTypeDataCString; break; // section with only literal C strings
case SectionType4ByteLiterals: sect_type = eSectionTypeData4; break; // section with only 4 byte literals
case SectionType8ByteLiterals: sect_type = eSectionTypeData8; break; // section with only 8 byte literals
case SectionTypeLiteralPointers: sect_type = eSectionTypeDataPointers; break; // section with only pointers to literals
case SectionTypeNonLazySymbolPointers: sect_type = eSectionTypeDataPointers; break; // section with only non-lazy symbol pointers
case SectionTypeLazySymbolPointers: sect_type = eSectionTypeDataPointers; break; // section with only lazy symbol pointers
case SectionTypeSymbolStubs: sect_type = eSectionTypeCode; break; // section with only symbol stubs, byte size of stub in the reserved2 field
case SectionTypeModuleInitFunctionPointers: sect_type = eSectionTypeDataPointers; break; // section with only function pointers for initialization
case SectionTypeModuleTermFunctionPointers: sect_type = eSectionTypeDataPointers; break; // section with only function pointers for termination
case SectionTypeCoalesced: sect_type = eSectionTypeOther; break;
case SectionTypeZeroFillLarge: sect_type = eSectionTypeZeroFill; break;
case SectionTypeInterposing: sect_type = eSectionTypeCode; break; // section with only pairs of function pointers for interposing
case SectionType16ByteLiterals: sect_type = eSectionTypeData16; break; // section with only 16 byte literals
case SectionTypeDTraceObjectFormat: sect_type = eSectionTypeDebug; break;
case SectionTypeLazyDylibSymbolPointers: sect_type = eSectionTypeDataPointers; break;
default: break;
}
}
SectionSP section_sp(new Section(segment_sp.get(),
GetModule(),
++sectID,
section_name,
sect_type,
sect64.addr - segment_sp->GetFileAddress(),
sect64.size,
sect64.offset,
sect64.offset == 0 ? 0 : sect64.size,
sect64.flags));
// Set the section to be encrypted to match the segment
section_sp->SetIsEncrypted (segment_is_encrypted);
segment_sp->GetChildren().AddSection(section_sp);
if (segment_sp->IsFake())
{
segment_sp.reset();
segment_name.Clear();
}
}
if (m_header.filetype == HeaderFileTypeDSYM)
{
if (first_segment_sectID <= sectID)
{
lldb::user_id_t sect_uid;
for (sect_uid = first_segment_sectID; sect_uid <= sectID; ++sect_uid)
{
SectionSP curr_section_sp(segment_sp->GetChildren().FindSectionByID (sect_uid));
SectionSP next_section_sp;
if (sect_uid + 1 <= sectID)
next_section_sp = segment_sp->GetChildren().FindSectionByID (sect_uid+1);
if (curr_section_sp.get())
{
if (curr_section_sp->GetByteSize() == 0)
{
if (next_section_sp.get() != NULL)
curr_section_sp->SetByteSize ( next_section_sp->GetFileAddress() - curr_section_sp->GetFileAddress() );
else
curr_section_sp->SetByteSize ( load_cmd.vmsize );
}
}
}
}
}
}
}
}
else if (load_cmd.cmd == LoadCommandDynamicSymtabInfo)
{
m_dysymtab.cmd = load_cmd.cmd;
m_dysymtab.cmdsize = load_cmd.cmdsize;
m_data.GetU32 (&offset, &m_dysymtab.ilocalsym, (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2);
}
offset = load_cmd_offset + load_cmd.cmdsize;
}
// if (dump_sections)
// {
// StreamFile s(stdout);
// m_sections_ap->Dump(&s, true);
// }
return sectID; // Return the number of sections we registered with the module
}
class MachSymtabSectionInfo
{
public:
MachSymtabSectionInfo (SectionList *section_list) :
m_section_list (section_list),
m_section_infos()
{
// Get the number of sections down to a depth of 1 to include
// all segments and their sections, but no other sections that
// may be added for debug map or
m_section_infos.resize(section_list->GetNumSections(1));
}
Section *
GetSection (uint8_t n_sect, addr_t file_addr)
{
if (n_sect == 0)
return NULL;
if (n_sect < m_section_infos.size())
{
if (m_section_infos[n_sect].section == NULL)
{
Section *section = m_section_list->FindSectionByID (n_sect).get();
m_section_infos[n_sect].section = section;
assert (section != NULL);
m_section_infos[n_sect].vm_range.SetBaseAddress (section->GetFileAddress());
m_section_infos[n_sect].vm_range.SetByteSize (section->GetByteSize());
}
if (m_section_infos[n_sect].vm_range.Contains(file_addr))
return m_section_infos[n_sect].section;
}
return m_section_list->FindSectionContainingFileAddress(file_addr).get();
}
protected:
struct SectionInfo
{
SectionInfo () :
vm_range(),
section (NULL)
{
}
VMRange vm_range;
Section *section;
};
SectionList *m_section_list;
std::vector<SectionInfo> m_section_infos;
};
size_t
ObjectFileMachO::ParseSymtab (bool minimize)
{
Timer scoped_timer(__PRETTY_FUNCTION__,
"ObjectFileMachO::ParseSymtab () module = %s",
m_file.GetFilename().AsCString(""));
struct symtab_command symtab_load_command;
uint32_t offset = MachHeaderSizeFromMagic(m_header.magic);
uint32_t i;
for (i=0; i<m_header.ncmds; ++i)
{
const uint32_t cmd_offset = offset;
// Read in the load command and load command size
if (m_data.GetU32(&offset, &symtab_load_command, 2) == NULL)
break;
// Watch for the symbol table load command
if (symtab_load_command.cmd == LoadCommandSymtab)
{
// Read in the rest of the symtab load command
if (m_data.GetU32(&offset, &symtab_load_command.symoff, 4)) // fill in symoff, nsyms, stroff, strsize fields
{
Symtab *symtab = m_symtab_ap.get();
SectionList *section_list = GetSectionList();
assert(section_list);
const size_t addr_size = m_data.GetAddressByteSize();
const ByteOrder endian = m_data.GetByteOrder();
bool bit_width_32 = addr_size == 4;
const size_t nlist_size = bit_width_32 ? sizeof(struct nlist) : sizeof(struct nlist_64);
DataBufferSP symtab_data_sp(m_file.ReadFileContents(m_offset + symtab_load_command.symoff, symtab_load_command.nsyms * nlist_size));
DataBufferSP strtab_data_sp(m_file.ReadFileContents(m_offset + symtab_load_command.stroff, symtab_load_command.strsize));
const char *strtab_data = (const char *)strtab_data_sp->GetBytes();
// DataExtractor symtab_data(symtab_data_sp, endian, addr_size);
// DataExtractor strtab_data(strtab_data_sp, endian, addr_size);
static ConstString g_segment_name_TEXT ("__TEXT");
static ConstString g_segment_name_DATA ("__DATA");
static ConstString g_segment_name_OBJC ("__OBJC");
static ConstString g_section_name_eh_frame ("__eh_frame");
SectionSP text_section_sp(section_list->FindSectionByName(g_segment_name_TEXT));
SectionSP data_section_sp(section_list->FindSectionByName(g_segment_name_DATA));
SectionSP objc_section_sp(section_list->FindSectionByName(g_segment_name_OBJC));
SectionSP eh_frame_section_sp;
if (text_section_sp.get())
eh_frame_section_sp = text_section_sp->GetChildren().FindSectionByName (g_section_name_eh_frame);
else
eh_frame_section_sp = section_list->FindSectionByName (g_section_name_eh_frame);
uint8_t TEXT_eh_frame_sectID = eh_frame_section_sp.get() ? eh_frame_section_sp->GetID() : NListSectionNoSection;
//uint32_t symtab_offset = 0;
const uint8_t* nlist_data = symtab_data_sp->GetBytes();
assert (symtab_data_sp->GetByteSize()/nlist_size >= symtab_load_command.nsyms);
if (endian != lldb::endian::InlHostByteOrder())
{
// ...
assert (!"UNIMPLEMENTED: Swap all nlist entries");
}
uint32_t N_SO_index = UINT32_MAX;
MachSymtabSectionInfo section_info (section_list);
std::vector<uint32_t> N_FUN_indexes;
std::vector<uint32_t> N_NSYM_indexes;
std::vector<uint32_t> N_INCL_indexes;
std::vector<uint32_t> N_BRAC_indexes;
std::vector<uint32_t> N_COMM_indexes;
typedef std::map <uint64_t, uint32_t> ValueToSymbolIndexMap;
typedef std::map <uint32_t, uint32_t> NListIndexToSymbolIndexMap;
ValueToSymbolIndexMap N_FUN_addr_to_sym_idx;
ValueToSymbolIndexMap N_STSYM_addr_to_sym_idx;
// Any symbols that get merged into another will get an entry
// in this map so we know
NListIndexToSymbolIndexMap m_nlist_idx_to_sym_idx;
uint32_t nlist_idx = 0;
Symbol *symbol_ptr = NULL;
uint32_t sym_idx = 0;
Symbol *sym = symtab->Resize (symtab_load_command.nsyms + m_dysymtab.nindirectsyms);
uint32_t num_syms = symtab->GetNumSymbols();
//symtab->Reserve (symtab_load_command.nsyms + m_dysymtab.nindirectsyms);
for (nlist_idx = 0; nlist_idx < symtab_load_command.nsyms; ++nlist_idx)
{
struct nlist_64 nlist;
if (bit_width_32)
{
struct nlist* nlist32_ptr = (struct nlist*)(nlist_data + (nlist_idx * nlist_size));
nlist.n_strx = nlist32_ptr->n_strx;
nlist.n_type = nlist32_ptr->n_type;
nlist.n_sect = nlist32_ptr->n_sect;
nlist.n_desc = nlist32_ptr->n_desc;
nlist.n_value = nlist32_ptr->n_value;
}
else
{
nlist = *((struct nlist_64*)(nlist_data + (nlist_idx * nlist_size)));
}
SymbolType type = eSymbolTypeInvalid;
const char* symbol_name = &strtab_data[nlist.n_strx];
if (symbol_name[0] == '\0')
symbol_name = NULL;
Section* symbol_section = NULL;
bool add_nlist = true;
bool is_debug = ((nlist.n_type & NlistMaskStab) != 0);
assert (sym_idx < num_syms);
sym[sym_idx].SetDebug (is_debug);
if (is_debug)
{
switch (nlist.n_type)
{
case StabGlobalSymbol:
// N_GSYM -- global symbol: name,,NO_SECT,type,0
// Sometimes the N_GSYM value contains the address.
sym[sym_idx].SetExternal(true);
if (nlist.n_value != 0)
symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value);
type = eSymbolTypeData;
break;
case StabFunctionName:
// N_FNAME -- procedure name (f77 kludge): name,,NO_SECT,0,0
type = eSymbolTypeCompiler;
break;
case StabFunction:
// N_FUN -- procedure: name,,n_sect,linenumber,address
if (symbol_name)
{
type = eSymbolTypeCode;
symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value);
N_FUN_addr_to_sym_idx[nlist.n_value] = sym_idx;
// We use the current number of symbols in the symbol table in lieu of
// using nlist_idx in case we ever start trimming entries out
N_FUN_indexes.push_back(sym_idx);
}
else
{
type = eSymbolTypeCompiler;
if ( !N_FUN_indexes.empty() )
{
// Copy the size of the function into the original STAB entry so we don't have
// to hunt for it later
symtab->SymbolAtIndex(N_FUN_indexes.back())->SetByteSize(nlist.n_value);
N_FUN_indexes.pop_back();
// We don't really need the end function STAB as it contains the size which
// we already placed with the original symbol, so don't add it if we want a
// minimal symbol table
if (minimize)
add_nlist = false;
}
}
break;
case StabStaticSymbol:
// N_STSYM -- static symbol: name,,n_sect,type,address
N_STSYM_addr_to_sym_idx[nlist.n_value] = sym_idx;
symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value);
type = eSymbolTypeData;
break;
case StabLocalCommon:
// N_LCSYM -- .lcomm symbol: name,,n_sect,type,address
symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value);
type = eSymbolTypeCommonBlock;
break;
case StabBeginSymbol:
// N_BNSYM
// We use the current number of symbols in the symbol table in lieu of
// using nlist_idx in case we ever start trimming entries out
if (minimize)
{
// Skip these if we want minimal symbol tables
add_nlist = false;
}
else
{
symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value);
N_NSYM_indexes.push_back(sym_idx);
type = eSymbolTypeScopeBegin;
}
break;
case StabEndSymbol:
// N_ENSYM
// Set the size of the N_BNSYM to the terminating index of this N_ENSYM
// so that we can always skip the entire symbol if we need to navigate
// more quickly at the source level when parsing STABS
if (minimize)
{
// Skip these if we want minimal symbol tables
add_nlist = false;
}
else
{
if ( !N_NSYM_indexes.empty() )
{
symbol_ptr = symtab->SymbolAtIndex(N_NSYM_indexes.back());
symbol_ptr->SetByteSize(sym_idx + 1);
symbol_ptr->SetSizeIsSibling(true);
N_NSYM_indexes.pop_back();
}
type = eSymbolTypeScopeEnd;
}
break;
case StabSourceFileOptions:
// N_OPT - emitted with gcc2_compiled and in gcc source
type = eSymbolTypeCompiler;
break;
case StabRegisterSymbol:
// N_RSYM - register sym: name,,NO_SECT,type,register
type = eSymbolTypeVariable;
break;
case StabSourceLine:
// N_SLINE - src line: 0,,n_sect,linenumber,address
symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value);
type = eSymbolTypeLineEntry;
break;
case StabStructureType:
// N_SSYM - structure elt: name,,NO_SECT,type,struct_offset
type = eSymbolTypeVariableType;
break;
case StabSourceFileName:
// N_SO - source file name
type = eSymbolTypeSourceFile;
if (symbol_name == NULL)
{
if (minimize)
add_nlist = false;
if (N_SO_index != UINT32_MAX)
{
// Set the size of the N_SO to the terminating index of this N_SO
// so that we can always skip the entire N_SO if we need to navigate
// more quickly at the source level when parsing STABS
symbol_ptr = symtab->SymbolAtIndex(N_SO_index);
symbol_ptr->SetByteSize(sym_idx + (minimize ? 0 : 1));
symbol_ptr->SetSizeIsSibling(true);
}
N_NSYM_indexes.clear();
N_INCL_indexes.clear();
N_BRAC_indexes.clear();
N_COMM_indexes.clear();
N_FUN_indexes.clear();
N_SO_index = UINT32_MAX;
}
else
{
// We use the current number of symbols in the symbol table in lieu of
// using nlist_idx in case we ever start trimming entries out
if (symbol_name[0] == '/')
N_SO_index = sym_idx;
else if (minimize && (N_SO_index == sym_idx - 1))
{
const char *so_path = sym[sym_idx - 1].GetMangled().GetDemangledName().AsCString();
if (so_path && so_path[0])
{
std::string full_so_path (so_path);
if (*full_so_path.rbegin() != '/')
full_so_path += '/';
full_so_path += symbol_name;
sym[sym_idx - 1].GetMangled().SetValue(full_so_path.c_str(), false);
add_nlist = false;
m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
}
}
}
break;
case StabObjectFileName:
// N_OSO - object file name: name,,0,0,st_mtime
type = eSymbolTypeObjectFile;
break;
case StabLocalSymbol:
// N_LSYM - local sym: name,,NO_SECT,type,offset
type = eSymbolTypeLocal;
break;
//----------------------------------------------------------------------
// INCL scopes
//----------------------------------------------------------------------
case StabBeginIncludeFileName:
// N_BINCL - include file beginning: name,,NO_SECT,0,sum
// We use the current number of symbols in the symbol table in lieu of
// using nlist_idx in case we ever start trimming entries out
N_INCL_indexes.push_back(sym_idx);
type = eSymbolTypeScopeBegin;
break;
case StabEndIncludeFile:
// N_EINCL - include file end: name,,NO_SECT,0,0
// Set the size of the N_BINCL to the terminating index of this N_EINCL
// so that we can always skip the entire symbol if we need to navigate
// more quickly at the source level when parsing STABS
if ( !N_INCL_indexes.empty() )
{
symbol_ptr = symtab->SymbolAtIndex(N_INCL_indexes.back());
symbol_ptr->SetByteSize(sym_idx + 1);
symbol_ptr->SetSizeIsSibling(true);
N_INCL_indexes.pop_back();
}
type = eSymbolTypeScopeEnd;
break;
case StabIncludeFileName:
// N_SOL - #included file name: name,,n_sect,0,address
type = eSymbolTypeHeaderFile;
// We currently don't use the header files on darwin
if (minimize)
add_nlist = false;
break;
case StabCompilerParameters:
// N_PARAMS - compiler parameters: name,,NO_SECT,0,0
type = eSymbolTypeCompiler;
break;
case StabCompilerVersion:
// N_VERSION - compiler version: name,,NO_SECT,0,0
type = eSymbolTypeCompiler;
break;
case StabCompilerOptLevel:
// N_OLEVEL - compiler -O level: name,,NO_SECT,0,0
type = eSymbolTypeCompiler;
break;
case StabParameter:
// N_PSYM - parameter: name,,NO_SECT,type,offset
type = eSymbolTypeVariable;
break;
case StabAlternateEntry:
// N_ENTRY - alternate entry: name,,n_sect,linenumber,address
symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value);
type = eSymbolTypeLineEntry;
break;
//----------------------------------------------------------------------
// Left and Right Braces
//----------------------------------------------------------------------
case StabLeftBracket:
// N_LBRAC - left bracket: 0,,NO_SECT,nesting level,address
// We use the current number of symbols in the symbol table in lieu of
// using nlist_idx in case we ever start trimming entries out
symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value);
N_BRAC_indexes.push_back(sym_idx);
type = eSymbolTypeScopeBegin;
break;
case StabRightBracket:
// N_RBRAC - right bracket: 0,,NO_SECT,nesting level,address
// Set the size of the N_LBRAC to the terminating index of this N_RBRAC
// so that we can always skip the entire symbol if we need to navigate
// more quickly at the source level when parsing STABS
symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value);
if ( !N_BRAC_indexes.empty() )
{
symbol_ptr = symtab->SymbolAtIndex(N_BRAC_indexes.back());
symbol_ptr->SetByteSize(sym_idx + 1);
symbol_ptr->SetSizeIsSibling(true);
N_BRAC_indexes.pop_back();
}
type = eSymbolTypeScopeEnd;
break;
case StabDeletedIncludeFile:
// N_EXCL - deleted include file: name,,NO_SECT,0,sum
type = eSymbolTypeHeaderFile;
break;
//----------------------------------------------------------------------
// COMM scopes
//----------------------------------------------------------------------
case StabBeginCommon:
// N_BCOMM - begin common: name,,NO_SECT,0,0
// We use the current number of symbols in the symbol table in lieu of
// using nlist_idx in case we ever start trimming entries out
type = eSymbolTypeScopeBegin;
N_COMM_indexes.push_back(sym_idx);
break;
case StabEndCommonLocal:
// N_ECOML - end common (local name): 0,,n_sect,0,address
symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value);
// Fall through
case StabEndCommon:
// N_ECOMM - end common: name,,n_sect,0,0
// Set the size of the N_BCOMM to the terminating index of this N_ECOMM/N_ECOML
// so that we can always skip the entire symbol if we need to navigate
// more quickly at the source level when parsing STABS
if ( !N_COMM_indexes.empty() )
{
symbol_ptr = symtab->SymbolAtIndex(N_COMM_indexes.back());
symbol_ptr->SetByteSize(sym_idx + 1);
symbol_ptr->SetSizeIsSibling(true);
N_COMM_indexes.pop_back();
}
type = eSymbolTypeScopeEnd;
break;
case StabLength:
// N_LENG - second stab entry with length information
type = eSymbolTypeAdditional;
break;
default: break;
}
}
else
{
//uint8_t n_pext = NlistMaskPrivateExternal & nlist.n_type;
uint8_t n_type = NlistMaskType & nlist.n_type;
sym[sym_idx].SetExternal((NlistMaskExternal & nlist.n_type) != 0);
if (symbol_name && ::strstr (symbol_name, ".objc") == symbol_name)
{
type = eSymbolTypeRuntime;
}
else
{
switch (n_type)
{
case NListTypeIndirect: // N_INDR - Fall through
case NListTypePreboundUndefined:// N_PBUD - Fall through
case NListTypeUndefined: // N_UNDF
type = eSymbolTypeExtern;
break;
case NListTypeAbsolute: // N_ABS
type = eSymbolTypeAbsolute;
break;
case NListTypeSection: // N_SECT
symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value);
assert(symbol_section != NULL);
if (TEXT_eh_frame_sectID == nlist.n_sect)
{
type = eSymbolTypeException;
}
else
{
uint32_t section_type = symbol_section->Get() & SectionFlagMaskSectionType;
switch (section_type)
{
case SectionTypeRegular: break; // regular section
//case SectionTypeZeroFill: type = eSymbolTypeData; break; // zero fill on demand section
case SectionTypeCStringLiterals: type = eSymbolTypeData; break; // section with only literal C strings
case SectionType4ByteLiterals: type = eSymbolTypeData; break; // section with only 4 byte literals
case SectionType8ByteLiterals: type = eSymbolTypeData; break; // section with only 8 byte literals
case SectionTypeLiteralPointers: type = eSymbolTypeTrampoline; break; // section with only pointers to literals
case SectionTypeNonLazySymbolPointers: type = eSymbolTypeTrampoline; break; // section with only non-lazy symbol pointers
case SectionTypeLazySymbolPointers: type = eSymbolTypeTrampoline; break; // section with only lazy symbol pointers
case SectionTypeSymbolStubs: type = eSymbolTypeTrampoline; break; // section with only symbol stubs, byte size of stub in the reserved2 field
case SectionTypeModuleInitFunctionPointers: type = eSymbolTypeCode; break; // section with only function pointers for initialization
case SectionTypeModuleTermFunctionPointers: type = eSymbolTypeCode; break; // section with only function pointers for termination
//case SectionTypeCoalesced: type = eSymbolType; break; // section contains symbols that are to be coalesced
//case SectionTypeZeroFillLarge: type = eSymbolTypeData; break; // zero fill on demand section (that can be larger than 4 gigabytes)
case SectionTypeInterposing: type = eSymbolTypeTrampoline; break; // section with only pairs of function pointers for interposing
case SectionType16ByteLiterals: type = eSymbolTypeData; break; // section with only 16 byte literals
case SectionTypeDTraceObjectFormat: type = eSymbolTypeInstrumentation; break;
case SectionTypeLazyDylibSymbolPointers: type = eSymbolTypeTrampoline; break;
default: break;
}
if (type == eSymbolTypeInvalid)
{
const char *symbol_sect_name = symbol_section->GetName().AsCString();
if (symbol_section->IsDescendant (text_section_sp.get()))
{
if (symbol_section->IsClear(SectionAttrUserPureInstructions |
SectionAttrUserSelfModifyingCode |
SectionAttrSytemSomeInstructions))
type = eSymbolTypeData;
else
type = eSymbolTypeCode;
}
else
if (symbol_section->IsDescendant(data_section_sp.get()))
{
if (symbol_sect_name && ::strstr (symbol_sect_name, "__objc") == symbol_sect_name)
{
type = eSymbolTypeRuntime;
}
else
if (symbol_sect_name && ::strstr (symbol_sect_name, "__gcc_except_tab") == symbol_sect_name)
{
type = eSymbolTypeException;
}
else
{
type = eSymbolTypeData;
}
}
else
if (symbol_sect_name && ::strstr (symbol_sect_name, "__IMPORT") == symbol_sect_name)
{
type = eSymbolTypeTrampoline;
}
else
if (symbol_section->IsDescendant(objc_section_sp.get()))
{
type = eSymbolTypeRuntime;
}
}
}
break;
}
}
}
if (add_nlist)
{
bool symbol_name_is_mangled = false;
if (symbol_name && symbol_name[0] == '_')
{
symbol_name_is_mangled = symbol_name[1] == '_';
symbol_name++; // Skip the leading underscore
}
uint64_t symbol_value = nlist.n_value;
if (symbol_name)
sym[sym_idx].GetMangled().SetValue(symbol_name, symbol_name_is_mangled);
if (is_debug == false)
{
if (type == eSymbolTypeCode)
{
// See if we can find a N_FUN entry for any code symbols.
// If we do find a match, and the name matches, then we
// can merge the two into just the function symbol to avoid
// duplicate entries in the symbol table
ValueToSymbolIndexMap::const_iterator pos = N_FUN_addr_to_sym_idx.find (nlist.n_value);
if (pos != N_FUN_addr_to_sym_idx.end())
{
if ((symbol_name_is_mangled == true && sym[sym_idx].GetMangled().GetMangledName() == sym[pos->second].GetMangled().GetMangledName()) ||
(symbol_name_is_mangled == false && sym[sym_idx].GetMangled().GetDemangledName() == sym[pos->second].GetMangled().GetDemangledName()))
{
m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
// We just need the flags from the linker symbol, so put these flags
// into the N_FUN flags to avoid duplicate symbols in the symbol table
sym[pos->second].SetFlags (nlist.n_type << 16 | nlist.n_desc);
sym[sym_idx].Clear();
continue;
}
}
}
else if (type == eSymbolTypeData)
{
// See if we can find a N_STSYM entry for any data symbols.
// If we do find a match, and the name matches, then we
// can merge the two into just the Static symbol to avoid
// duplicate entries in the symbol table
ValueToSymbolIndexMap::const_iterator pos = N_STSYM_addr_to_sym_idx.find (nlist.n_value);
if (pos != N_STSYM_addr_to_sym_idx.end())
{
if ((symbol_name_is_mangled == true && sym[sym_idx].GetMangled().GetMangledName() == sym[pos->second].GetMangled().GetMangledName()) ||
(symbol_name_is_mangled == false && sym[sym_idx].GetMangled().GetDemangledName() == sym[pos->second].GetMangled().GetDemangledName()))
{
m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
// We just need the flags from the linker symbol, so put these flags
// into the N_STSYM flags to avoid duplicate symbols in the symbol table
sym[pos->second].SetFlags (nlist.n_type << 16 | nlist.n_desc);
sym[sym_idx].Clear();
continue;
}
}
}
}
if (symbol_section != NULL)
symbol_value -= symbol_section->GetFileAddress();
sym[sym_idx].SetID (nlist_idx);
sym[sym_idx].SetType (type);
sym[sym_idx].GetAddressRangeRef().GetBaseAddress().SetSection (symbol_section);
sym[sym_idx].GetAddressRangeRef().GetBaseAddress().SetOffset (symbol_value);
sym[sym_idx].SetFlags (nlist.n_type << 16 | nlist.n_desc);
++sym_idx;
}
else
{
sym[sym_idx].Clear();
}
}
// STAB N_GSYM entries end up having a symbol type eSymbolTypeGlobal and when the symbol value
// is zero, the address of the global ends up being in a non-STAB entry. Try and fix up all
// such entries by figuring out what the address for the global is by looking up this non-STAB
// entry and copying the value into the debug symbol's value to save us the hassle in the
// debug symbol parser.
Symbol *global_symbol = NULL;
for (nlist_idx = 0;
nlist_idx < symtab_load_command.nsyms && (global_symbol = symtab->FindSymbolWithType (eSymbolTypeData, Symtab::eDebugYes, Symtab::eVisibilityAny, nlist_idx)) != NULL;
nlist_idx++)
{
if (global_symbol->GetValue().GetFileAddress() == 0)
{
std::vector<uint32_t> indexes;
if (symtab->AppendSymbolIndexesWithName (global_symbol->GetMangled().GetName(), indexes) > 0)
{
std::vector<uint32_t>::const_iterator pos;
std::vector<uint32_t>::const_iterator end = indexes.end();
for (pos = indexes.begin(); pos != end; ++pos)
{
symbol_ptr = symtab->SymbolAtIndex(*pos);
if (symbol_ptr != global_symbol && symbol_ptr->IsDebug() == false)
{
global_symbol->SetValue(symbol_ptr->GetValue());
break;
}
}
}
}
}
// Trim our symbols down to just what we ended up with after
// removing any symbols.
if (sym_idx < num_syms)
{
num_syms = sym_idx;
sym = symtab->Resize (num_syms);
}
// Now synthesize indirect symbols
if (m_dysymtab.nindirectsyms != 0)
{
DataBufferSP indirect_symbol_indexes_sp(m_file.ReadFileContents(m_offset + m_dysymtab.indirectsymoff, m_dysymtab.nindirectsyms * 4));
if (indirect_symbol_indexes_sp && indirect_symbol_indexes_sp->GetByteSize())
{
NListIndexToSymbolIndexMap::const_iterator end_index_pos = m_nlist_idx_to_sym_idx.end();
DataExtractor indirect_symbol_index_data (indirect_symbol_indexes_sp, m_data.GetByteOrder(), m_data.GetAddressByteSize());
for (uint32_t sect_idx = 1; sect_idx < m_mach_sections.size(); ++sect_idx)
{
if ((m_mach_sections[sect_idx].flags & SectionFlagMaskSectionType) == SectionTypeSymbolStubs)
{
uint32_t symbol_stub_byte_size = m_mach_sections[sect_idx].reserved2;
if (symbol_stub_byte_size == 0)
continue;
const uint32_t num_symbol_stubs = m_mach_sections[sect_idx].size / symbol_stub_byte_size;
if (num_symbol_stubs == 0)
continue;
const uint32_t symbol_stub_index_offset = m_mach_sections[sect_idx].reserved1;
uint32_t synthetic_stub_sym_id = symtab_load_command.nsyms;
for (uint32_t stub_idx = 0; stub_idx < num_symbol_stubs; ++stub_idx)
{
const uint32_t symbol_stub_index = symbol_stub_index_offset + stub_idx;
const lldb::addr_t symbol_stub_addr = m_mach_sections[sect_idx].addr + (stub_idx * symbol_stub_byte_size);
uint32_t symbol_stub_offset = symbol_stub_index * 4;
if (indirect_symbol_index_data.ValidOffsetForDataOfSize(symbol_stub_offset, 4))
{
const uint32_t stub_sym_id = indirect_symbol_index_data.GetU32 (&symbol_stub_offset);
if (stub_sym_id & (IndirectSymbolAbsolute | IndirectSymbolLocal))
continue;
NListIndexToSymbolIndexMap::const_iterator index_pos = m_nlist_idx_to_sym_idx.find (stub_sym_id);
Symbol *stub_symbol = NULL;
if (index_pos != end_index_pos)
{
// We have a remapping from the original nlist index to
// a current symbol index, so just look this up by index
stub_symbol = symtab->SymbolAtIndex (index_pos->second);
}
else
{
// We need to lookup a symbol using the original nlist
// symbol index since this index is coming from the
// S_SYMBOL_STUBS
stub_symbol = symtab->FindSymbolByID (stub_sym_id);
}
assert (stub_symbol);
if (stub_symbol)
{
Address so_addr(symbol_stub_addr, section_list);
if (stub_symbol->GetType() == eSymbolTypeExtern)
{
// Change the external symbol into a trampoline that makes sense
// These symbols were N_UNDF N_EXT, and are useless to us, so we
// can re-use them so we don't have to make up a synthetic symbol
// for no good reason.
stub_symbol->SetType (eSymbolTypeTrampoline);
stub_symbol->SetExternal (false);
stub_symbol->GetAddressRangeRef().GetBaseAddress() = so_addr;
stub_symbol->GetAddressRangeRef().SetByteSize (symbol_stub_byte_size);
}
else
{
// Make a synthetic symbol to describe the trampoline stub
if (sym_idx >= num_syms)
sym = symtab->Resize (++num_syms);
sym[sym_idx].SetID (synthetic_stub_sym_id++);
sym[sym_idx].GetMangled() = stub_symbol->GetMangled();
sym[sym_idx].SetType (eSymbolTypeTrampoline);
sym[sym_idx].SetIsSynthetic (true);
sym[sym_idx].GetAddressRangeRef().GetBaseAddress() = so_addr;
sym[sym_idx].GetAddressRangeRef().SetByteSize (symbol_stub_byte_size);
++sym_idx;
}
}
}
}
}
}
}
}
return symtab->GetNumSymbols();
}
}
offset = cmd_offset + symtab_load_command.cmdsize;
}
return 0;
}
void
ObjectFileMachO::Dump (Stream *s)
{
lldb_private::Mutex::Locker locker(m_mutex);
s->Printf("%.*p: ", (int)sizeof(void*) * 2, this);
s->Indent();
if (m_header.magic == HeaderMagic64 || m_header.magic == HeaderMagic64Swapped)
s->PutCString("ObjectFileMachO64");
else
s->PutCString("ObjectFileMachO32");
ArchSpec header_arch(eArchTypeMachO, m_header.cputype, m_header.cpusubtype);
*s << ", file = '" << m_file << "', arch = " << header_arch.GetArchitectureName() << "\n";
if (m_sections_ap.get())
m_sections_ap->Dump(s, NULL, true, UINT32_MAX);
if (m_symtab_ap.get())
m_symtab_ap->Dump(s, NULL, eSortOrderNone);
}
bool
ObjectFileMachO::GetUUID (lldb_private::UUID* uuid)
{
lldb_private::Mutex::Locker locker(m_mutex);
struct uuid_command load_cmd;
uint32_t offset = MachHeaderSizeFromMagic(m_header.magic);
uint32_t i;
for (i=0; i<m_header.ncmds; ++i)
{
const uint32_t cmd_offset = offset;
if (m_data.GetU32(&offset, &load_cmd, 2) == NULL)
break;
if (load_cmd.cmd == LoadCommandUUID)
{
const uint8_t *uuid_bytes = m_data.PeekData(offset, 16);
if (uuid_bytes)
{
uuid->SetBytes (uuid_bytes);
return true;
}
return false;
}
offset = cmd_offset + load_cmd.cmdsize;
}
return false;
}
uint32_t
ObjectFileMachO::GetDependentModules (FileSpecList& files)
{
lldb_private::Mutex::Locker locker(m_mutex);
struct load_command load_cmd;
uint32_t offset = MachHeaderSizeFromMagic(m_header.magic);
uint32_t count = 0;
uint32_t i;
for (i=0; i<m_header.ncmds; ++i)
{
const uint32_t cmd_offset = offset;
if (m_data.GetU32(&offset, &load_cmd, 2) == NULL)
break;
switch (load_cmd.cmd)
{
case LoadCommandDylibLoad:
case LoadCommandDylibLoadWeak:
case LoadCommandDylibReexport:
case LoadCommandDynamicLinkerLoad:
case LoadCommandFixedVMShlibLoad:
case LoadCommandDylibLoadUpward:
{
uint32_t name_offset = cmd_offset + m_data.GetU32(&offset);
const char *path = m_data.PeekCStr(name_offset);
// Skip any path that starts with '@' since these are usually:
// @executable_path/.../file
// @rpath/.../file
if (path && path[0] != '@')
{
FileSpec file_spec(path, true);
if (files.AppendIfUnique(file_spec))
count++;
}
}
break;
default:
break;
}
offset = cmd_offset + load_cmd.cmdsize;
}
return count;
}
lldb_private::Address
ObjectFileMachO::GetEntryPointAddress ()
{
// If the object file is not an executable it can't hold the entry point. m_entry_point_address
// is initialized to an invalid address, so we can just return that.
// If m_entry_point_address is valid it means we've found it already, so return the cached value.
if (!IsExecutable() || m_entry_point_address.IsValid())
return m_entry_point_address;
// Otherwise, look for the UnixThread or Thread command. The data for the Thread command is given in
// /usr/include/mach-o.h, but it is basically:
//
// uint32_t flavor - this is the flavor argument you would pass to thread_get_state
// uint32_t count - this is the count of longs in the thread state data
// struct XXX_thread_state state - this is the structure from <machine/thread_status.h> corresponding to the flavor.
// <repeat this trio>
//
// So we just keep reading the various register flavors till we find the GPR one, then read the PC out of there.
// FIXME: We will need to have a "RegisterContext data provider" class at some point that can get all the registers
// out of data in this form & attach them to a given thread. That should underlie the MacOS X User process plugin,
// and we'll also need it for the MacOS X Core File process plugin. When we have that we can also use it here.
//
// For now we hard-code the offsets and flavors we need:
//
//
lldb_private::Mutex::Locker locker(m_mutex);
struct load_command load_cmd;
uint32_t offset = MachHeaderSizeFromMagic(m_header.magic);
uint32_t i;
lldb::addr_t start_address = LLDB_INVALID_ADDRESS;
bool done = false;
for (i=0; i<m_header.ncmds; ++i)
{
const uint32_t cmd_offset = offset;
if (m_data.GetU32(&offset, &load_cmd, 2) == NULL)
break;
switch (load_cmd.cmd)
{
case LoadCommandUnixThread:
case LoadCommandThread:
{
while (offset < cmd_offset + load_cmd.cmdsize)
{
uint32_t flavor = m_data.GetU32(&offset);
uint32_t count = m_data.GetU32(&offset);
if (count == 0)
{
// We've gotten off somehow, log and exit;
return m_entry_point_address;
}
switch (m_header.cputype)
{
case llvm::MachO::CPUTypeARM:
if (flavor == 1) // ARM_THREAD_STATE from mach/arm/thread_status.h
{
offset += 60; // This is the offset of pc in the GPR thread state data structure.
start_address = m_data.GetU32(&offset);
done = true;
}
break;
case llvm::MachO::CPUTypeI386:
if (flavor == 1) // x86_THREAD_STATE32 from mach/i386/thread_status.h
{
offset += 40; // This is the offset of eip in the GPR thread state data structure.
start_address = m_data.GetU32(&offset);
done = true;
}
break;
case llvm::MachO::CPUTypeX86_64:
if (flavor == 4) // x86_THREAD_STATE64 from mach/i386/thread_status.h
{
offset += 16 * 8; // This is the offset of rip in the GPR thread state data structure.
start_address = m_data.GetU64(&offset);
done = true;
}
break;
default:
return m_entry_point_address;
}
// Haven't found the GPR flavor yet, skip over the data for this flavor:
if (done)
break;
offset += count * 4;
}
}
break;
default:
break;
}
if (done)
break;
// Go to the next load command:
offset = cmd_offset + load_cmd.cmdsize;
}
if (start_address != LLDB_INVALID_ADDRESS)
{
// We got the start address from the load commands, so now resolve that address in the sections
// of this ObjectFile:
if (!m_entry_point_address.ResolveAddressUsingFileSections (start_address, GetSectionList()))
{
m_entry_point_address.Clear();
}
}
else
{
// We couldn't read the UnixThread load command - maybe it wasn't there. As a fallback look for the
// "start" symbol in the main executable.
SymbolContextList contexts;
SymbolContext context;
if (!m_module->FindSymbolsWithNameAndType(ConstString ("start"), lldb::eSymbolTypeCode, contexts))
return m_entry_point_address;
contexts.GetContextAtIndex(0, context);
m_entry_point_address = context.symbol->GetValue();
}
return m_entry_point_address;
}
bool
ObjectFileMachO::GetArchitecture (ArchSpec &arch)
{
lldb_private::Mutex::Locker locker(m_mutex);
arch.SetArchitecture (lldb::eArchTypeMachO, m_header.cputype, m_header.cpusubtype);
return true;
}
//------------------------------------------------------------------
// PluginInterface protocol
//------------------------------------------------------------------
const char *
ObjectFileMachO::GetPluginName()
{
return "ObjectFileMachO";
}
const char *
ObjectFileMachO::GetShortPluginName()
{
return GetPluginNameStatic();
}
uint32_t
ObjectFileMachO::GetPluginVersion()
{
return 1;
}