Florian Hahn 6a9e8fc50c
[VPlan] Introduce VPInstructionWithType, use instead of VPScalarCast(NFC) (#129706)
There are some opcodes that currently require specialized recipes, due
to their result type not being implied by their operands, including
casts.

This leads to duplication from defining multiple full recipes.

This patch introduces a new VPInstructionWithType subclass that also
stores the result type. The general idea is to have opcodes needing to
specify a result type to use this general recipe. The current patch
replaces VPScalarCastRecipe with VInstructionWithType, a similar patch
for VPWidenCastRecipe will follow soon.

There are a few proposed opcodes that should also benefit, without the
need of workarounds:
* https://github.com/llvm/llvm-project/pull/129508
* https://github.com/llvm/llvm-project/pull/119284

PR: https://github.com/llvm/llvm-project/pull/129706
2025-04-10 22:30:40 +01:00

127 lines
4.7 KiB
C++

//===- VPlanUtils.cpp - VPlan-related utilities ---------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "VPlanUtils.h"
#include "VPlanPatternMatch.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
using namespace llvm;
bool vputils::onlyFirstLaneUsed(const VPValue *Def) {
return all_of(Def->users(),
[Def](const VPUser *U) { return U->onlyFirstLaneUsed(Def); });
}
bool vputils::onlyFirstPartUsed(const VPValue *Def) {
return all_of(Def->users(),
[Def](const VPUser *U) { return U->onlyFirstPartUsed(Def); });
}
VPValue *vputils::getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr,
ScalarEvolution &SE) {
if (auto *Expanded = Plan.getSCEVExpansion(Expr))
return Expanded;
VPValue *Expanded = nullptr;
if (auto *E = dyn_cast<SCEVConstant>(Expr))
Expanded = Plan.getOrAddLiveIn(E->getValue());
else {
auto *U = dyn_cast<SCEVUnknown>(Expr);
// Skip SCEV expansion if Expr is a SCEVUnknown wrapping a non-instruction
// value. Otherwise the value may be defined in a loop and using it directly
// will break LCSSA form. The SCEV expansion takes care of preserving LCSSA
// form.
if (U && !isa<Instruction>(U->getValue())) {
Expanded = Plan.getOrAddLiveIn(U->getValue());
} else {
Expanded = new VPExpandSCEVRecipe(Expr, SE);
Plan.getEntry()->appendRecipe(Expanded->getDefiningRecipe());
}
}
Plan.addSCEVExpansion(Expr, Expanded);
return Expanded;
}
bool vputils::isHeaderMask(const VPValue *V, VPlan &Plan) {
if (isa<VPActiveLaneMaskPHIRecipe>(V))
return true;
auto IsWideCanonicalIV = [](VPValue *A) {
return isa<VPWidenCanonicalIVRecipe>(A) ||
(isa<VPWidenIntOrFpInductionRecipe>(A) &&
cast<VPWidenIntOrFpInductionRecipe>(A)->isCanonical());
};
VPValue *A, *B;
using namespace VPlanPatternMatch;
if (match(V, m_ActiveLaneMask(m_VPValue(A), m_VPValue(B))))
return B == Plan.getTripCount() &&
(match(A, m_ScalarIVSteps(m_CanonicalIV(), m_SpecificInt(1))) ||
IsWideCanonicalIV(A));
return match(V, m_Binary<Instruction::ICmp>(m_VPValue(A), m_VPValue(B))) &&
IsWideCanonicalIV(A) && B == Plan.getOrCreateBackedgeTakenCount();
}
const SCEV *vputils::getSCEVExprForVPValue(VPValue *V, ScalarEvolution &SE) {
if (V->isLiveIn())
return SE.getSCEV(V->getLiveInIRValue());
// TODO: Support constructing SCEVs for more recipes as needed.
return TypeSwitch<const VPRecipeBase *, const SCEV *>(V->getDefiningRecipe())
.Case<VPExpandSCEVRecipe>(
[](const VPExpandSCEVRecipe *R) { return R->getSCEV(); })
.Default([&SE](const VPRecipeBase *) { return SE.getCouldNotCompute(); });
}
bool vputils::isUniformAcrossVFsAndUFs(VPValue *V) {
using namespace VPlanPatternMatch;
// Live-ins are uniform.
if (V->isLiveIn())
return true;
VPRecipeBase *R = V->getDefiningRecipe();
if (R && V->isDefinedOutsideLoopRegions()) {
if (match(V->getDefiningRecipe(),
m_VPInstruction<VPInstruction::CanonicalIVIncrementForPart>(
m_VPValue())))
return false;
return all_of(R->operands(), isUniformAcrossVFsAndUFs);
}
auto *CanonicalIV = R->getParent()->getPlan()->getCanonicalIV();
// Canonical IV chain is uniform.
if (V == CanonicalIV || V == CanonicalIV->getBackedgeValue())
return true;
return TypeSwitch<const VPRecipeBase *, bool>(R)
.Case<VPDerivedIVRecipe>([](const auto *R) { return true; })
.Case<VPReplicateRecipe>([](const auto *R) {
// Loads and stores that are uniform across VF lanes are handled by
// VPReplicateRecipe.IsUniform. They are also uniform across UF parts if
// all their operands are invariant.
// TODO: Further relax the restrictions.
return R->isUniform() &&
(isa<LoadInst, StoreInst>(R->getUnderlyingValue())) &&
all_of(R->operands(), isUniformAcrossVFsAndUFs);
})
.Case<VPInstruction>([](const auto *VPI) {
return VPI->isScalarCast() &&
isUniformAcrossVFsAndUFs(VPI->getOperand(0));
})
.Case<VPWidenCastRecipe>([](const auto *R) {
// A cast is uniform according to its operand.
return isUniformAcrossVFsAndUFs(R->getOperand(0));
})
.Default([](const VPRecipeBase *) { // A value is considered non-uniform
// unless proven otherwise.
return false;
});
}