
Summary: The new OpenMPConstants.h is a location for all OpenMP related constants (and helpers) to live. This patch moves the directives there (the enum OpenMPDirectiveKind) and rewires Clang to use the new location. Initially part of D69785. Reviewers: kiranchandramohan, ABataev, RaviNarayanaswamy, gtbercea, grokos, sdmitriev, JonChesterfield, hfinkel, fghanim Subscribers: jholewinski, ppenzin, penzn, llvm-commits, cfe-commits, jfb, guansong, bollu, hiraditya, mgorny Tags: #clang, #llvm Differential Revision: https://reviews.llvm.org/D69853
11613 lines
487 KiB
C++
11613 lines
487 KiB
C++
//===----- CGOpenMPRuntime.cpp - Interface to OpenMP Runtimes -------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This provides a class for OpenMP runtime code generation.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "CGOpenMPRuntime.h"
|
|
#include "CGCXXABI.h"
|
|
#include "CGCleanup.h"
|
|
#include "CGRecordLayout.h"
|
|
#include "CodeGenFunction.h"
|
|
#include "clang/AST/Attr.h"
|
|
#include "clang/AST/Decl.h"
|
|
#include "clang/AST/StmtOpenMP.h"
|
|
#include "clang/Basic/BitmaskEnum.h"
|
|
#include "clang/CodeGen/ConstantInitBuilder.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/SetOperations.h"
|
|
#include "llvm/Bitcode/BitcodeReader.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/GlobalValue.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/Support/Format.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <cassert>
|
|
|
|
using namespace clang;
|
|
using namespace CodeGen;
|
|
using namespace llvm::omp;
|
|
|
|
namespace {
|
|
/// Base class for handling code generation inside OpenMP regions.
|
|
class CGOpenMPRegionInfo : public CodeGenFunction::CGCapturedStmtInfo {
|
|
public:
|
|
/// Kinds of OpenMP regions used in codegen.
|
|
enum CGOpenMPRegionKind {
|
|
/// Region with outlined function for standalone 'parallel'
|
|
/// directive.
|
|
ParallelOutlinedRegion,
|
|
/// Region with outlined function for standalone 'task' directive.
|
|
TaskOutlinedRegion,
|
|
/// Region for constructs that do not require function outlining,
|
|
/// like 'for', 'sections', 'atomic' etc. directives.
|
|
InlinedRegion,
|
|
/// Region with outlined function for standalone 'target' directive.
|
|
TargetRegion,
|
|
};
|
|
|
|
CGOpenMPRegionInfo(const CapturedStmt &CS,
|
|
const CGOpenMPRegionKind RegionKind,
|
|
const RegionCodeGenTy &CodeGen, OpenMPDirectiveKind Kind,
|
|
bool HasCancel)
|
|
: CGCapturedStmtInfo(CS, CR_OpenMP), RegionKind(RegionKind),
|
|
CodeGen(CodeGen), Kind(Kind), HasCancel(HasCancel) {}
|
|
|
|
CGOpenMPRegionInfo(const CGOpenMPRegionKind RegionKind,
|
|
const RegionCodeGenTy &CodeGen, OpenMPDirectiveKind Kind,
|
|
bool HasCancel)
|
|
: CGCapturedStmtInfo(CR_OpenMP), RegionKind(RegionKind), CodeGen(CodeGen),
|
|
Kind(Kind), HasCancel(HasCancel) {}
|
|
|
|
/// Get a variable or parameter for storing global thread id
|
|
/// inside OpenMP construct.
|
|
virtual const VarDecl *getThreadIDVariable() const = 0;
|
|
|
|
/// Emit the captured statement body.
|
|
void EmitBody(CodeGenFunction &CGF, const Stmt *S) override;
|
|
|
|
/// Get an LValue for the current ThreadID variable.
|
|
/// \return LValue for thread id variable. This LValue always has type int32*.
|
|
virtual LValue getThreadIDVariableLValue(CodeGenFunction &CGF);
|
|
|
|
virtual void emitUntiedSwitch(CodeGenFunction & /*CGF*/) {}
|
|
|
|
CGOpenMPRegionKind getRegionKind() const { return RegionKind; }
|
|
|
|
OpenMPDirectiveKind getDirectiveKind() const { return Kind; }
|
|
|
|
bool hasCancel() const { return HasCancel; }
|
|
|
|
static bool classof(const CGCapturedStmtInfo *Info) {
|
|
return Info->getKind() == CR_OpenMP;
|
|
}
|
|
|
|
~CGOpenMPRegionInfo() override = default;
|
|
|
|
protected:
|
|
CGOpenMPRegionKind RegionKind;
|
|
RegionCodeGenTy CodeGen;
|
|
OpenMPDirectiveKind Kind;
|
|
bool HasCancel;
|
|
};
|
|
|
|
/// API for captured statement code generation in OpenMP constructs.
|
|
class CGOpenMPOutlinedRegionInfo final : public CGOpenMPRegionInfo {
|
|
public:
|
|
CGOpenMPOutlinedRegionInfo(const CapturedStmt &CS, const VarDecl *ThreadIDVar,
|
|
const RegionCodeGenTy &CodeGen,
|
|
OpenMPDirectiveKind Kind, bool HasCancel,
|
|
StringRef HelperName)
|
|
: CGOpenMPRegionInfo(CS, ParallelOutlinedRegion, CodeGen, Kind,
|
|
HasCancel),
|
|
ThreadIDVar(ThreadIDVar), HelperName(HelperName) {
|
|
assert(ThreadIDVar != nullptr && "No ThreadID in OpenMP region.");
|
|
}
|
|
|
|
/// Get a variable or parameter for storing global thread id
|
|
/// inside OpenMP construct.
|
|
const VarDecl *getThreadIDVariable() const override { return ThreadIDVar; }
|
|
|
|
/// Get the name of the capture helper.
|
|
StringRef getHelperName() const override { return HelperName; }
|
|
|
|
static bool classof(const CGCapturedStmtInfo *Info) {
|
|
return CGOpenMPRegionInfo::classof(Info) &&
|
|
cast<CGOpenMPRegionInfo>(Info)->getRegionKind() ==
|
|
ParallelOutlinedRegion;
|
|
}
|
|
|
|
private:
|
|
/// A variable or parameter storing global thread id for OpenMP
|
|
/// constructs.
|
|
const VarDecl *ThreadIDVar;
|
|
StringRef HelperName;
|
|
};
|
|
|
|
/// API for captured statement code generation in OpenMP constructs.
|
|
class CGOpenMPTaskOutlinedRegionInfo final : public CGOpenMPRegionInfo {
|
|
public:
|
|
class UntiedTaskActionTy final : public PrePostActionTy {
|
|
bool Untied;
|
|
const VarDecl *PartIDVar;
|
|
const RegionCodeGenTy UntiedCodeGen;
|
|
llvm::SwitchInst *UntiedSwitch = nullptr;
|
|
|
|
public:
|
|
UntiedTaskActionTy(bool Tied, const VarDecl *PartIDVar,
|
|
const RegionCodeGenTy &UntiedCodeGen)
|
|
: Untied(!Tied), PartIDVar(PartIDVar), UntiedCodeGen(UntiedCodeGen) {}
|
|
void Enter(CodeGenFunction &CGF) override {
|
|
if (Untied) {
|
|
// Emit task switching point.
|
|
LValue PartIdLVal = CGF.EmitLoadOfPointerLValue(
|
|
CGF.GetAddrOfLocalVar(PartIDVar),
|
|
PartIDVar->getType()->castAs<PointerType>());
|
|
llvm::Value *Res =
|
|
CGF.EmitLoadOfScalar(PartIdLVal, PartIDVar->getLocation());
|
|
llvm::BasicBlock *DoneBB = CGF.createBasicBlock(".untied.done.");
|
|
UntiedSwitch = CGF.Builder.CreateSwitch(Res, DoneBB);
|
|
CGF.EmitBlock(DoneBB);
|
|
CGF.EmitBranchThroughCleanup(CGF.ReturnBlock);
|
|
CGF.EmitBlock(CGF.createBasicBlock(".untied.jmp."));
|
|
UntiedSwitch->addCase(CGF.Builder.getInt32(0),
|
|
CGF.Builder.GetInsertBlock());
|
|
emitUntiedSwitch(CGF);
|
|
}
|
|
}
|
|
void emitUntiedSwitch(CodeGenFunction &CGF) const {
|
|
if (Untied) {
|
|
LValue PartIdLVal = CGF.EmitLoadOfPointerLValue(
|
|
CGF.GetAddrOfLocalVar(PartIDVar),
|
|
PartIDVar->getType()->castAs<PointerType>());
|
|
CGF.EmitStoreOfScalar(CGF.Builder.getInt32(UntiedSwitch->getNumCases()),
|
|
PartIdLVal);
|
|
UntiedCodeGen(CGF);
|
|
CodeGenFunction::JumpDest CurPoint =
|
|
CGF.getJumpDestInCurrentScope(".untied.next.");
|
|
CGF.EmitBranchThroughCleanup(CGF.ReturnBlock);
|
|
CGF.EmitBlock(CGF.createBasicBlock(".untied.jmp."));
|
|
UntiedSwitch->addCase(CGF.Builder.getInt32(UntiedSwitch->getNumCases()),
|
|
CGF.Builder.GetInsertBlock());
|
|
CGF.EmitBranchThroughCleanup(CurPoint);
|
|
CGF.EmitBlock(CurPoint.getBlock());
|
|
}
|
|
}
|
|
unsigned getNumberOfParts() const { return UntiedSwitch->getNumCases(); }
|
|
};
|
|
CGOpenMPTaskOutlinedRegionInfo(const CapturedStmt &CS,
|
|
const VarDecl *ThreadIDVar,
|
|
const RegionCodeGenTy &CodeGen,
|
|
OpenMPDirectiveKind Kind, bool HasCancel,
|
|
const UntiedTaskActionTy &Action)
|
|
: CGOpenMPRegionInfo(CS, TaskOutlinedRegion, CodeGen, Kind, HasCancel),
|
|
ThreadIDVar(ThreadIDVar), Action(Action) {
|
|
assert(ThreadIDVar != nullptr && "No ThreadID in OpenMP region.");
|
|
}
|
|
|
|
/// Get a variable or parameter for storing global thread id
|
|
/// inside OpenMP construct.
|
|
const VarDecl *getThreadIDVariable() const override { return ThreadIDVar; }
|
|
|
|
/// Get an LValue for the current ThreadID variable.
|
|
LValue getThreadIDVariableLValue(CodeGenFunction &CGF) override;
|
|
|
|
/// Get the name of the capture helper.
|
|
StringRef getHelperName() const override { return ".omp_outlined."; }
|
|
|
|
void emitUntiedSwitch(CodeGenFunction &CGF) override {
|
|
Action.emitUntiedSwitch(CGF);
|
|
}
|
|
|
|
static bool classof(const CGCapturedStmtInfo *Info) {
|
|
return CGOpenMPRegionInfo::classof(Info) &&
|
|
cast<CGOpenMPRegionInfo>(Info)->getRegionKind() ==
|
|
TaskOutlinedRegion;
|
|
}
|
|
|
|
private:
|
|
/// A variable or parameter storing global thread id for OpenMP
|
|
/// constructs.
|
|
const VarDecl *ThreadIDVar;
|
|
/// Action for emitting code for untied tasks.
|
|
const UntiedTaskActionTy &Action;
|
|
};
|
|
|
|
/// API for inlined captured statement code generation in OpenMP
|
|
/// constructs.
|
|
class CGOpenMPInlinedRegionInfo : public CGOpenMPRegionInfo {
|
|
public:
|
|
CGOpenMPInlinedRegionInfo(CodeGenFunction::CGCapturedStmtInfo *OldCSI,
|
|
const RegionCodeGenTy &CodeGen,
|
|
OpenMPDirectiveKind Kind, bool HasCancel)
|
|
: CGOpenMPRegionInfo(InlinedRegion, CodeGen, Kind, HasCancel),
|
|
OldCSI(OldCSI),
|
|
OuterRegionInfo(dyn_cast_or_null<CGOpenMPRegionInfo>(OldCSI)) {}
|
|
|
|
// Retrieve the value of the context parameter.
|
|
llvm::Value *getContextValue() const override {
|
|
if (OuterRegionInfo)
|
|
return OuterRegionInfo->getContextValue();
|
|
llvm_unreachable("No context value for inlined OpenMP region");
|
|
}
|
|
|
|
void setContextValue(llvm::Value *V) override {
|
|
if (OuterRegionInfo) {
|
|
OuterRegionInfo->setContextValue(V);
|
|
return;
|
|
}
|
|
llvm_unreachable("No context value for inlined OpenMP region");
|
|
}
|
|
|
|
/// Lookup the captured field decl for a variable.
|
|
const FieldDecl *lookup(const VarDecl *VD) const override {
|
|
if (OuterRegionInfo)
|
|
return OuterRegionInfo->lookup(VD);
|
|
// If there is no outer outlined region,no need to lookup in a list of
|
|
// captured variables, we can use the original one.
|
|
return nullptr;
|
|
}
|
|
|
|
FieldDecl *getThisFieldDecl() const override {
|
|
if (OuterRegionInfo)
|
|
return OuterRegionInfo->getThisFieldDecl();
|
|
return nullptr;
|
|
}
|
|
|
|
/// Get a variable or parameter for storing global thread id
|
|
/// inside OpenMP construct.
|
|
const VarDecl *getThreadIDVariable() const override {
|
|
if (OuterRegionInfo)
|
|
return OuterRegionInfo->getThreadIDVariable();
|
|
return nullptr;
|
|
}
|
|
|
|
/// Get an LValue for the current ThreadID variable.
|
|
LValue getThreadIDVariableLValue(CodeGenFunction &CGF) override {
|
|
if (OuterRegionInfo)
|
|
return OuterRegionInfo->getThreadIDVariableLValue(CGF);
|
|
llvm_unreachable("No LValue for inlined OpenMP construct");
|
|
}
|
|
|
|
/// Get the name of the capture helper.
|
|
StringRef getHelperName() const override {
|
|
if (auto *OuterRegionInfo = getOldCSI())
|
|
return OuterRegionInfo->getHelperName();
|
|
llvm_unreachable("No helper name for inlined OpenMP construct");
|
|
}
|
|
|
|
void emitUntiedSwitch(CodeGenFunction &CGF) override {
|
|
if (OuterRegionInfo)
|
|
OuterRegionInfo->emitUntiedSwitch(CGF);
|
|
}
|
|
|
|
CodeGenFunction::CGCapturedStmtInfo *getOldCSI() const { return OldCSI; }
|
|
|
|
static bool classof(const CGCapturedStmtInfo *Info) {
|
|
return CGOpenMPRegionInfo::classof(Info) &&
|
|
cast<CGOpenMPRegionInfo>(Info)->getRegionKind() == InlinedRegion;
|
|
}
|
|
|
|
~CGOpenMPInlinedRegionInfo() override = default;
|
|
|
|
private:
|
|
/// CodeGen info about outer OpenMP region.
|
|
CodeGenFunction::CGCapturedStmtInfo *OldCSI;
|
|
CGOpenMPRegionInfo *OuterRegionInfo;
|
|
};
|
|
|
|
/// API for captured statement code generation in OpenMP target
|
|
/// constructs. For this captures, implicit parameters are used instead of the
|
|
/// captured fields. The name of the target region has to be unique in a given
|
|
/// application so it is provided by the client, because only the client has
|
|
/// the information to generate that.
|
|
class CGOpenMPTargetRegionInfo final : public CGOpenMPRegionInfo {
|
|
public:
|
|
CGOpenMPTargetRegionInfo(const CapturedStmt &CS,
|
|
const RegionCodeGenTy &CodeGen, StringRef HelperName)
|
|
: CGOpenMPRegionInfo(CS, TargetRegion, CodeGen, OMPD_target,
|
|
/*HasCancel=*/false),
|
|
HelperName(HelperName) {}
|
|
|
|
/// This is unused for target regions because each starts executing
|
|
/// with a single thread.
|
|
const VarDecl *getThreadIDVariable() const override { return nullptr; }
|
|
|
|
/// Get the name of the capture helper.
|
|
StringRef getHelperName() const override { return HelperName; }
|
|
|
|
static bool classof(const CGCapturedStmtInfo *Info) {
|
|
return CGOpenMPRegionInfo::classof(Info) &&
|
|
cast<CGOpenMPRegionInfo>(Info)->getRegionKind() == TargetRegion;
|
|
}
|
|
|
|
private:
|
|
StringRef HelperName;
|
|
};
|
|
|
|
static void EmptyCodeGen(CodeGenFunction &, PrePostActionTy &) {
|
|
llvm_unreachable("No codegen for expressions");
|
|
}
|
|
/// API for generation of expressions captured in a innermost OpenMP
|
|
/// region.
|
|
class CGOpenMPInnerExprInfo final : public CGOpenMPInlinedRegionInfo {
|
|
public:
|
|
CGOpenMPInnerExprInfo(CodeGenFunction &CGF, const CapturedStmt &CS)
|
|
: CGOpenMPInlinedRegionInfo(CGF.CapturedStmtInfo, EmptyCodeGen,
|
|
OMPD_unknown,
|
|
/*HasCancel=*/false),
|
|
PrivScope(CGF) {
|
|
// Make sure the globals captured in the provided statement are local by
|
|
// using the privatization logic. We assume the same variable is not
|
|
// captured more than once.
|
|
for (const auto &C : CS.captures()) {
|
|
if (!C.capturesVariable() && !C.capturesVariableByCopy())
|
|
continue;
|
|
|
|
const VarDecl *VD = C.getCapturedVar();
|
|
if (VD->isLocalVarDeclOrParm())
|
|
continue;
|
|
|
|
DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(VD),
|
|
/*RefersToEnclosingVariableOrCapture=*/false,
|
|
VD->getType().getNonReferenceType(), VK_LValue,
|
|
C.getLocation());
|
|
PrivScope.addPrivate(
|
|
VD, [&CGF, &DRE]() { return CGF.EmitLValue(&DRE).getAddress(CGF); });
|
|
}
|
|
(void)PrivScope.Privatize();
|
|
}
|
|
|
|
/// Lookup the captured field decl for a variable.
|
|
const FieldDecl *lookup(const VarDecl *VD) const override {
|
|
if (const FieldDecl *FD = CGOpenMPInlinedRegionInfo::lookup(VD))
|
|
return FD;
|
|
return nullptr;
|
|
}
|
|
|
|
/// Emit the captured statement body.
|
|
void EmitBody(CodeGenFunction &CGF, const Stmt *S) override {
|
|
llvm_unreachable("No body for expressions");
|
|
}
|
|
|
|
/// Get a variable or parameter for storing global thread id
|
|
/// inside OpenMP construct.
|
|
const VarDecl *getThreadIDVariable() const override {
|
|
llvm_unreachable("No thread id for expressions");
|
|
}
|
|
|
|
/// Get the name of the capture helper.
|
|
StringRef getHelperName() const override {
|
|
llvm_unreachable("No helper name for expressions");
|
|
}
|
|
|
|
static bool classof(const CGCapturedStmtInfo *Info) { return false; }
|
|
|
|
private:
|
|
/// Private scope to capture global variables.
|
|
CodeGenFunction::OMPPrivateScope PrivScope;
|
|
};
|
|
|
|
/// RAII for emitting code of OpenMP constructs.
|
|
class InlinedOpenMPRegionRAII {
|
|
CodeGenFunction &CGF;
|
|
llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
|
|
FieldDecl *LambdaThisCaptureField = nullptr;
|
|
const CodeGen::CGBlockInfo *BlockInfo = nullptr;
|
|
|
|
public:
|
|
/// Constructs region for combined constructs.
|
|
/// \param CodeGen Code generation sequence for combined directives. Includes
|
|
/// a list of functions used for code generation of implicitly inlined
|
|
/// regions.
|
|
InlinedOpenMPRegionRAII(CodeGenFunction &CGF, const RegionCodeGenTy &CodeGen,
|
|
OpenMPDirectiveKind Kind, bool HasCancel)
|
|
: CGF(CGF) {
|
|
// Start emission for the construct.
|
|
CGF.CapturedStmtInfo = new CGOpenMPInlinedRegionInfo(
|
|
CGF.CapturedStmtInfo, CodeGen, Kind, HasCancel);
|
|
std::swap(CGF.LambdaCaptureFields, LambdaCaptureFields);
|
|
LambdaThisCaptureField = CGF.LambdaThisCaptureField;
|
|
CGF.LambdaThisCaptureField = nullptr;
|
|
BlockInfo = CGF.BlockInfo;
|
|
CGF.BlockInfo = nullptr;
|
|
}
|
|
|
|
~InlinedOpenMPRegionRAII() {
|
|
// Restore original CapturedStmtInfo only if we're done with code emission.
|
|
auto *OldCSI =
|
|
cast<CGOpenMPInlinedRegionInfo>(CGF.CapturedStmtInfo)->getOldCSI();
|
|
delete CGF.CapturedStmtInfo;
|
|
CGF.CapturedStmtInfo = OldCSI;
|
|
std::swap(CGF.LambdaCaptureFields, LambdaCaptureFields);
|
|
CGF.LambdaThisCaptureField = LambdaThisCaptureField;
|
|
CGF.BlockInfo = BlockInfo;
|
|
}
|
|
};
|
|
|
|
/// Values for bit flags used in the ident_t to describe the fields.
|
|
/// All enumeric elements are named and described in accordance with the code
|
|
/// from https://github.com/llvm/llvm-project/blob/master/openmp/runtime/src/kmp.h
|
|
enum OpenMPLocationFlags : unsigned {
|
|
/// Use trampoline for internal microtask.
|
|
OMP_IDENT_IMD = 0x01,
|
|
/// Use c-style ident structure.
|
|
OMP_IDENT_KMPC = 0x02,
|
|
/// Atomic reduction option for kmpc_reduce.
|
|
OMP_ATOMIC_REDUCE = 0x10,
|
|
/// Explicit 'barrier' directive.
|
|
OMP_IDENT_BARRIER_EXPL = 0x20,
|
|
/// Implicit barrier in code.
|
|
OMP_IDENT_BARRIER_IMPL = 0x40,
|
|
/// Implicit barrier in 'for' directive.
|
|
OMP_IDENT_BARRIER_IMPL_FOR = 0x40,
|
|
/// Implicit barrier in 'sections' directive.
|
|
OMP_IDENT_BARRIER_IMPL_SECTIONS = 0xC0,
|
|
/// Implicit barrier in 'single' directive.
|
|
OMP_IDENT_BARRIER_IMPL_SINGLE = 0x140,
|
|
/// Call of __kmp_for_static_init for static loop.
|
|
OMP_IDENT_WORK_LOOP = 0x200,
|
|
/// Call of __kmp_for_static_init for sections.
|
|
OMP_IDENT_WORK_SECTIONS = 0x400,
|
|
/// Call of __kmp_for_static_init for distribute.
|
|
OMP_IDENT_WORK_DISTRIBUTE = 0x800,
|
|
LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/OMP_IDENT_WORK_DISTRIBUTE)
|
|
};
|
|
|
|
namespace {
|
|
LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE();
|
|
/// Values for bit flags for marking which requires clauses have been used.
|
|
enum OpenMPOffloadingRequiresDirFlags : int64_t {
|
|
/// flag undefined.
|
|
OMP_REQ_UNDEFINED = 0x000,
|
|
/// no requires clause present.
|
|
OMP_REQ_NONE = 0x001,
|
|
/// reverse_offload clause.
|
|
OMP_REQ_REVERSE_OFFLOAD = 0x002,
|
|
/// unified_address clause.
|
|
OMP_REQ_UNIFIED_ADDRESS = 0x004,
|
|
/// unified_shared_memory clause.
|
|
OMP_REQ_UNIFIED_SHARED_MEMORY = 0x008,
|
|
/// dynamic_allocators clause.
|
|
OMP_REQ_DYNAMIC_ALLOCATORS = 0x010,
|
|
LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/OMP_REQ_DYNAMIC_ALLOCATORS)
|
|
};
|
|
|
|
enum OpenMPOffloadingReservedDeviceIDs {
|
|
/// Device ID if the device was not defined, runtime should get it
|
|
/// from environment variables in the spec.
|
|
OMP_DEVICEID_UNDEF = -1,
|
|
};
|
|
} // anonymous namespace
|
|
|
|
/// Describes ident structure that describes a source location.
|
|
/// All descriptions are taken from
|
|
/// https://github.com/llvm/llvm-project/blob/master/openmp/runtime/src/kmp.h
|
|
/// Original structure:
|
|
/// typedef struct ident {
|
|
/// kmp_int32 reserved_1; /**< might be used in Fortran;
|
|
/// see above */
|
|
/// kmp_int32 flags; /**< also f.flags; KMP_IDENT_xxx flags;
|
|
/// KMP_IDENT_KMPC identifies this union
|
|
/// member */
|
|
/// kmp_int32 reserved_2; /**< not really used in Fortran any more;
|
|
/// see above */
|
|
///#if USE_ITT_BUILD
|
|
/// /* but currently used for storing
|
|
/// region-specific ITT */
|
|
/// /* contextual information. */
|
|
///#endif /* USE_ITT_BUILD */
|
|
/// kmp_int32 reserved_3; /**< source[4] in Fortran, do not use for
|
|
/// C++ */
|
|
/// char const *psource; /**< String describing the source location.
|
|
/// The string is composed of semi-colon separated
|
|
// fields which describe the source file,
|
|
/// the function and a pair of line numbers that
|
|
/// delimit the construct.
|
|
/// */
|
|
/// } ident_t;
|
|
enum IdentFieldIndex {
|
|
/// might be used in Fortran
|
|
IdentField_Reserved_1,
|
|
/// OMP_IDENT_xxx flags; OMP_IDENT_KMPC identifies this union member.
|
|
IdentField_Flags,
|
|
/// Not really used in Fortran any more
|
|
IdentField_Reserved_2,
|
|
/// Source[4] in Fortran, do not use for C++
|
|
IdentField_Reserved_3,
|
|
/// String describing the source location. The string is composed of
|
|
/// semi-colon separated fields which describe the source file, the function
|
|
/// and a pair of line numbers that delimit the construct.
|
|
IdentField_PSource
|
|
};
|
|
|
|
/// Schedule types for 'omp for' loops (these enumerators are taken from
|
|
/// the enum sched_type in kmp.h).
|
|
enum OpenMPSchedType {
|
|
/// Lower bound for default (unordered) versions.
|
|
OMP_sch_lower = 32,
|
|
OMP_sch_static_chunked = 33,
|
|
OMP_sch_static = 34,
|
|
OMP_sch_dynamic_chunked = 35,
|
|
OMP_sch_guided_chunked = 36,
|
|
OMP_sch_runtime = 37,
|
|
OMP_sch_auto = 38,
|
|
/// static with chunk adjustment (e.g., simd)
|
|
OMP_sch_static_balanced_chunked = 45,
|
|
/// Lower bound for 'ordered' versions.
|
|
OMP_ord_lower = 64,
|
|
OMP_ord_static_chunked = 65,
|
|
OMP_ord_static = 66,
|
|
OMP_ord_dynamic_chunked = 67,
|
|
OMP_ord_guided_chunked = 68,
|
|
OMP_ord_runtime = 69,
|
|
OMP_ord_auto = 70,
|
|
OMP_sch_default = OMP_sch_static,
|
|
/// dist_schedule types
|
|
OMP_dist_sch_static_chunked = 91,
|
|
OMP_dist_sch_static = 92,
|
|
/// Support for OpenMP 4.5 monotonic and nonmonotonic schedule modifiers.
|
|
/// Set if the monotonic schedule modifier was present.
|
|
OMP_sch_modifier_monotonic = (1 << 29),
|
|
/// Set if the nonmonotonic schedule modifier was present.
|
|
OMP_sch_modifier_nonmonotonic = (1 << 30),
|
|
};
|
|
|
|
enum OpenMPRTLFunction {
|
|
/// Call to void __kmpc_fork_call(ident_t *loc, kmp_int32 argc,
|
|
/// kmpc_micro microtask, ...);
|
|
OMPRTL__kmpc_fork_call,
|
|
/// Call to void *__kmpc_threadprivate_cached(ident_t *loc,
|
|
/// kmp_int32 global_tid, void *data, size_t size, void ***cache);
|
|
OMPRTL__kmpc_threadprivate_cached,
|
|
/// Call to void __kmpc_threadprivate_register( ident_t *,
|
|
/// void *data, kmpc_ctor ctor, kmpc_cctor cctor, kmpc_dtor dtor);
|
|
OMPRTL__kmpc_threadprivate_register,
|
|
// Call to __kmpc_int32 kmpc_global_thread_num(ident_t *loc);
|
|
OMPRTL__kmpc_global_thread_num,
|
|
// Call to void __kmpc_critical(ident_t *loc, kmp_int32 global_tid,
|
|
// kmp_critical_name *crit);
|
|
OMPRTL__kmpc_critical,
|
|
// Call to void __kmpc_critical_with_hint(ident_t *loc, kmp_int32
|
|
// global_tid, kmp_critical_name *crit, uintptr_t hint);
|
|
OMPRTL__kmpc_critical_with_hint,
|
|
// Call to void __kmpc_end_critical(ident_t *loc, kmp_int32 global_tid,
|
|
// kmp_critical_name *crit);
|
|
OMPRTL__kmpc_end_critical,
|
|
// Call to kmp_int32 __kmpc_cancel_barrier(ident_t *loc, kmp_int32
|
|
// global_tid);
|
|
OMPRTL__kmpc_cancel_barrier,
|
|
// Call to void __kmpc_barrier(ident_t *loc, kmp_int32 global_tid);
|
|
OMPRTL__kmpc_barrier,
|
|
// Call to void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid);
|
|
OMPRTL__kmpc_for_static_fini,
|
|
// Call to void __kmpc_serialized_parallel(ident_t *loc, kmp_int32
|
|
// global_tid);
|
|
OMPRTL__kmpc_serialized_parallel,
|
|
// Call to void __kmpc_end_serialized_parallel(ident_t *loc, kmp_int32
|
|
// global_tid);
|
|
OMPRTL__kmpc_end_serialized_parallel,
|
|
// Call to void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid,
|
|
// kmp_int32 num_threads);
|
|
OMPRTL__kmpc_push_num_threads,
|
|
// Call to void __kmpc_flush(ident_t *loc);
|
|
OMPRTL__kmpc_flush,
|
|
// Call to kmp_int32 __kmpc_master(ident_t *, kmp_int32 global_tid);
|
|
OMPRTL__kmpc_master,
|
|
// Call to void __kmpc_end_master(ident_t *, kmp_int32 global_tid);
|
|
OMPRTL__kmpc_end_master,
|
|
// Call to kmp_int32 __kmpc_omp_taskyield(ident_t *, kmp_int32 global_tid,
|
|
// int end_part);
|
|
OMPRTL__kmpc_omp_taskyield,
|
|
// Call to kmp_int32 __kmpc_single(ident_t *, kmp_int32 global_tid);
|
|
OMPRTL__kmpc_single,
|
|
// Call to void __kmpc_end_single(ident_t *, kmp_int32 global_tid);
|
|
OMPRTL__kmpc_end_single,
|
|
// Call to kmp_task_t * __kmpc_omp_task_alloc(ident_t *, kmp_int32 gtid,
|
|
// kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds,
|
|
// kmp_routine_entry_t *task_entry);
|
|
OMPRTL__kmpc_omp_task_alloc,
|
|
// Call to kmp_task_t * __kmpc_omp_target_task_alloc(ident_t *,
|
|
// kmp_int32 gtid, kmp_int32 flags, size_t sizeof_kmp_task_t,
|
|
// size_t sizeof_shareds, kmp_routine_entry_t *task_entry,
|
|
// kmp_int64 device_id);
|
|
OMPRTL__kmpc_omp_target_task_alloc,
|
|
// Call to kmp_int32 __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t *
|
|
// new_task);
|
|
OMPRTL__kmpc_omp_task,
|
|
// Call to void __kmpc_copyprivate(ident_t *loc, kmp_int32 global_tid,
|
|
// size_t cpy_size, void *cpy_data, void(*cpy_func)(void *, void *),
|
|
// kmp_int32 didit);
|
|
OMPRTL__kmpc_copyprivate,
|
|
// Call to kmp_int32 __kmpc_reduce(ident_t *loc, kmp_int32 global_tid,
|
|
// kmp_int32 num_vars, size_t reduce_size, void *reduce_data, void
|
|
// (*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name *lck);
|
|
OMPRTL__kmpc_reduce,
|
|
// Call to kmp_int32 __kmpc_reduce_nowait(ident_t *loc, kmp_int32
|
|
// global_tid, kmp_int32 num_vars, size_t reduce_size, void *reduce_data,
|
|
// void (*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name
|
|
// *lck);
|
|
OMPRTL__kmpc_reduce_nowait,
|
|
// Call to void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid,
|
|
// kmp_critical_name *lck);
|
|
OMPRTL__kmpc_end_reduce,
|
|
// Call to void __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid,
|
|
// kmp_critical_name *lck);
|
|
OMPRTL__kmpc_end_reduce_nowait,
|
|
// Call to void __kmpc_omp_task_begin_if0(ident_t *, kmp_int32 gtid,
|
|
// kmp_task_t * new_task);
|
|
OMPRTL__kmpc_omp_task_begin_if0,
|
|
// Call to void __kmpc_omp_task_complete_if0(ident_t *, kmp_int32 gtid,
|
|
// kmp_task_t * new_task);
|
|
OMPRTL__kmpc_omp_task_complete_if0,
|
|
// Call to void __kmpc_ordered(ident_t *loc, kmp_int32 global_tid);
|
|
OMPRTL__kmpc_ordered,
|
|
// Call to void __kmpc_end_ordered(ident_t *loc, kmp_int32 global_tid);
|
|
OMPRTL__kmpc_end_ordered,
|
|
// Call to kmp_int32 __kmpc_omp_taskwait(ident_t *loc, kmp_int32
|
|
// global_tid);
|
|
OMPRTL__kmpc_omp_taskwait,
|
|
// Call to void __kmpc_taskgroup(ident_t *loc, kmp_int32 global_tid);
|
|
OMPRTL__kmpc_taskgroup,
|
|
// Call to void __kmpc_end_taskgroup(ident_t *loc, kmp_int32 global_tid);
|
|
OMPRTL__kmpc_end_taskgroup,
|
|
// Call to void __kmpc_push_proc_bind(ident_t *loc, kmp_int32 global_tid,
|
|
// int proc_bind);
|
|
OMPRTL__kmpc_push_proc_bind,
|
|
// Call to kmp_int32 __kmpc_omp_task_with_deps(ident_t *loc_ref, kmp_int32
|
|
// gtid, kmp_task_t * new_task, kmp_int32 ndeps, kmp_depend_info_t
|
|
// *dep_list, kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list);
|
|
OMPRTL__kmpc_omp_task_with_deps,
|
|
// Call to void __kmpc_omp_wait_deps(ident_t *loc_ref, kmp_int32
|
|
// gtid, kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32
|
|
// ndeps_noalias, kmp_depend_info_t *noalias_dep_list);
|
|
OMPRTL__kmpc_omp_wait_deps,
|
|
// Call to kmp_int32 __kmpc_cancellationpoint(ident_t *loc, kmp_int32
|
|
// global_tid, kmp_int32 cncl_kind);
|
|
OMPRTL__kmpc_cancellationpoint,
|
|
// Call to kmp_int32 __kmpc_cancel(ident_t *loc, kmp_int32 global_tid,
|
|
// kmp_int32 cncl_kind);
|
|
OMPRTL__kmpc_cancel,
|
|
// Call to void __kmpc_push_num_teams(ident_t *loc, kmp_int32 global_tid,
|
|
// kmp_int32 num_teams, kmp_int32 thread_limit);
|
|
OMPRTL__kmpc_push_num_teams,
|
|
// Call to void __kmpc_fork_teams(ident_t *loc, kmp_int32 argc, kmpc_micro
|
|
// microtask, ...);
|
|
OMPRTL__kmpc_fork_teams,
|
|
// Call to void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int
|
|
// if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int
|
|
// sched, kmp_uint64 grainsize, void *task_dup);
|
|
OMPRTL__kmpc_taskloop,
|
|
// Call to void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid, kmp_int32
|
|
// num_dims, struct kmp_dim *dims);
|
|
OMPRTL__kmpc_doacross_init,
|
|
// Call to void __kmpc_doacross_fini(ident_t *loc, kmp_int32 gtid);
|
|
OMPRTL__kmpc_doacross_fini,
|
|
// Call to void __kmpc_doacross_post(ident_t *loc, kmp_int32 gtid, kmp_int64
|
|
// *vec);
|
|
OMPRTL__kmpc_doacross_post,
|
|
// Call to void __kmpc_doacross_wait(ident_t *loc, kmp_int32 gtid, kmp_int64
|
|
// *vec);
|
|
OMPRTL__kmpc_doacross_wait,
|
|
// Call to void *__kmpc_task_reduction_init(int gtid, int num_data, void
|
|
// *data);
|
|
OMPRTL__kmpc_task_reduction_init,
|
|
// Call to void *__kmpc_task_reduction_get_th_data(int gtid, void *tg, void
|
|
// *d);
|
|
OMPRTL__kmpc_task_reduction_get_th_data,
|
|
// Call to void *__kmpc_alloc(int gtid, size_t sz, omp_allocator_handle_t al);
|
|
OMPRTL__kmpc_alloc,
|
|
// Call to void __kmpc_free(int gtid, void *ptr, omp_allocator_handle_t al);
|
|
OMPRTL__kmpc_free,
|
|
|
|
//
|
|
// Offloading related calls
|
|
//
|
|
// Call to void __kmpc_push_target_tripcount(int64_t device_id, kmp_uint64
|
|
// size);
|
|
OMPRTL__kmpc_push_target_tripcount,
|
|
// Call to int32_t __tgt_target(int64_t device_id, void *host_ptr, int32_t
|
|
// arg_num, void** args_base, void **args, int64_t *arg_sizes, int64_t
|
|
// *arg_types);
|
|
OMPRTL__tgt_target,
|
|
// Call to int32_t __tgt_target_nowait(int64_t device_id, void *host_ptr,
|
|
// int32_t arg_num, void** args_base, void **args, int64_t *arg_sizes, int64_t
|
|
// *arg_types);
|
|
OMPRTL__tgt_target_nowait,
|
|
// Call to int32_t __tgt_target_teams(int64_t device_id, void *host_ptr,
|
|
// int32_t arg_num, void** args_base, void **args, int64_t *arg_sizes, int64_t
|
|
// *arg_types, int32_t num_teams, int32_t thread_limit);
|
|
OMPRTL__tgt_target_teams,
|
|
// Call to int32_t __tgt_target_teams_nowait(int64_t device_id, void
|
|
// *host_ptr, int32_t arg_num, void** args_base, void **args, int64_t
|
|
// *arg_sizes, int64_t *arg_types, int32_t num_teams, int32_t thread_limit);
|
|
OMPRTL__tgt_target_teams_nowait,
|
|
// Call to void __tgt_register_requires(int64_t flags);
|
|
OMPRTL__tgt_register_requires,
|
|
// Call to void __tgt_register_lib(__tgt_bin_desc *desc);
|
|
OMPRTL__tgt_register_lib,
|
|
// Call to void __tgt_unregister_lib(__tgt_bin_desc *desc);
|
|
OMPRTL__tgt_unregister_lib,
|
|
// Call to void __tgt_target_data_begin(int64_t device_id, int32_t arg_num,
|
|
// void** args_base, void **args, int64_t *arg_sizes, int64_t *arg_types);
|
|
OMPRTL__tgt_target_data_begin,
|
|
// Call to void __tgt_target_data_begin_nowait(int64_t device_id, int32_t
|
|
// arg_num, void** args_base, void **args, int64_t *arg_sizes, int64_t
|
|
// *arg_types);
|
|
OMPRTL__tgt_target_data_begin_nowait,
|
|
// Call to void __tgt_target_data_end(int64_t device_id, int32_t arg_num,
|
|
// void** args_base, void **args, size_t *arg_sizes, int64_t *arg_types);
|
|
OMPRTL__tgt_target_data_end,
|
|
// Call to void __tgt_target_data_end_nowait(int64_t device_id, int32_t
|
|
// arg_num, void** args_base, void **args, int64_t *arg_sizes, int64_t
|
|
// *arg_types);
|
|
OMPRTL__tgt_target_data_end_nowait,
|
|
// Call to void __tgt_target_data_update(int64_t device_id, int32_t arg_num,
|
|
// void** args_base, void **args, int64_t *arg_sizes, int64_t *arg_types);
|
|
OMPRTL__tgt_target_data_update,
|
|
// Call to void __tgt_target_data_update_nowait(int64_t device_id, int32_t
|
|
// arg_num, void** args_base, void **args, int64_t *arg_sizes, int64_t
|
|
// *arg_types);
|
|
OMPRTL__tgt_target_data_update_nowait,
|
|
// Call to int64_t __tgt_mapper_num_components(void *rt_mapper_handle);
|
|
OMPRTL__tgt_mapper_num_components,
|
|
// Call to void __tgt_push_mapper_component(void *rt_mapper_handle, void
|
|
// *base, void *begin, int64_t size, int64_t type);
|
|
OMPRTL__tgt_push_mapper_component,
|
|
};
|
|
|
|
/// A basic class for pre|post-action for advanced codegen sequence for OpenMP
|
|
/// region.
|
|
class CleanupTy final : public EHScopeStack::Cleanup {
|
|
PrePostActionTy *Action;
|
|
|
|
public:
|
|
explicit CleanupTy(PrePostActionTy *Action) : Action(Action) {}
|
|
void Emit(CodeGenFunction &CGF, Flags /*flags*/) override {
|
|
if (!CGF.HaveInsertPoint())
|
|
return;
|
|
Action->Exit(CGF);
|
|
}
|
|
};
|
|
|
|
} // anonymous namespace
|
|
|
|
void RegionCodeGenTy::operator()(CodeGenFunction &CGF) const {
|
|
CodeGenFunction::RunCleanupsScope Scope(CGF);
|
|
if (PrePostAction) {
|
|
CGF.EHStack.pushCleanup<CleanupTy>(NormalAndEHCleanup, PrePostAction);
|
|
Callback(CodeGen, CGF, *PrePostAction);
|
|
} else {
|
|
PrePostActionTy Action;
|
|
Callback(CodeGen, CGF, Action);
|
|
}
|
|
}
|
|
|
|
/// Check if the combiner is a call to UDR combiner and if it is so return the
|
|
/// UDR decl used for reduction.
|
|
static const OMPDeclareReductionDecl *
|
|
getReductionInit(const Expr *ReductionOp) {
|
|
if (const auto *CE = dyn_cast<CallExpr>(ReductionOp))
|
|
if (const auto *OVE = dyn_cast<OpaqueValueExpr>(CE->getCallee()))
|
|
if (const auto *DRE =
|
|
dyn_cast<DeclRefExpr>(OVE->getSourceExpr()->IgnoreImpCasts()))
|
|
if (const auto *DRD = dyn_cast<OMPDeclareReductionDecl>(DRE->getDecl()))
|
|
return DRD;
|
|
return nullptr;
|
|
}
|
|
|
|
static void emitInitWithReductionInitializer(CodeGenFunction &CGF,
|
|
const OMPDeclareReductionDecl *DRD,
|
|
const Expr *InitOp,
|
|
Address Private, Address Original,
|
|
QualType Ty) {
|
|
if (DRD->getInitializer()) {
|
|
std::pair<llvm::Function *, llvm::Function *> Reduction =
|
|
CGF.CGM.getOpenMPRuntime().getUserDefinedReduction(DRD);
|
|
const auto *CE = cast<CallExpr>(InitOp);
|
|
const auto *OVE = cast<OpaqueValueExpr>(CE->getCallee());
|
|
const Expr *LHS = CE->getArg(/*Arg=*/0)->IgnoreParenImpCasts();
|
|
const Expr *RHS = CE->getArg(/*Arg=*/1)->IgnoreParenImpCasts();
|
|
const auto *LHSDRE =
|
|
cast<DeclRefExpr>(cast<UnaryOperator>(LHS)->getSubExpr());
|
|
const auto *RHSDRE =
|
|
cast<DeclRefExpr>(cast<UnaryOperator>(RHS)->getSubExpr());
|
|
CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
|
|
PrivateScope.addPrivate(cast<VarDecl>(LHSDRE->getDecl()),
|
|
[=]() { return Private; });
|
|
PrivateScope.addPrivate(cast<VarDecl>(RHSDRE->getDecl()),
|
|
[=]() { return Original; });
|
|
(void)PrivateScope.Privatize();
|
|
RValue Func = RValue::get(Reduction.second);
|
|
CodeGenFunction::OpaqueValueMapping Map(CGF, OVE, Func);
|
|
CGF.EmitIgnoredExpr(InitOp);
|
|
} else {
|
|
llvm::Constant *Init = CGF.CGM.EmitNullConstant(Ty);
|
|
std::string Name = CGF.CGM.getOpenMPRuntime().getName({"init"});
|
|
auto *GV = new llvm::GlobalVariable(
|
|
CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
|
|
llvm::GlobalValue::PrivateLinkage, Init, Name);
|
|
LValue LV = CGF.MakeNaturalAlignAddrLValue(GV, Ty);
|
|
RValue InitRVal;
|
|
switch (CGF.getEvaluationKind(Ty)) {
|
|
case TEK_Scalar:
|
|
InitRVal = CGF.EmitLoadOfLValue(LV, DRD->getLocation());
|
|
break;
|
|
case TEK_Complex:
|
|
InitRVal =
|
|
RValue::getComplex(CGF.EmitLoadOfComplex(LV, DRD->getLocation()));
|
|
break;
|
|
case TEK_Aggregate:
|
|
InitRVal = RValue::getAggregate(LV.getAddress(CGF));
|
|
break;
|
|
}
|
|
OpaqueValueExpr OVE(DRD->getLocation(), Ty, VK_RValue);
|
|
CodeGenFunction::OpaqueValueMapping OpaqueMap(CGF, &OVE, InitRVal);
|
|
CGF.EmitAnyExprToMem(&OVE, Private, Ty.getQualifiers(),
|
|
/*IsInitializer=*/false);
|
|
}
|
|
}
|
|
|
|
/// Emit initialization of arrays of complex types.
|
|
/// \param DestAddr Address of the array.
|
|
/// \param Type Type of array.
|
|
/// \param Init Initial expression of array.
|
|
/// \param SrcAddr Address of the original array.
|
|
static void EmitOMPAggregateInit(CodeGenFunction &CGF, Address DestAddr,
|
|
QualType Type, bool EmitDeclareReductionInit,
|
|
const Expr *Init,
|
|
const OMPDeclareReductionDecl *DRD,
|
|
Address SrcAddr = Address::invalid()) {
|
|
// Perform element-by-element initialization.
|
|
QualType ElementTy;
|
|
|
|
// Drill down to the base element type on both arrays.
|
|
const ArrayType *ArrayTy = Type->getAsArrayTypeUnsafe();
|
|
llvm::Value *NumElements = CGF.emitArrayLength(ArrayTy, ElementTy, DestAddr);
|
|
DestAddr =
|
|
CGF.Builder.CreateElementBitCast(DestAddr, DestAddr.getElementType());
|
|
if (DRD)
|
|
SrcAddr =
|
|
CGF.Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType());
|
|
|
|
llvm::Value *SrcBegin = nullptr;
|
|
if (DRD)
|
|
SrcBegin = SrcAddr.getPointer();
|
|
llvm::Value *DestBegin = DestAddr.getPointer();
|
|
// Cast from pointer to array type to pointer to single element.
|
|
llvm::Value *DestEnd = CGF.Builder.CreateGEP(DestBegin, NumElements);
|
|
// The basic structure here is a while-do loop.
|
|
llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.arrayinit.body");
|
|
llvm::BasicBlock *DoneBB = CGF.createBasicBlock("omp.arrayinit.done");
|
|
llvm::Value *IsEmpty =
|
|
CGF.Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arrayinit.isempty");
|
|
CGF.Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
|
|
|
|
// Enter the loop body, making that address the current address.
|
|
llvm::BasicBlock *EntryBB = CGF.Builder.GetInsertBlock();
|
|
CGF.EmitBlock(BodyBB);
|
|
|
|
CharUnits ElementSize = CGF.getContext().getTypeSizeInChars(ElementTy);
|
|
|
|
llvm::PHINode *SrcElementPHI = nullptr;
|
|
Address SrcElementCurrent = Address::invalid();
|
|
if (DRD) {
|
|
SrcElementPHI = CGF.Builder.CreatePHI(SrcBegin->getType(), 2,
|
|
"omp.arraycpy.srcElementPast");
|
|
SrcElementPHI->addIncoming(SrcBegin, EntryBB);
|
|
SrcElementCurrent =
|
|
Address(SrcElementPHI,
|
|
SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize));
|
|
}
|
|
llvm::PHINode *DestElementPHI = CGF.Builder.CreatePHI(
|
|
DestBegin->getType(), 2, "omp.arraycpy.destElementPast");
|
|
DestElementPHI->addIncoming(DestBegin, EntryBB);
|
|
Address DestElementCurrent =
|
|
Address(DestElementPHI,
|
|
DestAddr.getAlignment().alignmentOfArrayElement(ElementSize));
|
|
|
|
// Emit copy.
|
|
{
|
|
CodeGenFunction::RunCleanupsScope InitScope(CGF);
|
|
if (EmitDeclareReductionInit) {
|
|
emitInitWithReductionInitializer(CGF, DRD, Init, DestElementCurrent,
|
|
SrcElementCurrent, ElementTy);
|
|
} else
|
|
CGF.EmitAnyExprToMem(Init, DestElementCurrent, ElementTy.getQualifiers(),
|
|
/*IsInitializer=*/false);
|
|
}
|
|
|
|
if (DRD) {
|
|
// Shift the address forward by one element.
|
|
llvm::Value *SrcElementNext = CGF.Builder.CreateConstGEP1_32(
|
|
SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element");
|
|
SrcElementPHI->addIncoming(SrcElementNext, CGF.Builder.GetInsertBlock());
|
|
}
|
|
|
|
// Shift the address forward by one element.
|
|
llvm::Value *DestElementNext = CGF.Builder.CreateConstGEP1_32(
|
|
DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element");
|
|
// Check whether we've reached the end.
|
|
llvm::Value *Done =
|
|
CGF.Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done");
|
|
CGF.Builder.CreateCondBr(Done, DoneBB, BodyBB);
|
|
DestElementPHI->addIncoming(DestElementNext, CGF.Builder.GetInsertBlock());
|
|
|
|
// Done.
|
|
CGF.EmitBlock(DoneBB, /*IsFinished=*/true);
|
|
}
|
|
|
|
LValue ReductionCodeGen::emitSharedLValue(CodeGenFunction &CGF, const Expr *E) {
|
|
return CGF.EmitOMPSharedLValue(E);
|
|
}
|
|
|
|
LValue ReductionCodeGen::emitSharedLValueUB(CodeGenFunction &CGF,
|
|
const Expr *E) {
|
|
if (const auto *OASE = dyn_cast<OMPArraySectionExpr>(E))
|
|
return CGF.EmitOMPArraySectionExpr(OASE, /*IsLowerBound=*/false);
|
|
return LValue();
|
|
}
|
|
|
|
void ReductionCodeGen::emitAggregateInitialization(
|
|
CodeGenFunction &CGF, unsigned N, Address PrivateAddr, LValue SharedLVal,
|
|
const OMPDeclareReductionDecl *DRD) {
|
|
// Emit VarDecl with copy init for arrays.
|
|
// Get the address of the original variable captured in current
|
|
// captured region.
|
|
const auto *PrivateVD =
|
|
cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl());
|
|
bool EmitDeclareReductionInit =
|
|
DRD && (DRD->getInitializer() || !PrivateVD->hasInit());
|
|
EmitOMPAggregateInit(CGF, PrivateAddr, PrivateVD->getType(),
|
|
EmitDeclareReductionInit,
|
|
EmitDeclareReductionInit ? ClausesData[N].ReductionOp
|
|
: PrivateVD->getInit(),
|
|
DRD, SharedLVal.getAddress(CGF));
|
|
}
|
|
|
|
ReductionCodeGen::ReductionCodeGen(ArrayRef<const Expr *> Shareds,
|
|
ArrayRef<const Expr *> Privates,
|
|
ArrayRef<const Expr *> ReductionOps) {
|
|
ClausesData.reserve(Shareds.size());
|
|
SharedAddresses.reserve(Shareds.size());
|
|
Sizes.reserve(Shareds.size());
|
|
BaseDecls.reserve(Shareds.size());
|
|
auto IPriv = Privates.begin();
|
|
auto IRed = ReductionOps.begin();
|
|
for (const Expr *Ref : Shareds) {
|
|
ClausesData.emplace_back(Ref, *IPriv, *IRed);
|
|
std::advance(IPriv, 1);
|
|
std::advance(IRed, 1);
|
|
}
|
|
}
|
|
|
|
void ReductionCodeGen::emitSharedLValue(CodeGenFunction &CGF, unsigned N) {
|
|
assert(SharedAddresses.size() == N &&
|
|
"Number of generated lvalues must be exactly N.");
|
|
LValue First = emitSharedLValue(CGF, ClausesData[N].Ref);
|
|
LValue Second = emitSharedLValueUB(CGF, ClausesData[N].Ref);
|
|
SharedAddresses.emplace_back(First, Second);
|
|
}
|
|
|
|
void ReductionCodeGen::emitAggregateType(CodeGenFunction &CGF, unsigned N) {
|
|
const auto *PrivateVD =
|
|
cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl());
|
|
QualType PrivateType = PrivateVD->getType();
|
|
bool AsArraySection = isa<OMPArraySectionExpr>(ClausesData[N].Ref);
|
|
if (!PrivateType->isVariablyModifiedType()) {
|
|
Sizes.emplace_back(
|
|
CGF.getTypeSize(
|
|
SharedAddresses[N].first.getType().getNonReferenceType()),
|
|
nullptr);
|
|
return;
|
|
}
|
|
llvm::Value *Size;
|
|
llvm::Value *SizeInChars;
|
|
auto *ElemType = cast<llvm::PointerType>(
|
|
SharedAddresses[N].first.getPointer(CGF)->getType())
|
|
->getElementType();
|
|
auto *ElemSizeOf = llvm::ConstantExpr::getSizeOf(ElemType);
|
|
if (AsArraySection) {
|
|
Size = CGF.Builder.CreatePtrDiff(SharedAddresses[N].second.getPointer(CGF),
|
|
SharedAddresses[N].first.getPointer(CGF));
|
|
Size = CGF.Builder.CreateNUWAdd(
|
|
Size, llvm::ConstantInt::get(Size->getType(), /*V=*/1));
|
|
SizeInChars = CGF.Builder.CreateNUWMul(Size, ElemSizeOf);
|
|
} else {
|
|
SizeInChars = CGF.getTypeSize(
|
|
SharedAddresses[N].first.getType().getNonReferenceType());
|
|
Size = CGF.Builder.CreateExactUDiv(SizeInChars, ElemSizeOf);
|
|
}
|
|
Sizes.emplace_back(SizeInChars, Size);
|
|
CodeGenFunction::OpaqueValueMapping OpaqueMap(
|
|
CGF,
|
|
cast<OpaqueValueExpr>(
|
|
CGF.getContext().getAsVariableArrayType(PrivateType)->getSizeExpr()),
|
|
RValue::get(Size));
|
|
CGF.EmitVariablyModifiedType(PrivateType);
|
|
}
|
|
|
|
void ReductionCodeGen::emitAggregateType(CodeGenFunction &CGF, unsigned N,
|
|
llvm::Value *Size) {
|
|
const auto *PrivateVD =
|
|
cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl());
|
|
QualType PrivateType = PrivateVD->getType();
|
|
if (!PrivateType->isVariablyModifiedType()) {
|
|
assert(!Size && !Sizes[N].second &&
|
|
"Size should be nullptr for non-variably modified reduction "
|
|
"items.");
|
|
return;
|
|
}
|
|
CodeGenFunction::OpaqueValueMapping OpaqueMap(
|
|
CGF,
|
|
cast<OpaqueValueExpr>(
|
|
CGF.getContext().getAsVariableArrayType(PrivateType)->getSizeExpr()),
|
|
RValue::get(Size));
|
|
CGF.EmitVariablyModifiedType(PrivateType);
|
|
}
|
|
|
|
void ReductionCodeGen::emitInitialization(
|
|
CodeGenFunction &CGF, unsigned N, Address PrivateAddr, LValue SharedLVal,
|
|
llvm::function_ref<bool(CodeGenFunction &)> DefaultInit) {
|
|
assert(SharedAddresses.size() > N && "No variable was generated");
|
|
const auto *PrivateVD =
|
|
cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl());
|
|
const OMPDeclareReductionDecl *DRD =
|
|
getReductionInit(ClausesData[N].ReductionOp);
|
|
QualType PrivateType = PrivateVD->getType();
|
|
PrivateAddr = CGF.Builder.CreateElementBitCast(
|
|
PrivateAddr, CGF.ConvertTypeForMem(PrivateType));
|
|
QualType SharedType = SharedAddresses[N].first.getType();
|
|
SharedLVal = CGF.MakeAddrLValue(
|
|
CGF.Builder.CreateElementBitCast(SharedLVal.getAddress(CGF),
|
|
CGF.ConvertTypeForMem(SharedType)),
|
|
SharedType, SharedAddresses[N].first.getBaseInfo(),
|
|
CGF.CGM.getTBAAInfoForSubobject(SharedAddresses[N].first, SharedType));
|
|
if (CGF.getContext().getAsArrayType(PrivateVD->getType())) {
|
|
emitAggregateInitialization(CGF, N, PrivateAddr, SharedLVal, DRD);
|
|
} else if (DRD && (DRD->getInitializer() || !PrivateVD->hasInit())) {
|
|
emitInitWithReductionInitializer(CGF, DRD, ClausesData[N].ReductionOp,
|
|
PrivateAddr, SharedLVal.getAddress(CGF),
|
|
SharedLVal.getType());
|
|
} else if (!DefaultInit(CGF) && PrivateVD->hasInit() &&
|
|
!CGF.isTrivialInitializer(PrivateVD->getInit())) {
|
|
CGF.EmitAnyExprToMem(PrivateVD->getInit(), PrivateAddr,
|
|
PrivateVD->getType().getQualifiers(),
|
|
/*IsInitializer=*/false);
|
|
}
|
|
}
|
|
|
|
bool ReductionCodeGen::needCleanups(unsigned N) {
|
|
const auto *PrivateVD =
|
|
cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl());
|
|
QualType PrivateType = PrivateVD->getType();
|
|
QualType::DestructionKind DTorKind = PrivateType.isDestructedType();
|
|
return DTorKind != QualType::DK_none;
|
|
}
|
|
|
|
void ReductionCodeGen::emitCleanups(CodeGenFunction &CGF, unsigned N,
|
|
Address PrivateAddr) {
|
|
const auto *PrivateVD =
|
|
cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl());
|
|
QualType PrivateType = PrivateVD->getType();
|
|
QualType::DestructionKind DTorKind = PrivateType.isDestructedType();
|
|
if (needCleanups(N)) {
|
|
PrivateAddr = CGF.Builder.CreateElementBitCast(
|
|
PrivateAddr, CGF.ConvertTypeForMem(PrivateType));
|
|
CGF.pushDestroy(DTorKind, PrivateAddr, PrivateType);
|
|
}
|
|
}
|
|
|
|
static LValue loadToBegin(CodeGenFunction &CGF, QualType BaseTy, QualType ElTy,
|
|
LValue BaseLV) {
|
|
BaseTy = BaseTy.getNonReferenceType();
|
|
while ((BaseTy->isPointerType() || BaseTy->isReferenceType()) &&
|
|
!CGF.getContext().hasSameType(BaseTy, ElTy)) {
|
|
if (const auto *PtrTy = BaseTy->getAs<PointerType>()) {
|
|
BaseLV = CGF.EmitLoadOfPointerLValue(BaseLV.getAddress(CGF), PtrTy);
|
|
} else {
|
|
LValue RefLVal = CGF.MakeAddrLValue(BaseLV.getAddress(CGF), BaseTy);
|
|
BaseLV = CGF.EmitLoadOfReferenceLValue(RefLVal);
|
|
}
|
|
BaseTy = BaseTy->getPointeeType();
|
|
}
|
|
return CGF.MakeAddrLValue(
|
|
CGF.Builder.CreateElementBitCast(BaseLV.getAddress(CGF),
|
|
CGF.ConvertTypeForMem(ElTy)),
|
|
BaseLV.getType(), BaseLV.getBaseInfo(),
|
|
CGF.CGM.getTBAAInfoForSubobject(BaseLV, BaseLV.getType()));
|
|
}
|
|
|
|
static Address castToBase(CodeGenFunction &CGF, QualType BaseTy, QualType ElTy,
|
|
llvm::Type *BaseLVType, CharUnits BaseLVAlignment,
|
|
llvm::Value *Addr) {
|
|
Address Tmp = Address::invalid();
|
|
Address TopTmp = Address::invalid();
|
|
Address MostTopTmp = Address::invalid();
|
|
BaseTy = BaseTy.getNonReferenceType();
|
|
while ((BaseTy->isPointerType() || BaseTy->isReferenceType()) &&
|
|
!CGF.getContext().hasSameType(BaseTy, ElTy)) {
|
|
Tmp = CGF.CreateMemTemp(BaseTy);
|
|
if (TopTmp.isValid())
|
|
CGF.Builder.CreateStore(Tmp.getPointer(), TopTmp);
|
|
else
|
|
MostTopTmp = Tmp;
|
|
TopTmp = Tmp;
|
|
BaseTy = BaseTy->getPointeeType();
|
|
}
|
|
llvm::Type *Ty = BaseLVType;
|
|
if (Tmp.isValid())
|
|
Ty = Tmp.getElementType();
|
|
Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, Ty);
|
|
if (Tmp.isValid()) {
|
|
CGF.Builder.CreateStore(Addr, Tmp);
|
|
return MostTopTmp;
|
|
}
|
|
return Address(Addr, BaseLVAlignment);
|
|
}
|
|
|
|
static const VarDecl *getBaseDecl(const Expr *Ref, const DeclRefExpr *&DE) {
|
|
const VarDecl *OrigVD = nullptr;
|
|
if (const auto *OASE = dyn_cast<OMPArraySectionExpr>(Ref)) {
|
|
const Expr *Base = OASE->getBase()->IgnoreParenImpCasts();
|
|
while (const auto *TempOASE = dyn_cast<OMPArraySectionExpr>(Base))
|
|
Base = TempOASE->getBase()->IgnoreParenImpCasts();
|
|
while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
|
|
Base = TempASE->getBase()->IgnoreParenImpCasts();
|
|
DE = cast<DeclRefExpr>(Base);
|
|
OrigVD = cast<VarDecl>(DE->getDecl());
|
|
} else if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Ref)) {
|
|
const Expr *Base = ASE->getBase()->IgnoreParenImpCasts();
|
|
while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
|
|
Base = TempASE->getBase()->IgnoreParenImpCasts();
|
|
DE = cast<DeclRefExpr>(Base);
|
|
OrigVD = cast<VarDecl>(DE->getDecl());
|
|
}
|
|
return OrigVD;
|
|
}
|
|
|
|
Address ReductionCodeGen::adjustPrivateAddress(CodeGenFunction &CGF, unsigned N,
|
|
Address PrivateAddr) {
|
|
const DeclRefExpr *DE;
|
|
if (const VarDecl *OrigVD = ::getBaseDecl(ClausesData[N].Ref, DE)) {
|
|
BaseDecls.emplace_back(OrigVD);
|
|
LValue OriginalBaseLValue = CGF.EmitLValue(DE);
|
|
LValue BaseLValue =
|
|
loadToBegin(CGF, OrigVD->getType(), SharedAddresses[N].first.getType(),
|
|
OriginalBaseLValue);
|
|
llvm::Value *Adjustment = CGF.Builder.CreatePtrDiff(
|
|
BaseLValue.getPointer(CGF), SharedAddresses[N].first.getPointer(CGF));
|
|
llvm::Value *PrivatePointer =
|
|
CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
|
|
PrivateAddr.getPointer(),
|
|
SharedAddresses[N].first.getAddress(CGF).getType());
|
|
llvm::Value *Ptr = CGF.Builder.CreateGEP(PrivatePointer, Adjustment);
|
|
return castToBase(CGF, OrigVD->getType(),
|
|
SharedAddresses[N].first.getType(),
|
|
OriginalBaseLValue.getAddress(CGF).getType(),
|
|
OriginalBaseLValue.getAlignment(), Ptr);
|
|
}
|
|
BaseDecls.emplace_back(
|
|
cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Ref)->getDecl()));
|
|
return PrivateAddr;
|
|
}
|
|
|
|
bool ReductionCodeGen::usesReductionInitializer(unsigned N) const {
|
|
const OMPDeclareReductionDecl *DRD =
|
|
getReductionInit(ClausesData[N].ReductionOp);
|
|
return DRD && DRD->getInitializer();
|
|
}
|
|
|
|
LValue CGOpenMPRegionInfo::getThreadIDVariableLValue(CodeGenFunction &CGF) {
|
|
return CGF.EmitLoadOfPointerLValue(
|
|
CGF.GetAddrOfLocalVar(getThreadIDVariable()),
|
|
getThreadIDVariable()->getType()->castAs<PointerType>());
|
|
}
|
|
|
|
void CGOpenMPRegionInfo::EmitBody(CodeGenFunction &CGF, const Stmt * /*S*/) {
|
|
if (!CGF.HaveInsertPoint())
|
|
return;
|
|
// 1.2.2 OpenMP Language Terminology
|
|
// Structured block - An executable statement with a single entry at the
|
|
// top and a single exit at the bottom.
|
|
// The point of exit cannot be a branch out of the structured block.
|
|
// longjmp() and throw() must not violate the entry/exit criteria.
|
|
CGF.EHStack.pushTerminate();
|
|
CodeGen(CGF);
|
|
CGF.EHStack.popTerminate();
|
|
}
|
|
|
|
LValue CGOpenMPTaskOutlinedRegionInfo::getThreadIDVariableLValue(
|
|
CodeGenFunction &CGF) {
|
|
return CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(getThreadIDVariable()),
|
|
getThreadIDVariable()->getType(),
|
|
AlignmentSource::Decl);
|
|
}
|
|
|
|
static FieldDecl *addFieldToRecordDecl(ASTContext &C, DeclContext *DC,
|
|
QualType FieldTy) {
|
|
auto *Field = FieldDecl::Create(
|
|
C, DC, SourceLocation(), SourceLocation(), /*Id=*/nullptr, FieldTy,
|
|
C.getTrivialTypeSourceInfo(FieldTy, SourceLocation()),
|
|
/*BW=*/nullptr, /*Mutable=*/false, /*InitStyle=*/ICIS_NoInit);
|
|
Field->setAccess(AS_public);
|
|
DC->addDecl(Field);
|
|
return Field;
|
|
}
|
|
|
|
CGOpenMPRuntime::CGOpenMPRuntime(CodeGenModule &CGM, StringRef FirstSeparator,
|
|
StringRef Separator)
|
|
: CGM(CGM), FirstSeparator(FirstSeparator), Separator(Separator),
|
|
OffloadEntriesInfoManager(CGM) {
|
|
ASTContext &C = CGM.getContext();
|
|
RecordDecl *RD = C.buildImplicitRecord("ident_t");
|
|
QualType KmpInt32Ty = C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1);
|
|
RD->startDefinition();
|
|
// reserved_1
|
|
addFieldToRecordDecl(C, RD, KmpInt32Ty);
|
|
// flags
|
|
addFieldToRecordDecl(C, RD, KmpInt32Ty);
|
|
// reserved_2
|
|
addFieldToRecordDecl(C, RD, KmpInt32Ty);
|
|
// reserved_3
|
|
addFieldToRecordDecl(C, RD, KmpInt32Ty);
|
|
// psource
|
|
addFieldToRecordDecl(C, RD, C.VoidPtrTy);
|
|
RD->completeDefinition();
|
|
IdentQTy = C.getRecordType(RD);
|
|
IdentTy = CGM.getTypes().ConvertRecordDeclType(RD);
|
|
KmpCriticalNameTy = llvm::ArrayType::get(CGM.Int32Ty, /*NumElements*/ 8);
|
|
|
|
loadOffloadInfoMetadata();
|
|
}
|
|
|
|
bool CGOpenMPRuntime::tryEmitDeclareVariant(const GlobalDecl &NewGD,
|
|
const GlobalDecl &OldGD,
|
|
llvm::GlobalValue *OrigAddr,
|
|
bool IsForDefinition) {
|
|
// Emit at least a definition for the aliasee if the the address of the
|
|
// original function is requested.
|
|
if (IsForDefinition || OrigAddr)
|
|
(void)CGM.GetAddrOfGlobal(NewGD);
|
|
StringRef NewMangledName = CGM.getMangledName(NewGD);
|
|
llvm::GlobalValue *Addr = CGM.GetGlobalValue(NewMangledName);
|
|
if (Addr && !Addr->isDeclaration()) {
|
|
const auto *D = cast<FunctionDecl>(OldGD.getDecl());
|
|
const CGFunctionInfo &FI = CGM.getTypes().arrangeGlobalDeclaration(OldGD);
|
|
llvm::Type *DeclTy = CGM.getTypes().GetFunctionType(FI);
|
|
|
|
// Create a reference to the named value. This ensures that it is emitted
|
|
// if a deferred decl.
|
|
llvm::GlobalValue::LinkageTypes LT = CGM.getFunctionLinkage(OldGD);
|
|
|
|
// Create the new alias itself, but don't set a name yet.
|
|
auto *GA =
|
|
llvm::GlobalAlias::create(DeclTy, 0, LT, "", Addr, &CGM.getModule());
|
|
|
|
if (OrigAddr) {
|
|
assert(OrigAddr->isDeclaration() && "Expected declaration");
|
|
|
|
GA->takeName(OrigAddr);
|
|
OrigAddr->replaceAllUsesWith(
|
|
llvm::ConstantExpr::getBitCast(GA, OrigAddr->getType()));
|
|
OrigAddr->eraseFromParent();
|
|
} else {
|
|
GA->setName(CGM.getMangledName(OldGD));
|
|
}
|
|
|
|
// Set attributes which are particular to an alias; this is a
|
|
// specialization of the attributes which may be set on a global function.
|
|
if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
|
|
D->isWeakImported())
|
|
GA->setLinkage(llvm::Function::WeakAnyLinkage);
|
|
|
|
CGM.SetCommonAttributes(OldGD, GA);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void CGOpenMPRuntime::clear() {
|
|
InternalVars.clear();
|
|
// Clean non-target variable declarations possibly used only in debug info.
|
|
for (const auto &Data : EmittedNonTargetVariables) {
|
|
if (!Data.getValue().pointsToAliveValue())
|
|
continue;
|
|
auto *GV = dyn_cast<llvm::GlobalVariable>(Data.getValue());
|
|
if (!GV)
|
|
continue;
|
|
if (!GV->isDeclaration() || GV->getNumUses() > 0)
|
|
continue;
|
|
GV->eraseFromParent();
|
|
}
|
|
// Emit aliases for the deferred aliasees.
|
|
for (const auto &Pair : DeferredVariantFunction) {
|
|
StringRef MangledName = CGM.getMangledName(Pair.second.second);
|
|
llvm::GlobalValue *Addr = CGM.GetGlobalValue(MangledName);
|
|
// If not able to emit alias, just emit original declaration.
|
|
(void)tryEmitDeclareVariant(Pair.second.first, Pair.second.second, Addr,
|
|
/*IsForDefinition=*/false);
|
|
}
|
|
}
|
|
|
|
std::string CGOpenMPRuntime::getName(ArrayRef<StringRef> Parts) const {
|
|
SmallString<128> Buffer;
|
|
llvm::raw_svector_ostream OS(Buffer);
|
|
StringRef Sep = FirstSeparator;
|
|
for (StringRef Part : Parts) {
|
|
OS << Sep << Part;
|
|
Sep = Separator;
|
|
}
|
|
return OS.str();
|
|
}
|
|
|
|
static llvm::Function *
|
|
emitCombinerOrInitializer(CodeGenModule &CGM, QualType Ty,
|
|
const Expr *CombinerInitializer, const VarDecl *In,
|
|
const VarDecl *Out, bool IsCombiner) {
|
|
// void .omp_combiner.(Ty *in, Ty *out);
|
|
ASTContext &C = CGM.getContext();
|
|
QualType PtrTy = C.getPointerType(Ty).withRestrict();
|
|
FunctionArgList Args;
|
|
ImplicitParamDecl OmpOutParm(C, /*DC=*/nullptr, Out->getLocation(),
|
|
/*Id=*/nullptr, PtrTy, ImplicitParamDecl::Other);
|
|
ImplicitParamDecl OmpInParm(C, /*DC=*/nullptr, In->getLocation(),
|
|
/*Id=*/nullptr, PtrTy, ImplicitParamDecl::Other);
|
|
Args.push_back(&OmpOutParm);
|
|
Args.push_back(&OmpInParm);
|
|
const CGFunctionInfo &FnInfo =
|
|
CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
|
|
llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo);
|
|
std::string Name = CGM.getOpenMPRuntime().getName(
|
|
{IsCombiner ? "omp_combiner" : "omp_initializer", ""});
|
|
auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage,
|
|
Name, &CGM.getModule());
|
|
CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo);
|
|
if (CGM.getLangOpts().Optimize) {
|
|
Fn->removeFnAttr(llvm::Attribute::NoInline);
|
|
Fn->removeFnAttr(llvm::Attribute::OptimizeNone);
|
|
Fn->addFnAttr(llvm::Attribute::AlwaysInline);
|
|
}
|
|
CodeGenFunction CGF(CGM);
|
|
// Map "T omp_in;" variable to "*omp_in_parm" value in all expressions.
|
|
// Map "T omp_out;" variable to "*omp_out_parm" value in all expressions.
|
|
CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, In->getLocation(),
|
|
Out->getLocation());
|
|
CodeGenFunction::OMPPrivateScope Scope(CGF);
|
|
Address AddrIn = CGF.GetAddrOfLocalVar(&OmpInParm);
|
|
Scope.addPrivate(In, [&CGF, AddrIn, PtrTy]() {
|
|
return CGF.EmitLoadOfPointerLValue(AddrIn, PtrTy->castAs<PointerType>())
|
|
.getAddress(CGF);
|
|
});
|
|
Address AddrOut = CGF.GetAddrOfLocalVar(&OmpOutParm);
|
|
Scope.addPrivate(Out, [&CGF, AddrOut, PtrTy]() {
|
|
return CGF.EmitLoadOfPointerLValue(AddrOut, PtrTy->castAs<PointerType>())
|
|
.getAddress(CGF);
|
|
});
|
|
(void)Scope.Privatize();
|
|
if (!IsCombiner && Out->hasInit() &&
|
|
!CGF.isTrivialInitializer(Out->getInit())) {
|
|
CGF.EmitAnyExprToMem(Out->getInit(), CGF.GetAddrOfLocalVar(Out),
|
|
Out->getType().getQualifiers(),
|
|
/*IsInitializer=*/true);
|
|
}
|
|
if (CombinerInitializer)
|
|
CGF.EmitIgnoredExpr(CombinerInitializer);
|
|
Scope.ForceCleanup();
|
|
CGF.FinishFunction();
|
|
return Fn;
|
|
}
|
|
|
|
void CGOpenMPRuntime::emitUserDefinedReduction(
|
|
CodeGenFunction *CGF, const OMPDeclareReductionDecl *D) {
|
|
if (UDRMap.count(D) > 0)
|
|
return;
|
|
llvm::Function *Combiner = emitCombinerOrInitializer(
|
|
CGM, D->getType(), D->getCombiner(),
|
|
cast<VarDecl>(cast<DeclRefExpr>(D->getCombinerIn())->getDecl()),
|
|
cast<VarDecl>(cast<DeclRefExpr>(D->getCombinerOut())->getDecl()),
|
|
/*IsCombiner=*/true);
|
|
llvm::Function *Initializer = nullptr;
|
|
if (const Expr *Init = D->getInitializer()) {
|
|
Initializer = emitCombinerOrInitializer(
|
|
CGM, D->getType(),
|
|
D->getInitializerKind() == OMPDeclareReductionDecl::CallInit ? Init
|
|
: nullptr,
|
|
cast<VarDecl>(cast<DeclRefExpr>(D->getInitOrig())->getDecl()),
|
|
cast<VarDecl>(cast<DeclRefExpr>(D->getInitPriv())->getDecl()),
|
|
/*IsCombiner=*/false);
|
|
}
|
|
UDRMap.try_emplace(D, Combiner, Initializer);
|
|
if (CGF) {
|
|
auto &Decls = FunctionUDRMap.FindAndConstruct(CGF->CurFn);
|
|
Decls.second.push_back(D);
|
|
}
|
|
}
|
|
|
|
std::pair<llvm::Function *, llvm::Function *>
|
|
CGOpenMPRuntime::getUserDefinedReduction(const OMPDeclareReductionDecl *D) {
|
|
auto I = UDRMap.find(D);
|
|
if (I != UDRMap.end())
|
|
return I->second;
|
|
emitUserDefinedReduction(/*CGF=*/nullptr, D);
|
|
return UDRMap.lookup(D);
|
|
}
|
|
|
|
static llvm::Function *emitParallelOrTeamsOutlinedFunction(
|
|
CodeGenModule &CGM, const OMPExecutableDirective &D, const CapturedStmt *CS,
|
|
const VarDecl *ThreadIDVar, OpenMPDirectiveKind InnermostKind,
|
|
const StringRef OutlinedHelperName, const RegionCodeGenTy &CodeGen) {
|
|
assert(ThreadIDVar->getType()->isPointerType() &&
|
|
"thread id variable must be of type kmp_int32 *");
|
|
CodeGenFunction CGF(CGM, true);
|
|
bool HasCancel = false;
|
|
if (const auto *OPD = dyn_cast<OMPParallelDirective>(&D))
|
|
HasCancel = OPD->hasCancel();
|
|
else if (const auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&D))
|
|
HasCancel = OPSD->hasCancel();
|
|
else if (const auto *OPFD = dyn_cast<OMPParallelForDirective>(&D))
|
|
HasCancel = OPFD->hasCancel();
|
|
else if (const auto *OPFD = dyn_cast<OMPTargetParallelForDirective>(&D))
|
|
HasCancel = OPFD->hasCancel();
|
|
else if (const auto *OPFD = dyn_cast<OMPDistributeParallelForDirective>(&D))
|
|
HasCancel = OPFD->hasCancel();
|
|
else if (const auto *OPFD =
|
|
dyn_cast<OMPTeamsDistributeParallelForDirective>(&D))
|
|
HasCancel = OPFD->hasCancel();
|
|
else if (const auto *OPFD =
|
|
dyn_cast<OMPTargetTeamsDistributeParallelForDirective>(&D))
|
|
HasCancel = OPFD->hasCancel();
|
|
CGOpenMPOutlinedRegionInfo CGInfo(*CS, ThreadIDVar, CodeGen, InnermostKind,
|
|
HasCancel, OutlinedHelperName);
|
|
CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
|
|
return CGF.GenerateOpenMPCapturedStmtFunction(*CS);
|
|
}
|
|
|
|
llvm::Function *CGOpenMPRuntime::emitParallelOutlinedFunction(
|
|
const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
|
|
OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
|
|
const CapturedStmt *CS = D.getCapturedStmt(OMPD_parallel);
|
|
return emitParallelOrTeamsOutlinedFunction(
|
|
CGM, D, CS, ThreadIDVar, InnermostKind, getOutlinedHelperName(), CodeGen);
|
|
}
|
|
|
|
llvm::Function *CGOpenMPRuntime::emitTeamsOutlinedFunction(
|
|
const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
|
|
OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
|
|
const CapturedStmt *CS = D.getCapturedStmt(OMPD_teams);
|
|
return emitParallelOrTeamsOutlinedFunction(
|
|
CGM, D, CS, ThreadIDVar, InnermostKind, getOutlinedHelperName(), CodeGen);
|
|
}
|
|
|
|
llvm::Function *CGOpenMPRuntime::emitTaskOutlinedFunction(
|
|
const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
|
|
const VarDecl *PartIDVar, const VarDecl *TaskTVar,
|
|
OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen,
|
|
bool Tied, unsigned &NumberOfParts) {
|
|
auto &&UntiedCodeGen = [this, &D, TaskTVar](CodeGenFunction &CGF,
|
|
PrePostActionTy &) {
|
|
llvm::Value *ThreadID = getThreadID(CGF, D.getBeginLoc());
|
|
llvm::Value *UpLoc = emitUpdateLocation(CGF, D.getBeginLoc());
|
|
llvm::Value *TaskArgs[] = {
|
|
UpLoc, ThreadID,
|
|
CGF.EmitLoadOfPointerLValue(CGF.GetAddrOfLocalVar(TaskTVar),
|
|
TaskTVar->getType()->castAs<PointerType>())
|
|
.getPointer(CGF)};
|
|
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_omp_task), TaskArgs);
|
|
};
|
|
CGOpenMPTaskOutlinedRegionInfo::UntiedTaskActionTy Action(Tied, PartIDVar,
|
|
UntiedCodeGen);
|
|
CodeGen.setAction(Action);
|
|
assert(!ThreadIDVar->getType()->isPointerType() &&
|
|
"thread id variable must be of type kmp_int32 for tasks");
|
|
const OpenMPDirectiveKind Region =
|
|
isOpenMPTaskLoopDirective(D.getDirectiveKind()) ? OMPD_taskloop
|
|
: OMPD_task;
|
|
const CapturedStmt *CS = D.getCapturedStmt(Region);
|
|
const auto *TD = dyn_cast<OMPTaskDirective>(&D);
|
|
CodeGenFunction CGF(CGM, true);
|
|
CGOpenMPTaskOutlinedRegionInfo CGInfo(*CS, ThreadIDVar, CodeGen,
|
|
InnermostKind,
|
|
TD ? TD->hasCancel() : false, Action);
|
|
CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
|
|
llvm::Function *Res = CGF.GenerateCapturedStmtFunction(*CS);
|
|
if (!Tied)
|
|
NumberOfParts = Action.getNumberOfParts();
|
|
return Res;
|
|
}
|
|
|
|
static void buildStructValue(ConstantStructBuilder &Fields, CodeGenModule &CGM,
|
|
const RecordDecl *RD, const CGRecordLayout &RL,
|
|
ArrayRef<llvm::Constant *> Data) {
|
|
llvm::StructType *StructTy = RL.getLLVMType();
|
|
unsigned PrevIdx = 0;
|
|
ConstantInitBuilder CIBuilder(CGM);
|
|
auto DI = Data.begin();
|
|
for (const FieldDecl *FD : RD->fields()) {
|
|
unsigned Idx = RL.getLLVMFieldNo(FD);
|
|
// Fill the alignment.
|
|
for (unsigned I = PrevIdx; I < Idx; ++I)
|
|
Fields.add(llvm::Constant::getNullValue(StructTy->getElementType(I)));
|
|
PrevIdx = Idx + 1;
|
|
Fields.add(*DI);
|
|
++DI;
|
|
}
|
|
}
|
|
|
|
template <class... As>
|
|
static llvm::GlobalVariable *
|
|
createGlobalStruct(CodeGenModule &CGM, QualType Ty, bool IsConstant,
|
|
ArrayRef<llvm::Constant *> Data, const Twine &Name,
|
|
As &&... Args) {
|
|
const auto *RD = cast<RecordDecl>(Ty->getAsTagDecl());
|
|
const CGRecordLayout &RL = CGM.getTypes().getCGRecordLayout(RD);
|
|
ConstantInitBuilder CIBuilder(CGM);
|
|
ConstantStructBuilder Fields = CIBuilder.beginStruct(RL.getLLVMType());
|
|
buildStructValue(Fields, CGM, RD, RL, Data);
|
|
return Fields.finishAndCreateGlobal(
|
|
Name, CGM.getContext().getAlignOfGlobalVarInChars(Ty), IsConstant,
|
|
std::forward<As>(Args)...);
|
|
}
|
|
|
|
template <typename T>
|
|
static void
|
|
createConstantGlobalStructAndAddToParent(CodeGenModule &CGM, QualType Ty,
|
|
ArrayRef<llvm::Constant *> Data,
|
|
T &Parent) {
|
|
const auto *RD = cast<RecordDecl>(Ty->getAsTagDecl());
|
|
const CGRecordLayout &RL = CGM.getTypes().getCGRecordLayout(RD);
|
|
ConstantStructBuilder Fields = Parent.beginStruct(RL.getLLVMType());
|
|
buildStructValue(Fields, CGM, RD, RL, Data);
|
|
Fields.finishAndAddTo(Parent);
|
|
}
|
|
|
|
Address CGOpenMPRuntime::getOrCreateDefaultLocation(unsigned Flags) {
|
|
CharUnits Align = CGM.getContext().getTypeAlignInChars(IdentQTy);
|
|
unsigned Reserved2Flags = getDefaultLocationReserved2Flags();
|
|
FlagsTy FlagsKey(Flags, Reserved2Flags);
|
|
llvm::Value *Entry = OpenMPDefaultLocMap.lookup(FlagsKey);
|
|
if (!Entry) {
|
|
if (!DefaultOpenMPPSource) {
|
|
// Initialize default location for psource field of ident_t structure of
|
|
// all ident_t objects. Format is ";file;function;line;column;;".
|
|
// Taken from
|
|
// https://github.com/llvm/llvm-project/blob/master/openmp/runtime/src/kmp_str.cpp
|
|
DefaultOpenMPPSource =
|
|
CGM.GetAddrOfConstantCString(";unknown;unknown;0;0;;").getPointer();
|
|
DefaultOpenMPPSource =
|
|
llvm::ConstantExpr::getBitCast(DefaultOpenMPPSource, CGM.Int8PtrTy);
|
|
}
|
|
|
|
llvm::Constant *Data[] = {
|
|
llvm::ConstantInt::getNullValue(CGM.Int32Ty),
|
|
llvm::ConstantInt::get(CGM.Int32Ty, Flags),
|
|
llvm::ConstantInt::get(CGM.Int32Ty, Reserved2Flags),
|
|
llvm::ConstantInt::getNullValue(CGM.Int32Ty), DefaultOpenMPPSource};
|
|
llvm::GlobalValue *DefaultOpenMPLocation =
|
|
createGlobalStruct(CGM, IdentQTy, isDefaultLocationConstant(), Data, "",
|
|
llvm::GlobalValue::PrivateLinkage);
|
|
DefaultOpenMPLocation->setUnnamedAddr(
|
|
llvm::GlobalValue::UnnamedAddr::Global);
|
|
|
|
OpenMPDefaultLocMap[FlagsKey] = Entry = DefaultOpenMPLocation;
|
|
}
|
|
return Address(Entry, Align);
|
|
}
|
|
|
|
void CGOpenMPRuntime::setLocThreadIdInsertPt(CodeGenFunction &CGF,
|
|
bool AtCurrentPoint) {
|
|
auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn);
|
|
assert(!Elem.second.ServiceInsertPt && "Insert point is set already.");
|
|
|
|
llvm::Value *Undef = llvm::UndefValue::get(CGF.Int32Ty);
|
|
if (AtCurrentPoint) {
|
|
Elem.second.ServiceInsertPt = new llvm::BitCastInst(
|
|
Undef, CGF.Int32Ty, "svcpt", CGF.Builder.GetInsertBlock());
|
|
} else {
|
|
Elem.second.ServiceInsertPt =
|
|
new llvm::BitCastInst(Undef, CGF.Int32Ty, "svcpt");
|
|
Elem.second.ServiceInsertPt->insertAfter(CGF.AllocaInsertPt);
|
|
}
|
|
}
|
|
|
|
void CGOpenMPRuntime::clearLocThreadIdInsertPt(CodeGenFunction &CGF) {
|
|
auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn);
|
|
if (Elem.second.ServiceInsertPt) {
|
|
llvm::Instruction *Ptr = Elem.second.ServiceInsertPt;
|
|
Elem.second.ServiceInsertPt = nullptr;
|
|
Ptr->eraseFromParent();
|
|
}
|
|
}
|
|
|
|
llvm::Value *CGOpenMPRuntime::emitUpdateLocation(CodeGenFunction &CGF,
|
|
SourceLocation Loc,
|
|
unsigned Flags) {
|
|
Flags |= OMP_IDENT_KMPC;
|
|
// If no debug info is generated - return global default location.
|
|
if (CGM.getCodeGenOpts().getDebugInfo() == codegenoptions::NoDebugInfo ||
|
|
Loc.isInvalid())
|
|
return getOrCreateDefaultLocation(Flags).getPointer();
|
|
|
|
assert(CGF.CurFn && "No function in current CodeGenFunction.");
|
|
|
|
CharUnits Align = CGM.getContext().getTypeAlignInChars(IdentQTy);
|
|
Address LocValue = Address::invalid();
|
|
auto I = OpenMPLocThreadIDMap.find(CGF.CurFn);
|
|
if (I != OpenMPLocThreadIDMap.end())
|
|
LocValue = Address(I->second.DebugLoc, Align);
|
|
|
|
// OpenMPLocThreadIDMap may have null DebugLoc and non-null ThreadID, if
|
|
// GetOpenMPThreadID was called before this routine.
|
|
if (!LocValue.isValid()) {
|
|
// Generate "ident_t .kmpc_loc.addr;"
|
|
Address AI = CGF.CreateMemTemp(IdentQTy, ".kmpc_loc.addr");
|
|
auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn);
|
|
Elem.second.DebugLoc = AI.getPointer();
|
|
LocValue = AI;
|
|
|
|
if (!Elem.second.ServiceInsertPt)
|
|
setLocThreadIdInsertPt(CGF);
|
|
CGBuilderTy::InsertPointGuard IPG(CGF.Builder);
|
|
CGF.Builder.SetInsertPoint(Elem.second.ServiceInsertPt);
|
|
CGF.Builder.CreateMemCpy(LocValue, getOrCreateDefaultLocation(Flags),
|
|
CGF.getTypeSize(IdentQTy));
|
|
}
|
|
|
|
// char **psource = &.kmpc_loc_<flags>.addr.psource;
|
|
LValue Base = CGF.MakeAddrLValue(LocValue, IdentQTy);
|
|
auto Fields = cast<RecordDecl>(IdentQTy->getAsTagDecl())->field_begin();
|
|
LValue PSource =
|
|
CGF.EmitLValueForField(Base, *std::next(Fields, IdentField_PSource));
|
|
|
|
llvm::Value *OMPDebugLoc = OpenMPDebugLocMap.lookup(Loc.getRawEncoding());
|
|
if (OMPDebugLoc == nullptr) {
|
|
SmallString<128> Buffer2;
|
|
llvm::raw_svector_ostream OS2(Buffer2);
|
|
// Build debug location
|
|
PresumedLoc PLoc = CGF.getContext().getSourceManager().getPresumedLoc(Loc);
|
|
OS2 << ";" << PLoc.getFilename() << ";";
|
|
if (const auto *FD = dyn_cast_or_null<FunctionDecl>(CGF.CurFuncDecl))
|
|
OS2 << FD->getQualifiedNameAsString();
|
|
OS2 << ";" << PLoc.getLine() << ";" << PLoc.getColumn() << ";;";
|
|
OMPDebugLoc = CGF.Builder.CreateGlobalStringPtr(OS2.str());
|
|
OpenMPDebugLocMap[Loc.getRawEncoding()] = OMPDebugLoc;
|
|
}
|
|
// *psource = ";<File>;<Function>;<Line>;<Column>;;";
|
|
CGF.EmitStoreOfScalar(OMPDebugLoc, PSource);
|
|
|
|
// Our callers always pass this to a runtime function, so for
|
|
// convenience, go ahead and return a naked pointer.
|
|
return LocValue.getPointer();
|
|
}
|
|
|
|
llvm::Value *CGOpenMPRuntime::getThreadID(CodeGenFunction &CGF,
|
|
SourceLocation Loc) {
|
|
assert(CGF.CurFn && "No function in current CodeGenFunction.");
|
|
|
|
llvm::Value *ThreadID = nullptr;
|
|
// Check whether we've already cached a load of the thread id in this
|
|
// function.
|
|
auto I = OpenMPLocThreadIDMap.find(CGF.CurFn);
|
|
if (I != OpenMPLocThreadIDMap.end()) {
|
|
ThreadID = I->second.ThreadID;
|
|
if (ThreadID != nullptr)
|
|
return ThreadID;
|
|
}
|
|
// If exceptions are enabled, do not use parameter to avoid possible crash.
|
|
if (auto *OMPRegionInfo =
|
|
dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) {
|
|
if (OMPRegionInfo->getThreadIDVariable()) {
|
|
// Check if this an outlined function with thread id passed as argument.
|
|
LValue LVal = OMPRegionInfo->getThreadIDVariableLValue(CGF);
|
|
llvm::BasicBlock *TopBlock = CGF.AllocaInsertPt->getParent();
|
|
if (!CGF.EHStack.requiresLandingPad() || !CGF.getLangOpts().Exceptions ||
|
|
!CGF.getLangOpts().CXXExceptions ||
|
|
CGF.Builder.GetInsertBlock() == TopBlock ||
|
|
!isa<llvm::Instruction>(LVal.getPointer(CGF)) ||
|
|
cast<llvm::Instruction>(LVal.getPointer(CGF))->getParent() ==
|
|
TopBlock ||
|
|
cast<llvm::Instruction>(LVal.getPointer(CGF))->getParent() ==
|
|
CGF.Builder.GetInsertBlock()) {
|
|
ThreadID = CGF.EmitLoadOfScalar(LVal, Loc);
|
|
// If value loaded in entry block, cache it and use it everywhere in
|
|
// function.
|
|
if (CGF.Builder.GetInsertBlock() == TopBlock) {
|
|
auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn);
|
|
Elem.second.ThreadID = ThreadID;
|
|
}
|
|
return ThreadID;
|
|
}
|
|
}
|
|
}
|
|
|
|
// This is not an outlined function region - need to call __kmpc_int32
|
|
// kmpc_global_thread_num(ident_t *loc).
|
|
// Generate thread id value and cache this value for use across the
|
|
// function.
|
|
auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn);
|
|
if (!Elem.second.ServiceInsertPt)
|
|
setLocThreadIdInsertPt(CGF);
|
|
CGBuilderTy::InsertPointGuard IPG(CGF.Builder);
|
|
CGF.Builder.SetInsertPoint(Elem.second.ServiceInsertPt);
|
|
llvm::CallInst *Call = CGF.Builder.CreateCall(
|
|
createRuntimeFunction(OMPRTL__kmpc_global_thread_num),
|
|
emitUpdateLocation(CGF, Loc));
|
|
Call->setCallingConv(CGF.getRuntimeCC());
|
|
Elem.second.ThreadID = Call;
|
|
return Call;
|
|
}
|
|
|
|
void CGOpenMPRuntime::functionFinished(CodeGenFunction &CGF) {
|
|
assert(CGF.CurFn && "No function in current CodeGenFunction.");
|
|
if (OpenMPLocThreadIDMap.count(CGF.CurFn)) {
|
|
clearLocThreadIdInsertPt(CGF);
|
|
OpenMPLocThreadIDMap.erase(CGF.CurFn);
|
|
}
|
|
if (FunctionUDRMap.count(CGF.CurFn) > 0) {
|
|
for(auto *D : FunctionUDRMap[CGF.CurFn])
|
|
UDRMap.erase(D);
|
|
FunctionUDRMap.erase(CGF.CurFn);
|
|
}
|
|
auto I = FunctionUDMMap.find(CGF.CurFn);
|
|
if (I != FunctionUDMMap.end()) {
|
|
for(auto *D : I->second)
|
|
UDMMap.erase(D);
|
|
FunctionUDMMap.erase(I);
|
|
}
|
|
}
|
|
|
|
llvm::Type *CGOpenMPRuntime::getIdentTyPointerTy() {
|
|
return IdentTy->getPointerTo();
|
|
}
|
|
|
|
llvm::Type *CGOpenMPRuntime::getKmpc_MicroPointerTy() {
|
|
if (!Kmpc_MicroTy) {
|
|
// Build void (*kmpc_micro)(kmp_int32 *global_tid, kmp_int32 *bound_tid,...)
|
|
llvm::Type *MicroParams[] = {llvm::PointerType::getUnqual(CGM.Int32Ty),
|
|
llvm::PointerType::getUnqual(CGM.Int32Ty)};
|
|
Kmpc_MicroTy = llvm::FunctionType::get(CGM.VoidTy, MicroParams, true);
|
|
}
|
|
return llvm::PointerType::getUnqual(Kmpc_MicroTy);
|
|
}
|
|
|
|
llvm::FunctionCallee CGOpenMPRuntime::createRuntimeFunction(unsigned Function) {
|
|
llvm::FunctionCallee RTLFn = nullptr;
|
|
switch (static_cast<OpenMPRTLFunction>(Function)) {
|
|
case OMPRTL__kmpc_fork_call: {
|
|
// Build void __kmpc_fork_call(ident_t *loc, kmp_int32 argc, kmpc_micro
|
|
// microtask, ...);
|
|
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
|
|
getKmpc_MicroPointerTy()};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ true);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_fork_call");
|
|
if (auto *F = dyn_cast<llvm::Function>(RTLFn.getCallee())) {
|
|
if (!F->hasMetadata(llvm::LLVMContext::MD_callback)) {
|
|
llvm::LLVMContext &Ctx = F->getContext();
|
|
llvm::MDBuilder MDB(Ctx);
|
|
// Annotate the callback behavior of the __kmpc_fork_call:
|
|
// - The callback callee is argument number 2 (microtask).
|
|
// - The first two arguments of the callback callee are unknown (-1).
|
|
// - All variadic arguments to the __kmpc_fork_call are passed to the
|
|
// callback callee.
|
|
F->addMetadata(
|
|
llvm::LLVMContext::MD_callback,
|
|
*llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
|
|
2, {-1, -1},
|
|
/* VarArgsArePassed */ true)}));
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_global_thread_num: {
|
|
// Build kmp_int32 __kmpc_global_thread_num(ident_t *loc);
|
|
llvm::Type *TypeParams[] = {getIdentTyPointerTy()};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_global_thread_num");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_threadprivate_cached: {
|
|
// Build void *__kmpc_threadprivate_cached(ident_t *loc,
|
|
// kmp_int32 global_tid, void *data, size_t size, void ***cache);
|
|
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
|
|
CGM.VoidPtrTy, CGM.SizeTy,
|
|
CGM.VoidPtrTy->getPointerTo()->getPointerTo()};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidPtrTy, TypeParams, /*isVarArg*/ false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_threadprivate_cached");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_critical: {
|
|
// Build void __kmpc_critical(ident_t *loc, kmp_int32 global_tid,
|
|
// kmp_critical_name *crit);
|
|
llvm::Type *TypeParams[] = {
|
|
getIdentTyPointerTy(), CGM.Int32Ty,
|
|
llvm::PointerType::getUnqual(KmpCriticalNameTy)};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_critical");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_critical_with_hint: {
|
|
// Build void __kmpc_critical_with_hint(ident_t *loc, kmp_int32 global_tid,
|
|
// kmp_critical_name *crit, uintptr_t hint);
|
|
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
|
|
llvm::PointerType::getUnqual(KmpCriticalNameTy),
|
|
CGM.IntPtrTy};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_critical_with_hint");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_threadprivate_register: {
|
|
// Build void __kmpc_threadprivate_register(ident_t *, void *data,
|
|
// kmpc_ctor ctor, kmpc_cctor cctor, kmpc_dtor dtor);
|
|
// typedef void *(*kmpc_ctor)(void *);
|
|
auto *KmpcCtorTy =
|
|
llvm::FunctionType::get(CGM.VoidPtrTy, CGM.VoidPtrTy,
|
|
/*isVarArg*/ false)->getPointerTo();
|
|
// typedef void *(*kmpc_cctor)(void *, void *);
|
|
llvm::Type *KmpcCopyCtorTyArgs[] = {CGM.VoidPtrTy, CGM.VoidPtrTy};
|
|
auto *KmpcCopyCtorTy =
|
|
llvm::FunctionType::get(CGM.VoidPtrTy, KmpcCopyCtorTyArgs,
|
|
/*isVarArg*/ false)
|
|
->getPointerTo();
|
|
// typedef void (*kmpc_dtor)(void *);
|
|
auto *KmpcDtorTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, CGM.VoidPtrTy, /*isVarArg*/ false)
|
|
->getPointerTo();
|
|
llvm::Type *FnTyArgs[] = {getIdentTyPointerTy(), CGM.VoidPtrTy, KmpcCtorTy,
|
|
KmpcCopyCtorTy, KmpcDtorTy};
|
|
auto *FnTy = llvm::FunctionType::get(CGM.VoidTy, FnTyArgs,
|
|
/*isVarArg*/ false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_threadprivate_register");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_end_critical: {
|
|
// Build void __kmpc_end_critical(ident_t *loc, kmp_int32 global_tid,
|
|
// kmp_critical_name *crit);
|
|
llvm::Type *TypeParams[] = {
|
|
getIdentTyPointerTy(), CGM.Int32Ty,
|
|
llvm::PointerType::getUnqual(KmpCriticalNameTy)};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_critical");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_cancel_barrier: {
|
|
// Build kmp_int32 __kmpc_cancel_barrier(ident_t *loc, kmp_int32
|
|
// global_tid);
|
|
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name*/ "__kmpc_cancel_barrier");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_barrier: {
|
|
// Build void __kmpc_barrier(ident_t *loc, kmp_int32 global_tid);
|
|
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name*/ "__kmpc_barrier");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_for_static_fini: {
|
|
// Build void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid);
|
|
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_for_static_fini");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_push_num_threads: {
|
|
// Build void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid,
|
|
// kmp_int32 num_threads)
|
|
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
|
|
CGM.Int32Ty};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_push_num_threads");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_serialized_parallel: {
|
|
// Build void __kmpc_serialized_parallel(ident_t *loc, kmp_int32
|
|
// global_tid);
|
|
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_serialized_parallel");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_end_serialized_parallel: {
|
|
// Build void __kmpc_end_serialized_parallel(ident_t *loc, kmp_int32
|
|
// global_tid);
|
|
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_serialized_parallel");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_flush: {
|
|
// Build void __kmpc_flush(ident_t *loc);
|
|
llvm::Type *TypeParams[] = {getIdentTyPointerTy()};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_flush");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_master: {
|
|
// Build kmp_int32 __kmpc_master(ident_t *loc, kmp_int32 global_tid);
|
|
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_master");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_end_master: {
|
|
// Build void __kmpc_end_master(ident_t *loc, kmp_int32 global_tid);
|
|
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_end_master");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_omp_taskyield: {
|
|
// Build kmp_int32 __kmpc_omp_taskyield(ident_t *, kmp_int32 global_tid,
|
|
// int end_part);
|
|
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.IntTy};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_taskyield");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_single: {
|
|
// Build kmp_int32 __kmpc_single(ident_t *loc, kmp_int32 global_tid);
|
|
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_single");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_end_single: {
|
|
// Build void __kmpc_end_single(ident_t *loc, kmp_int32 global_tid);
|
|
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_end_single");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_omp_task_alloc: {
|
|
// Build kmp_task_t *__kmpc_omp_task_alloc(ident_t *, kmp_int32 gtid,
|
|
// kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds,
|
|
// kmp_routine_entry_t *task_entry);
|
|
assert(KmpRoutineEntryPtrTy != nullptr &&
|
|
"Type kmp_routine_entry_t must be created.");
|
|
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int32Ty,
|
|
CGM.SizeTy, CGM.SizeTy, KmpRoutineEntryPtrTy};
|
|
// Return void * and then cast to particular kmp_task_t type.
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidPtrTy, TypeParams, /*isVarArg=*/false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_task_alloc");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_omp_target_task_alloc: {
|
|
// Build kmp_task_t *__kmpc_omp_target_task_alloc(ident_t *, kmp_int32 gtid,
|
|
// kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds,
|
|
// kmp_routine_entry_t *task_entry, kmp_int64 device_id);
|
|
assert(KmpRoutineEntryPtrTy != nullptr &&
|
|
"Type kmp_routine_entry_t must be created.");
|
|
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int32Ty,
|
|
CGM.SizeTy, CGM.SizeTy, KmpRoutineEntryPtrTy,
|
|
CGM.Int64Ty};
|
|
// Return void * and then cast to particular kmp_task_t type.
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidPtrTy, TypeParams, /*isVarArg=*/false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_target_task_alloc");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_omp_task: {
|
|
// Build kmp_int32 __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t
|
|
// *new_task);
|
|
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
|
|
CGM.VoidPtrTy};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_task");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_copyprivate: {
|
|
// Build void __kmpc_copyprivate(ident_t *loc, kmp_int32 global_tid,
|
|
// size_t cpy_size, void *cpy_data, void(*cpy_func)(void *, void *),
|
|
// kmp_int32 didit);
|
|
llvm::Type *CpyTypeParams[] = {CGM.VoidPtrTy, CGM.VoidPtrTy};
|
|
auto *CpyFnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, CpyTypeParams, /*isVarArg=*/false);
|
|
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.SizeTy,
|
|
CGM.VoidPtrTy, CpyFnTy->getPointerTo(),
|
|
CGM.Int32Ty};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_copyprivate");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_reduce: {
|
|
// Build kmp_int32 __kmpc_reduce(ident_t *loc, kmp_int32 global_tid,
|
|
// kmp_int32 num_vars, size_t reduce_size, void *reduce_data, void
|
|
// (*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name *lck);
|
|
llvm::Type *ReduceTypeParams[] = {CGM.VoidPtrTy, CGM.VoidPtrTy};
|
|
auto *ReduceFnTy = llvm::FunctionType::get(CGM.VoidTy, ReduceTypeParams,
|
|
/*isVarArg=*/false);
|
|
llvm::Type *TypeParams[] = {
|
|
getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int32Ty, CGM.SizeTy,
|
|
CGM.VoidPtrTy, ReduceFnTy->getPointerTo(),
|
|
llvm::PointerType::getUnqual(KmpCriticalNameTy)};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_reduce");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_reduce_nowait: {
|
|
// Build kmp_int32 __kmpc_reduce_nowait(ident_t *loc, kmp_int32
|
|
// global_tid, kmp_int32 num_vars, size_t reduce_size, void *reduce_data,
|
|
// void (*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name
|
|
// *lck);
|
|
llvm::Type *ReduceTypeParams[] = {CGM.VoidPtrTy, CGM.VoidPtrTy};
|
|
auto *ReduceFnTy = llvm::FunctionType::get(CGM.VoidTy, ReduceTypeParams,
|
|
/*isVarArg=*/false);
|
|
llvm::Type *TypeParams[] = {
|
|
getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int32Ty, CGM.SizeTy,
|
|
CGM.VoidPtrTy, ReduceFnTy->getPointerTo(),
|
|
llvm::PointerType::getUnqual(KmpCriticalNameTy)};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_reduce_nowait");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_end_reduce: {
|
|
// Build void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid,
|
|
// kmp_critical_name *lck);
|
|
llvm::Type *TypeParams[] = {
|
|
getIdentTyPointerTy(), CGM.Int32Ty,
|
|
llvm::PointerType::getUnqual(KmpCriticalNameTy)};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_end_reduce");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_end_reduce_nowait: {
|
|
// Build __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid,
|
|
// kmp_critical_name *lck);
|
|
llvm::Type *TypeParams[] = {
|
|
getIdentTyPointerTy(), CGM.Int32Ty,
|
|
llvm::PointerType::getUnqual(KmpCriticalNameTy)};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
|
|
RTLFn =
|
|
CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_end_reduce_nowait");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_omp_task_begin_if0: {
|
|
// Build void __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t
|
|
// *new_task);
|
|
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
|
|
CGM.VoidPtrTy};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
|
|
RTLFn =
|
|
CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_task_begin_if0");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_omp_task_complete_if0: {
|
|
// Build void __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t
|
|
// *new_task);
|
|
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
|
|
CGM.VoidPtrTy};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy,
|
|
/*Name=*/"__kmpc_omp_task_complete_if0");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_ordered: {
|
|
// Build void __kmpc_ordered(ident_t *loc, kmp_int32 global_tid);
|
|
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_ordered");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_end_ordered: {
|
|
// Build void __kmpc_end_ordered(ident_t *loc, kmp_int32 global_tid);
|
|
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_ordered");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_omp_taskwait: {
|
|
// Build kmp_int32 __kmpc_omp_taskwait(ident_t *loc, kmp_int32 global_tid);
|
|
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_omp_taskwait");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_taskgroup: {
|
|
// Build void __kmpc_taskgroup(ident_t *loc, kmp_int32 global_tid);
|
|
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_taskgroup");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_end_taskgroup: {
|
|
// Build void __kmpc_end_taskgroup(ident_t *loc, kmp_int32 global_tid);
|
|
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_taskgroup");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_push_proc_bind: {
|
|
// Build void __kmpc_push_proc_bind(ident_t *loc, kmp_int32 global_tid,
|
|
// int proc_bind)
|
|
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.IntTy};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_push_proc_bind");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_omp_task_with_deps: {
|
|
// Build kmp_int32 __kmpc_omp_task_with_deps(ident_t *, kmp_int32 gtid,
|
|
// kmp_task_t *new_task, kmp_int32 ndeps, kmp_depend_info_t *dep_list,
|
|
// kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list);
|
|
llvm::Type *TypeParams[] = {
|
|
getIdentTyPointerTy(), CGM.Int32Ty, CGM.VoidPtrTy, CGM.Int32Ty,
|
|
CGM.VoidPtrTy, CGM.Int32Ty, CGM.VoidPtrTy};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
|
|
RTLFn =
|
|
CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_task_with_deps");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_omp_wait_deps: {
|
|
// Build void __kmpc_omp_wait_deps(ident_t *, kmp_int32 gtid,
|
|
// kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias,
|
|
// kmp_depend_info_t *noalias_dep_list);
|
|
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
|
|
CGM.Int32Ty, CGM.VoidPtrTy,
|
|
CGM.Int32Ty, CGM.VoidPtrTy};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_wait_deps");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_cancellationpoint: {
|
|
// Build kmp_int32 __kmpc_cancellationpoint(ident_t *loc, kmp_int32
|
|
// global_tid, kmp_int32 cncl_kind)
|
|
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.IntTy};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_cancellationpoint");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_cancel: {
|
|
// Build kmp_int32 __kmpc_cancel(ident_t *loc, kmp_int32 global_tid,
|
|
// kmp_int32 cncl_kind)
|
|
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.IntTy};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_cancel");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_push_num_teams: {
|
|
// Build void kmpc_push_num_teams (ident_t loc, kmp_int32 global_tid,
|
|
// kmp_int32 num_teams, kmp_int32 num_threads)
|
|
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int32Ty,
|
|
CGM.Int32Ty};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_push_num_teams");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_fork_teams: {
|
|
// Build void __kmpc_fork_teams(ident_t *loc, kmp_int32 argc, kmpc_micro
|
|
// microtask, ...);
|
|
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
|
|
getKmpc_MicroPointerTy()};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ true);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_fork_teams");
|
|
if (auto *F = dyn_cast<llvm::Function>(RTLFn.getCallee())) {
|
|
if (!F->hasMetadata(llvm::LLVMContext::MD_callback)) {
|
|
llvm::LLVMContext &Ctx = F->getContext();
|
|
llvm::MDBuilder MDB(Ctx);
|
|
// Annotate the callback behavior of the __kmpc_fork_teams:
|
|
// - The callback callee is argument number 2 (microtask).
|
|
// - The first two arguments of the callback callee are unknown (-1).
|
|
// - All variadic arguments to the __kmpc_fork_teams are passed to the
|
|
// callback callee.
|
|
F->addMetadata(
|
|
llvm::LLVMContext::MD_callback,
|
|
*llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
|
|
2, {-1, -1},
|
|
/* VarArgsArePassed */ true)}));
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_taskloop: {
|
|
// Build void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int
|
|
// if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int
|
|
// sched, kmp_uint64 grainsize, void *task_dup);
|
|
llvm::Type *TypeParams[] = {getIdentTyPointerTy(),
|
|
CGM.IntTy,
|
|
CGM.VoidPtrTy,
|
|
CGM.IntTy,
|
|
CGM.Int64Ty->getPointerTo(),
|
|
CGM.Int64Ty->getPointerTo(),
|
|
CGM.Int64Ty,
|
|
CGM.IntTy,
|
|
CGM.IntTy,
|
|
CGM.Int64Ty,
|
|
CGM.VoidPtrTy};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_taskloop");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_doacross_init: {
|
|
// Build void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid, kmp_int32
|
|
// num_dims, struct kmp_dim *dims);
|
|
llvm::Type *TypeParams[] = {getIdentTyPointerTy(),
|
|
CGM.Int32Ty,
|
|
CGM.Int32Ty,
|
|
CGM.VoidPtrTy};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_doacross_init");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_doacross_fini: {
|
|
// Build void __kmpc_doacross_fini(ident_t *loc, kmp_int32 gtid);
|
|
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_doacross_fini");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_doacross_post: {
|
|
// Build void __kmpc_doacross_post(ident_t *loc, kmp_int32 gtid, kmp_int64
|
|
// *vec);
|
|
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
|
|
CGM.Int64Ty->getPointerTo()};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_doacross_post");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_doacross_wait: {
|
|
// Build void __kmpc_doacross_wait(ident_t *loc, kmp_int32 gtid, kmp_int64
|
|
// *vec);
|
|
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
|
|
CGM.Int64Ty->getPointerTo()};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_doacross_wait");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_task_reduction_init: {
|
|
// Build void *__kmpc_task_reduction_init(int gtid, int num_data, void
|
|
// *data);
|
|
llvm::Type *TypeParams[] = {CGM.IntTy, CGM.IntTy, CGM.VoidPtrTy};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidPtrTy, TypeParams, /*isVarArg=*/false);
|
|
RTLFn =
|
|
CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_task_reduction_init");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_task_reduction_get_th_data: {
|
|
// Build void *__kmpc_task_reduction_get_th_data(int gtid, void *tg, void
|
|
// *d);
|
|
llvm::Type *TypeParams[] = {CGM.IntTy, CGM.VoidPtrTy, CGM.VoidPtrTy};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidPtrTy, TypeParams, /*isVarArg=*/false);
|
|
RTLFn = CGM.CreateRuntimeFunction(
|
|
FnTy, /*Name=*/"__kmpc_task_reduction_get_th_data");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_alloc: {
|
|
// Build to void *__kmpc_alloc(int gtid, size_t sz, omp_allocator_handle_t
|
|
// al); omp_allocator_handle_t type is void *.
|
|
llvm::Type *TypeParams[] = {CGM.IntTy, CGM.SizeTy, CGM.VoidPtrTy};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidPtrTy, TypeParams, /*isVarArg=*/false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_alloc");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_free: {
|
|
// Build to void __kmpc_free(int gtid, void *ptr, omp_allocator_handle_t
|
|
// al); omp_allocator_handle_t type is void *.
|
|
llvm::Type *TypeParams[] = {CGM.IntTy, CGM.VoidPtrTy, CGM.VoidPtrTy};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_free");
|
|
break;
|
|
}
|
|
case OMPRTL__kmpc_push_target_tripcount: {
|
|
// Build void __kmpc_push_target_tripcount(int64_t device_id, kmp_uint64
|
|
// size);
|
|
llvm::Type *TypeParams[] = {CGM.Int64Ty, CGM.Int64Ty};
|
|
llvm::FunctionType *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_push_target_tripcount");
|
|
break;
|
|
}
|
|
case OMPRTL__tgt_target: {
|
|
// Build int32_t __tgt_target(int64_t device_id, void *host_ptr, int32_t
|
|
// arg_num, void** args_base, void **args, int64_t *arg_sizes, int64_t
|
|
// *arg_types);
|
|
llvm::Type *TypeParams[] = {CGM.Int64Ty,
|
|
CGM.VoidPtrTy,
|
|
CGM.Int32Ty,
|
|
CGM.VoidPtrPtrTy,
|
|
CGM.VoidPtrPtrTy,
|
|
CGM.Int64Ty->getPointerTo(),
|
|
CGM.Int64Ty->getPointerTo()};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target");
|
|
break;
|
|
}
|
|
case OMPRTL__tgt_target_nowait: {
|
|
// Build int32_t __tgt_target_nowait(int64_t device_id, void *host_ptr,
|
|
// int32_t arg_num, void** args_base, void **args, int64_t *arg_sizes,
|
|
// int64_t *arg_types);
|
|
llvm::Type *TypeParams[] = {CGM.Int64Ty,
|
|
CGM.VoidPtrTy,
|
|
CGM.Int32Ty,
|
|
CGM.VoidPtrPtrTy,
|
|
CGM.VoidPtrPtrTy,
|
|
CGM.Int64Ty->getPointerTo(),
|
|
CGM.Int64Ty->getPointerTo()};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_nowait");
|
|
break;
|
|
}
|
|
case OMPRTL__tgt_target_teams: {
|
|
// Build int32_t __tgt_target_teams(int64_t device_id, void *host_ptr,
|
|
// int32_t arg_num, void** args_base, void **args, int64_t *arg_sizes,
|
|
// int64_t *arg_types, int32_t num_teams, int32_t thread_limit);
|
|
llvm::Type *TypeParams[] = {CGM.Int64Ty,
|
|
CGM.VoidPtrTy,
|
|
CGM.Int32Ty,
|
|
CGM.VoidPtrPtrTy,
|
|
CGM.VoidPtrPtrTy,
|
|
CGM.Int64Ty->getPointerTo(),
|
|
CGM.Int64Ty->getPointerTo(),
|
|
CGM.Int32Ty,
|
|
CGM.Int32Ty};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_teams");
|
|
break;
|
|
}
|
|
case OMPRTL__tgt_target_teams_nowait: {
|
|
// Build int32_t __tgt_target_teams_nowait(int64_t device_id, void
|
|
// *host_ptr, int32_t arg_num, void** args_base, void **args, int64_t
|
|
// *arg_sizes, int64_t *arg_types, int32_t num_teams, int32_t thread_limit);
|
|
llvm::Type *TypeParams[] = {CGM.Int64Ty,
|
|
CGM.VoidPtrTy,
|
|
CGM.Int32Ty,
|
|
CGM.VoidPtrPtrTy,
|
|
CGM.VoidPtrPtrTy,
|
|
CGM.Int64Ty->getPointerTo(),
|
|
CGM.Int64Ty->getPointerTo(),
|
|
CGM.Int32Ty,
|
|
CGM.Int32Ty};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_teams_nowait");
|
|
break;
|
|
}
|
|
case OMPRTL__tgt_register_requires: {
|
|
// Build void __tgt_register_requires(int64_t flags);
|
|
llvm::Type *TypeParams[] = {CGM.Int64Ty};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_register_requires");
|
|
break;
|
|
}
|
|
case OMPRTL__tgt_register_lib: {
|
|
// Build void __tgt_register_lib(__tgt_bin_desc *desc);
|
|
QualType ParamTy =
|
|
CGM.getContext().getPointerType(getTgtBinaryDescriptorQTy());
|
|
llvm::Type *TypeParams[] = {CGM.getTypes().ConvertTypeForMem(ParamTy)};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_register_lib");
|
|
break;
|
|
}
|
|
case OMPRTL__tgt_unregister_lib: {
|
|
// Build void __tgt_unregister_lib(__tgt_bin_desc *desc);
|
|
QualType ParamTy =
|
|
CGM.getContext().getPointerType(getTgtBinaryDescriptorQTy());
|
|
llvm::Type *TypeParams[] = {CGM.getTypes().ConvertTypeForMem(ParamTy)};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_unregister_lib");
|
|
break;
|
|
}
|
|
case OMPRTL__tgt_target_data_begin: {
|
|
// Build void __tgt_target_data_begin(int64_t device_id, int32_t arg_num,
|
|
// void** args_base, void **args, int64_t *arg_sizes, int64_t *arg_types);
|
|
llvm::Type *TypeParams[] = {CGM.Int64Ty,
|
|
CGM.Int32Ty,
|
|
CGM.VoidPtrPtrTy,
|
|
CGM.VoidPtrPtrTy,
|
|
CGM.Int64Ty->getPointerTo(),
|
|
CGM.Int64Ty->getPointerTo()};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_data_begin");
|
|
break;
|
|
}
|
|
case OMPRTL__tgt_target_data_begin_nowait: {
|
|
// Build void __tgt_target_data_begin_nowait(int64_t device_id, int32_t
|
|
// arg_num, void** args_base, void **args, int64_t *arg_sizes, int64_t
|
|
// *arg_types);
|
|
llvm::Type *TypeParams[] = {CGM.Int64Ty,
|
|
CGM.Int32Ty,
|
|
CGM.VoidPtrPtrTy,
|
|
CGM.VoidPtrPtrTy,
|
|
CGM.Int64Ty->getPointerTo(),
|
|
CGM.Int64Ty->getPointerTo()};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_data_begin_nowait");
|
|
break;
|
|
}
|
|
case OMPRTL__tgt_target_data_end: {
|
|
// Build void __tgt_target_data_end(int64_t device_id, int32_t arg_num,
|
|
// void** args_base, void **args, int64_t *arg_sizes, int64_t *arg_types);
|
|
llvm::Type *TypeParams[] = {CGM.Int64Ty,
|
|
CGM.Int32Ty,
|
|
CGM.VoidPtrPtrTy,
|
|
CGM.VoidPtrPtrTy,
|
|
CGM.Int64Ty->getPointerTo(),
|
|
CGM.Int64Ty->getPointerTo()};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_data_end");
|
|
break;
|
|
}
|
|
case OMPRTL__tgt_target_data_end_nowait: {
|
|
// Build void __tgt_target_data_end_nowait(int64_t device_id, int32_t
|
|
// arg_num, void** args_base, void **args, int64_t *arg_sizes, int64_t
|
|
// *arg_types);
|
|
llvm::Type *TypeParams[] = {CGM.Int64Ty,
|
|
CGM.Int32Ty,
|
|
CGM.VoidPtrPtrTy,
|
|
CGM.VoidPtrPtrTy,
|
|
CGM.Int64Ty->getPointerTo(),
|
|
CGM.Int64Ty->getPointerTo()};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_data_end_nowait");
|
|
break;
|
|
}
|
|
case OMPRTL__tgt_target_data_update: {
|
|
// Build void __tgt_target_data_update(int64_t device_id, int32_t arg_num,
|
|
// void** args_base, void **args, int64_t *arg_sizes, int64_t *arg_types);
|
|
llvm::Type *TypeParams[] = {CGM.Int64Ty,
|
|
CGM.Int32Ty,
|
|
CGM.VoidPtrPtrTy,
|
|
CGM.VoidPtrPtrTy,
|
|
CGM.Int64Ty->getPointerTo(),
|
|
CGM.Int64Ty->getPointerTo()};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_data_update");
|
|
break;
|
|
}
|
|
case OMPRTL__tgt_target_data_update_nowait: {
|
|
// Build void __tgt_target_data_update_nowait(int64_t device_id, int32_t
|
|
// arg_num, void** args_base, void **args, int64_t *arg_sizes, int64_t
|
|
// *arg_types);
|
|
llvm::Type *TypeParams[] = {CGM.Int64Ty,
|
|
CGM.Int32Ty,
|
|
CGM.VoidPtrPtrTy,
|
|
CGM.VoidPtrPtrTy,
|
|
CGM.Int64Ty->getPointerTo(),
|
|
CGM.Int64Ty->getPointerTo()};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_data_update_nowait");
|
|
break;
|
|
}
|
|
case OMPRTL__tgt_mapper_num_components: {
|
|
// Build int64_t __tgt_mapper_num_components(void *rt_mapper_handle);
|
|
llvm::Type *TypeParams[] = {CGM.VoidPtrTy};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.Int64Ty, TypeParams, /*isVarArg*/ false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_mapper_num_components");
|
|
break;
|
|
}
|
|
case OMPRTL__tgt_push_mapper_component: {
|
|
// Build void __tgt_push_mapper_component(void *rt_mapper_handle, void
|
|
// *base, void *begin, int64_t size, int64_t type);
|
|
llvm::Type *TypeParams[] = {CGM.VoidPtrTy, CGM.VoidPtrTy, CGM.VoidPtrTy,
|
|
CGM.Int64Ty, CGM.Int64Ty};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_push_mapper_component");
|
|
break;
|
|
}
|
|
}
|
|
assert(RTLFn && "Unable to find OpenMP runtime function");
|
|
return RTLFn;
|
|
}
|
|
|
|
llvm::FunctionCallee
|
|
CGOpenMPRuntime::createForStaticInitFunction(unsigned IVSize, bool IVSigned) {
|
|
assert((IVSize == 32 || IVSize == 64) &&
|
|
"IV size is not compatible with the omp runtime");
|
|
StringRef Name = IVSize == 32 ? (IVSigned ? "__kmpc_for_static_init_4"
|
|
: "__kmpc_for_static_init_4u")
|
|
: (IVSigned ? "__kmpc_for_static_init_8"
|
|
: "__kmpc_for_static_init_8u");
|
|
llvm::Type *ITy = IVSize == 32 ? CGM.Int32Ty : CGM.Int64Ty;
|
|
auto *PtrTy = llvm::PointerType::getUnqual(ITy);
|
|
llvm::Type *TypeParams[] = {
|
|
getIdentTyPointerTy(), // loc
|
|
CGM.Int32Ty, // tid
|
|
CGM.Int32Ty, // schedtype
|
|
llvm::PointerType::getUnqual(CGM.Int32Ty), // p_lastiter
|
|
PtrTy, // p_lower
|
|
PtrTy, // p_upper
|
|
PtrTy, // p_stride
|
|
ITy, // incr
|
|
ITy // chunk
|
|
};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
|
|
return CGM.CreateRuntimeFunction(FnTy, Name);
|
|
}
|
|
|
|
llvm::FunctionCallee
|
|
CGOpenMPRuntime::createDispatchInitFunction(unsigned IVSize, bool IVSigned) {
|
|
assert((IVSize == 32 || IVSize == 64) &&
|
|
"IV size is not compatible with the omp runtime");
|
|
StringRef Name =
|
|
IVSize == 32
|
|
? (IVSigned ? "__kmpc_dispatch_init_4" : "__kmpc_dispatch_init_4u")
|
|
: (IVSigned ? "__kmpc_dispatch_init_8" : "__kmpc_dispatch_init_8u");
|
|
llvm::Type *ITy = IVSize == 32 ? CGM.Int32Ty : CGM.Int64Ty;
|
|
llvm::Type *TypeParams[] = { getIdentTyPointerTy(), // loc
|
|
CGM.Int32Ty, // tid
|
|
CGM.Int32Ty, // schedtype
|
|
ITy, // lower
|
|
ITy, // upper
|
|
ITy, // stride
|
|
ITy // chunk
|
|
};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
|
|
return CGM.CreateRuntimeFunction(FnTy, Name);
|
|
}
|
|
|
|
llvm::FunctionCallee
|
|
CGOpenMPRuntime::createDispatchFiniFunction(unsigned IVSize, bool IVSigned) {
|
|
assert((IVSize == 32 || IVSize == 64) &&
|
|
"IV size is not compatible with the omp runtime");
|
|
StringRef Name =
|
|
IVSize == 32
|
|
? (IVSigned ? "__kmpc_dispatch_fini_4" : "__kmpc_dispatch_fini_4u")
|
|
: (IVSigned ? "__kmpc_dispatch_fini_8" : "__kmpc_dispatch_fini_8u");
|
|
llvm::Type *TypeParams[] = {
|
|
getIdentTyPointerTy(), // loc
|
|
CGM.Int32Ty, // tid
|
|
};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
|
|
return CGM.CreateRuntimeFunction(FnTy, Name);
|
|
}
|
|
|
|
llvm::FunctionCallee
|
|
CGOpenMPRuntime::createDispatchNextFunction(unsigned IVSize, bool IVSigned) {
|
|
assert((IVSize == 32 || IVSize == 64) &&
|
|
"IV size is not compatible with the omp runtime");
|
|
StringRef Name =
|
|
IVSize == 32
|
|
? (IVSigned ? "__kmpc_dispatch_next_4" : "__kmpc_dispatch_next_4u")
|
|
: (IVSigned ? "__kmpc_dispatch_next_8" : "__kmpc_dispatch_next_8u");
|
|
llvm::Type *ITy = IVSize == 32 ? CGM.Int32Ty : CGM.Int64Ty;
|
|
auto *PtrTy = llvm::PointerType::getUnqual(ITy);
|
|
llvm::Type *TypeParams[] = {
|
|
getIdentTyPointerTy(), // loc
|
|
CGM.Int32Ty, // tid
|
|
llvm::PointerType::getUnqual(CGM.Int32Ty), // p_lastiter
|
|
PtrTy, // p_lower
|
|
PtrTy, // p_upper
|
|
PtrTy // p_stride
|
|
};
|
|
auto *FnTy =
|
|
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
|
|
return CGM.CreateRuntimeFunction(FnTy, Name);
|
|
}
|
|
|
|
/// Obtain information that uniquely identifies a target entry. This
|
|
/// consists of the file and device IDs as well as line number associated with
|
|
/// the relevant entry source location.
|
|
static void getTargetEntryUniqueInfo(ASTContext &C, SourceLocation Loc,
|
|
unsigned &DeviceID, unsigned &FileID,
|
|
unsigned &LineNum) {
|
|
SourceManager &SM = C.getSourceManager();
|
|
|
|
// The loc should be always valid and have a file ID (the user cannot use
|
|
// #pragma directives in macros)
|
|
|
|
assert(Loc.isValid() && "Source location is expected to be always valid.");
|
|
|
|
PresumedLoc PLoc = SM.getPresumedLoc(Loc);
|
|
assert(PLoc.isValid() && "Source location is expected to be always valid.");
|
|
|
|
llvm::sys::fs::UniqueID ID;
|
|
if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID))
|
|
SM.getDiagnostics().Report(diag::err_cannot_open_file)
|
|
<< PLoc.getFilename() << EC.message();
|
|
|
|
DeviceID = ID.getDevice();
|
|
FileID = ID.getFile();
|
|
LineNum = PLoc.getLine();
|
|
}
|
|
|
|
Address CGOpenMPRuntime::getAddrOfDeclareTargetVar(const VarDecl *VD) {
|
|
if (CGM.getLangOpts().OpenMPSimd)
|
|
return Address::invalid();
|
|
llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
|
|
OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
|
|
if (Res && (*Res == OMPDeclareTargetDeclAttr::MT_Link ||
|
|
(*Res == OMPDeclareTargetDeclAttr::MT_To &&
|
|
HasRequiresUnifiedSharedMemory))) {
|
|
SmallString<64> PtrName;
|
|
{
|
|
llvm::raw_svector_ostream OS(PtrName);
|
|
OS << CGM.getMangledName(GlobalDecl(VD));
|
|
if (!VD->isExternallyVisible()) {
|
|
unsigned DeviceID, FileID, Line;
|
|
getTargetEntryUniqueInfo(CGM.getContext(),
|
|
VD->getCanonicalDecl()->getBeginLoc(),
|
|
DeviceID, FileID, Line);
|
|
OS << llvm::format("_%x", FileID);
|
|
}
|
|
OS << "_decl_tgt_ref_ptr";
|
|
}
|
|
llvm::Value *Ptr = CGM.getModule().getNamedValue(PtrName);
|
|
if (!Ptr) {
|
|
QualType PtrTy = CGM.getContext().getPointerType(VD->getType());
|
|
Ptr = getOrCreateInternalVariable(CGM.getTypes().ConvertTypeForMem(PtrTy),
|
|
PtrName);
|
|
|
|
auto *GV = cast<llvm::GlobalVariable>(Ptr);
|
|
GV->setLinkage(llvm::GlobalValue::WeakAnyLinkage);
|
|
|
|
if (!CGM.getLangOpts().OpenMPIsDevice)
|
|
GV->setInitializer(CGM.GetAddrOfGlobal(VD));
|
|
registerTargetGlobalVariable(VD, cast<llvm::Constant>(Ptr));
|
|
}
|
|
return Address(Ptr, CGM.getContext().getDeclAlign(VD));
|
|
}
|
|
return Address::invalid();
|
|
}
|
|
|
|
llvm::Constant *
|
|
CGOpenMPRuntime::getOrCreateThreadPrivateCache(const VarDecl *VD) {
|
|
assert(!CGM.getLangOpts().OpenMPUseTLS ||
|
|
!CGM.getContext().getTargetInfo().isTLSSupported());
|
|
// Lookup the entry, lazily creating it if necessary.
|
|
std::string Suffix = getName({"cache", ""});
|
|
return getOrCreateInternalVariable(
|
|
CGM.Int8PtrPtrTy, Twine(CGM.getMangledName(VD)).concat(Suffix));
|
|
}
|
|
|
|
Address CGOpenMPRuntime::getAddrOfThreadPrivate(CodeGenFunction &CGF,
|
|
const VarDecl *VD,
|
|
Address VDAddr,
|
|
SourceLocation Loc) {
|
|
if (CGM.getLangOpts().OpenMPUseTLS &&
|
|
CGM.getContext().getTargetInfo().isTLSSupported())
|
|
return VDAddr;
|
|
|
|
llvm::Type *VarTy = VDAddr.getElementType();
|
|
llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
|
|
CGF.Builder.CreatePointerCast(VDAddr.getPointer(),
|
|
CGM.Int8PtrTy),
|
|
CGM.getSize(CGM.GetTargetTypeStoreSize(VarTy)),
|
|
getOrCreateThreadPrivateCache(VD)};
|
|
return Address(CGF.EmitRuntimeCall(
|
|
createRuntimeFunction(OMPRTL__kmpc_threadprivate_cached), Args),
|
|
VDAddr.getAlignment());
|
|
}
|
|
|
|
void CGOpenMPRuntime::emitThreadPrivateVarInit(
|
|
CodeGenFunction &CGF, Address VDAddr, llvm::Value *Ctor,
|
|
llvm::Value *CopyCtor, llvm::Value *Dtor, SourceLocation Loc) {
|
|
// Call kmp_int32 __kmpc_global_thread_num(&loc) to init OpenMP runtime
|
|
// library.
|
|
llvm::Value *OMPLoc = emitUpdateLocation(CGF, Loc);
|
|
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_global_thread_num),
|
|
OMPLoc);
|
|
// Call __kmpc_threadprivate_register(&loc, &var, ctor, cctor/*NULL*/, dtor)
|
|
// to register constructor/destructor for variable.
|
|
llvm::Value *Args[] = {
|
|
OMPLoc, CGF.Builder.CreatePointerCast(VDAddr.getPointer(), CGM.VoidPtrTy),
|
|
Ctor, CopyCtor, Dtor};
|
|
CGF.EmitRuntimeCall(
|
|
createRuntimeFunction(OMPRTL__kmpc_threadprivate_register), Args);
|
|
}
|
|
|
|
llvm::Function *CGOpenMPRuntime::emitThreadPrivateVarDefinition(
|
|
const VarDecl *VD, Address VDAddr, SourceLocation Loc,
|
|
bool PerformInit, CodeGenFunction *CGF) {
|
|
if (CGM.getLangOpts().OpenMPUseTLS &&
|
|
CGM.getContext().getTargetInfo().isTLSSupported())
|
|
return nullptr;
|
|
|
|
VD = VD->getDefinition(CGM.getContext());
|
|
if (VD && ThreadPrivateWithDefinition.insert(CGM.getMangledName(VD)).second) {
|
|
QualType ASTTy = VD->getType();
|
|
|
|
llvm::Value *Ctor = nullptr, *CopyCtor = nullptr, *Dtor = nullptr;
|
|
const Expr *Init = VD->getAnyInitializer();
|
|
if (CGM.getLangOpts().CPlusPlus && PerformInit) {
|
|
// Generate function that re-emits the declaration's initializer into the
|
|
// threadprivate copy of the variable VD
|
|
CodeGenFunction CtorCGF(CGM);
|
|
FunctionArgList Args;
|
|
ImplicitParamDecl Dst(CGM.getContext(), /*DC=*/nullptr, Loc,
|
|
/*Id=*/nullptr, CGM.getContext().VoidPtrTy,
|
|
ImplicitParamDecl::Other);
|
|
Args.push_back(&Dst);
|
|
|
|
const auto &FI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(
|
|
CGM.getContext().VoidPtrTy, Args);
|
|
llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI);
|
|
std::string Name = getName({"__kmpc_global_ctor_", ""});
|
|
llvm::Function *Fn =
|
|
CGM.CreateGlobalInitOrDestructFunction(FTy, Name, FI, Loc);
|
|
CtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidPtrTy, Fn, FI,
|
|
Args, Loc, Loc);
|
|
llvm::Value *ArgVal = CtorCGF.EmitLoadOfScalar(
|
|
CtorCGF.GetAddrOfLocalVar(&Dst), /*Volatile=*/false,
|
|
CGM.getContext().VoidPtrTy, Dst.getLocation());
|
|
Address Arg = Address(ArgVal, VDAddr.getAlignment());
|
|
Arg = CtorCGF.Builder.CreateElementBitCast(
|
|
Arg, CtorCGF.ConvertTypeForMem(ASTTy));
|
|
CtorCGF.EmitAnyExprToMem(Init, Arg, Init->getType().getQualifiers(),
|
|
/*IsInitializer=*/true);
|
|
ArgVal = CtorCGF.EmitLoadOfScalar(
|
|
CtorCGF.GetAddrOfLocalVar(&Dst), /*Volatile=*/false,
|
|
CGM.getContext().VoidPtrTy, Dst.getLocation());
|
|
CtorCGF.Builder.CreateStore(ArgVal, CtorCGF.ReturnValue);
|
|
CtorCGF.FinishFunction();
|
|
Ctor = Fn;
|
|
}
|
|
if (VD->getType().isDestructedType() != QualType::DK_none) {
|
|
// Generate function that emits destructor call for the threadprivate copy
|
|
// of the variable VD
|
|
CodeGenFunction DtorCGF(CGM);
|
|
FunctionArgList Args;
|
|
ImplicitParamDecl Dst(CGM.getContext(), /*DC=*/nullptr, Loc,
|
|
/*Id=*/nullptr, CGM.getContext().VoidPtrTy,
|
|
ImplicitParamDecl::Other);
|
|
Args.push_back(&Dst);
|
|
|
|
const auto &FI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(
|
|
CGM.getContext().VoidTy, Args);
|
|
llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI);
|
|
std::string Name = getName({"__kmpc_global_dtor_", ""});
|
|
llvm::Function *Fn =
|
|
CGM.CreateGlobalInitOrDestructFunction(FTy, Name, FI, Loc);
|
|
auto NL = ApplyDebugLocation::CreateEmpty(DtorCGF);
|
|
DtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, Fn, FI, Args,
|
|
Loc, Loc);
|
|
// Create a scope with an artificial location for the body of this function.
|
|
auto AL = ApplyDebugLocation::CreateArtificial(DtorCGF);
|
|
llvm::Value *ArgVal = DtorCGF.EmitLoadOfScalar(
|
|
DtorCGF.GetAddrOfLocalVar(&Dst),
|
|
/*Volatile=*/false, CGM.getContext().VoidPtrTy, Dst.getLocation());
|
|
DtorCGF.emitDestroy(Address(ArgVal, VDAddr.getAlignment()), ASTTy,
|
|
DtorCGF.getDestroyer(ASTTy.isDestructedType()),
|
|
DtorCGF.needsEHCleanup(ASTTy.isDestructedType()));
|
|
DtorCGF.FinishFunction();
|
|
Dtor = Fn;
|
|
}
|
|
// Do not emit init function if it is not required.
|
|
if (!Ctor && !Dtor)
|
|
return nullptr;
|
|
|
|
llvm::Type *CopyCtorTyArgs[] = {CGM.VoidPtrTy, CGM.VoidPtrTy};
|
|
auto *CopyCtorTy = llvm::FunctionType::get(CGM.VoidPtrTy, CopyCtorTyArgs,
|
|
/*isVarArg=*/false)
|
|
->getPointerTo();
|
|
// Copying constructor for the threadprivate variable.
|
|
// Must be NULL - reserved by runtime, but currently it requires that this
|
|
// parameter is always NULL. Otherwise it fires assertion.
|
|
CopyCtor = llvm::Constant::getNullValue(CopyCtorTy);
|
|
if (Ctor == nullptr) {
|
|
auto *CtorTy = llvm::FunctionType::get(CGM.VoidPtrTy, CGM.VoidPtrTy,
|
|
/*isVarArg=*/false)
|
|
->getPointerTo();
|
|
Ctor = llvm::Constant::getNullValue(CtorTy);
|
|
}
|
|
if (Dtor == nullptr) {
|
|
auto *DtorTy = llvm::FunctionType::get(CGM.VoidTy, CGM.VoidPtrTy,
|
|
/*isVarArg=*/false)
|
|
->getPointerTo();
|
|
Dtor = llvm::Constant::getNullValue(DtorTy);
|
|
}
|
|
if (!CGF) {
|
|
auto *InitFunctionTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, /*isVarArg*/ false);
|
|
std::string Name = getName({"__omp_threadprivate_init_", ""});
|
|
llvm::Function *InitFunction = CGM.CreateGlobalInitOrDestructFunction(
|
|
InitFunctionTy, Name, CGM.getTypes().arrangeNullaryFunction());
|
|
CodeGenFunction InitCGF(CGM);
|
|
FunctionArgList ArgList;
|
|
InitCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, InitFunction,
|
|
CGM.getTypes().arrangeNullaryFunction(), ArgList,
|
|
Loc, Loc);
|
|
emitThreadPrivateVarInit(InitCGF, VDAddr, Ctor, CopyCtor, Dtor, Loc);
|
|
InitCGF.FinishFunction();
|
|
return InitFunction;
|
|
}
|
|
emitThreadPrivateVarInit(*CGF, VDAddr, Ctor, CopyCtor, Dtor, Loc);
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
bool CGOpenMPRuntime::emitDeclareTargetVarDefinition(const VarDecl *VD,
|
|
llvm::GlobalVariable *Addr,
|
|
bool PerformInit) {
|
|
if (CGM.getLangOpts().OMPTargetTriples.empty() &&
|
|
!CGM.getLangOpts().OpenMPIsDevice)
|
|
return false;
|
|
Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
|
|
OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
|
|
if (!Res || *Res == OMPDeclareTargetDeclAttr::MT_Link ||
|
|
(*Res == OMPDeclareTargetDeclAttr::MT_To &&
|
|
HasRequiresUnifiedSharedMemory))
|
|
return CGM.getLangOpts().OpenMPIsDevice;
|
|
VD = VD->getDefinition(CGM.getContext());
|
|
if (VD && !DeclareTargetWithDefinition.insert(CGM.getMangledName(VD)).second)
|
|
return CGM.getLangOpts().OpenMPIsDevice;
|
|
|
|
QualType ASTTy = VD->getType();
|
|
|
|
SourceLocation Loc = VD->getCanonicalDecl()->getBeginLoc();
|
|
// Produce the unique prefix to identify the new target regions. We use
|
|
// the source location of the variable declaration which we know to not
|
|
// conflict with any target region.
|
|
unsigned DeviceID;
|
|
unsigned FileID;
|
|
unsigned Line;
|
|
getTargetEntryUniqueInfo(CGM.getContext(), Loc, DeviceID, FileID, Line);
|
|
SmallString<128> Buffer, Out;
|
|
{
|
|
llvm::raw_svector_ostream OS(Buffer);
|
|
OS << "__omp_offloading_" << llvm::format("_%x", DeviceID)
|
|
<< llvm::format("_%x_", FileID) << VD->getName() << "_l" << Line;
|
|
}
|
|
|
|
const Expr *Init = VD->getAnyInitializer();
|
|
if (CGM.getLangOpts().CPlusPlus && PerformInit) {
|
|
llvm::Constant *Ctor;
|
|
llvm::Constant *ID;
|
|
if (CGM.getLangOpts().OpenMPIsDevice) {
|
|
// Generate function that re-emits the declaration's initializer into
|
|
// the threadprivate copy of the variable VD
|
|
CodeGenFunction CtorCGF(CGM);
|
|
|
|
const CGFunctionInfo &FI = CGM.getTypes().arrangeNullaryFunction();
|
|
llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI);
|
|
llvm::Function *Fn = CGM.CreateGlobalInitOrDestructFunction(
|
|
FTy, Twine(Buffer, "_ctor"), FI, Loc);
|
|
auto NL = ApplyDebugLocation::CreateEmpty(CtorCGF);
|
|
CtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, Fn, FI,
|
|
FunctionArgList(), Loc, Loc);
|
|
auto AL = ApplyDebugLocation::CreateArtificial(CtorCGF);
|
|
CtorCGF.EmitAnyExprToMem(Init,
|
|
Address(Addr, CGM.getContext().getDeclAlign(VD)),
|
|
Init->getType().getQualifiers(),
|
|
/*IsInitializer=*/true);
|
|
CtorCGF.FinishFunction();
|
|
Ctor = Fn;
|
|
ID = llvm::ConstantExpr::getBitCast(Fn, CGM.Int8PtrTy);
|
|
CGM.addUsedGlobal(cast<llvm::GlobalValue>(Ctor));
|
|
} else {
|
|
Ctor = new llvm::GlobalVariable(
|
|
CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true,
|
|
llvm::GlobalValue::PrivateLinkage,
|
|
llvm::Constant::getNullValue(CGM.Int8Ty), Twine(Buffer, "_ctor"));
|
|
ID = Ctor;
|
|
}
|
|
|
|
// Register the information for the entry associated with the constructor.
|
|
Out.clear();
|
|
OffloadEntriesInfoManager.registerTargetRegionEntryInfo(
|
|
DeviceID, FileID, Twine(Buffer, "_ctor").toStringRef(Out), Line, Ctor,
|
|
ID, OffloadEntriesInfoManagerTy::OMPTargetRegionEntryCtor);
|
|
}
|
|
if (VD->getType().isDestructedType() != QualType::DK_none) {
|
|
llvm::Constant *Dtor;
|
|
llvm::Constant *ID;
|
|
if (CGM.getLangOpts().OpenMPIsDevice) {
|
|
// Generate function that emits destructor call for the threadprivate
|
|
// copy of the variable VD
|
|
CodeGenFunction DtorCGF(CGM);
|
|
|
|
const CGFunctionInfo &FI = CGM.getTypes().arrangeNullaryFunction();
|
|
llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI);
|
|
llvm::Function *Fn = CGM.CreateGlobalInitOrDestructFunction(
|
|
FTy, Twine(Buffer, "_dtor"), FI, Loc);
|
|
auto NL = ApplyDebugLocation::CreateEmpty(DtorCGF);
|
|
DtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, Fn, FI,
|
|
FunctionArgList(), Loc, Loc);
|
|
// Create a scope with an artificial location for the body of this
|
|
// function.
|
|
auto AL = ApplyDebugLocation::CreateArtificial(DtorCGF);
|
|
DtorCGF.emitDestroy(Address(Addr, CGM.getContext().getDeclAlign(VD)),
|
|
ASTTy, DtorCGF.getDestroyer(ASTTy.isDestructedType()),
|
|
DtorCGF.needsEHCleanup(ASTTy.isDestructedType()));
|
|
DtorCGF.FinishFunction();
|
|
Dtor = Fn;
|
|
ID = llvm::ConstantExpr::getBitCast(Fn, CGM.Int8PtrTy);
|
|
CGM.addUsedGlobal(cast<llvm::GlobalValue>(Dtor));
|
|
} else {
|
|
Dtor = new llvm::GlobalVariable(
|
|
CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true,
|
|
llvm::GlobalValue::PrivateLinkage,
|
|
llvm::Constant::getNullValue(CGM.Int8Ty), Twine(Buffer, "_dtor"));
|
|
ID = Dtor;
|
|
}
|
|
// Register the information for the entry associated with the destructor.
|
|
Out.clear();
|
|
OffloadEntriesInfoManager.registerTargetRegionEntryInfo(
|
|
DeviceID, FileID, Twine(Buffer, "_dtor").toStringRef(Out), Line, Dtor,
|
|
ID, OffloadEntriesInfoManagerTy::OMPTargetRegionEntryDtor);
|
|
}
|
|
return CGM.getLangOpts().OpenMPIsDevice;
|
|
}
|
|
|
|
Address CGOpenMPRuntime::getAddrOfArtificialThreadPrivate(CodeGenFunction &CGF,
|
|
QualType VarType,
|
|
StringRef Name) {
|
|
std::string Suffix = getName({"artificial", ""});
|
|
std::string CacheSuffix = getName({"cache", ""});
|
|
llvm::Type *VarLVType = CGF.ConvertTypeForMem(VarType);
|
|
llvm::Value *GAddr =
|
|
getOrCreateInternalVariable(VarLVType, Twine(Name).concat(Suffix));
|
|
llvm::Value *Args[] = {
|
|
emitUpdateLocation(CGF, SourceLocation()),
|
|
getThreadID(CGF, SourceLocation()),
|
|
CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(GAddr, CGM.VoidPtrTy),
|
|
CGF.Builder.CreateIntCast(CGF.getTypeSize(VarType), CGM.SizeTy,
|
|
/*isSigned=*/false),
|
|
getOrCreateInternalVariable(
|
|
CGM.VoidPtrPtrTy, Twine(Name).concat(Suffix).concat(CacheSuffix))};
|
|
return Address(
|
|
CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
|
|
CGF.EmitRuntimeCall(
|
|
createRuntimeFunction(OMPRTL__kmpc_threadprivate_cached), Args),
|
|
VarLVType->getPointerTo(/*AddrSpace=*/0)),
|
|
CGM.getPointerAlign());
|
|
}
|
|
|
|
void CGOpenMPRuntime::emitIfClause(CodeGenFunction &CGF, const Expr *Cond,
|
|
const RegionCodeGenTy &ThenGen,
|
|
const RegionCodeGenTy &ElseGen) {
|
|
CodeGenFunction::LexicalScope ConditionScope(CGF, Cond->getSourceRange());
|
|
|
|
// If the condition constant folds and can be elided, try to avoid emitting
|
|
// the condition and the dead arm of the if/else.
|
|
bool CondConstant;
|
|
if (CGF.ConstantFoldsToSimpleInteger(Cond, CondConstant)) {
|
|
if (CondConstant)
|
|
ThenGen(CGF);
|
|
else
|
|
ElseGen(CGF);
|
|
return;
|
|
}
|
|
|
|
// Otherwise, the condition did not fold, or we couldn't elide it. Just
|
|
// emit the conditional branch.
|
|
llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("omp_if.then");
|
|
llvm::BasicBlock *ElseBlock = CGF.createBasicBlock("omp_if.else");
|
|
llvm::BasicBlock *ContBlock = CGF.createBasicBlock("omp_if.end");
|
|
CGF.EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, /*TrueCount=*/0);
|
|
|
|
// Emit the 'then' code.
|
|
CGF.EmitBlock(ThenBlock);
|
|
ThenGen(CGF);
|
|
CGF.EmitBranch(ContBlock);
|
|
// Emit the 'else' code if present.
|
|
// There is no need to emit line number for unconditional branch.
|
|
(void)ApplyDebugLocation::CreateEmpty(CGF);
|
|
CGF.EmitBlock(ElseBlock);
|
|
ElseGen(CGF);
|
|
// There is no need to emit line number for unconditional branch.
|
|
(void)ApplyDebugLocation::CreateEmpty(CGF);
|
|
CGF.EmitBranch(ContBlock);
|
|
// Emit the continuation block for code after the if.
|
|
CGF.EmitBlock(ContBlock, /*IsFinished=*/true);
|
|
}
|
|
|
|
void CGOpenMPRuntime::emitParallelCall(CodeGenFunction &CGF, SourceLocation Loc,
|
|
llvm::Function *OutlinedFn,
|
|
ArrayRef<llvm::Value *> CapturedVars,
|
|
const Expr *IfCond) {
|
|
if (!CGF.HaveInsertPoint())
|
|
return;
|
|
llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
|
|
auto &&ThenGen = [OutlinedFn, CapturedVars, RTLoc](CodeGenFunction &CGF,
|
|
PrePostActionTy &) {
|
|
// Build call __kmpc_fork_call(loc, n, microtask, var1, .., varn);
|
|
CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime();
|
|
llvm::Value *Args[] = {
|
|
RTLoc,
|
|
CGF.Builder.getInt32(CapturedVars.size()), // Number of captured vars
|
|
CGF.Builder.CreateBitCast(OutlinedFn, RT.getKmpc_MicroPointerTy())};
|
|
llvm::SmallVector<llvm::Value *, 16> RealArgs;
|
|
RealArgs.append(std::begin(Args), std::end(Args));
|
|
RealArgs.append(CapturedVars.begin(), CapturedVars.end());
|
|
|
|
llvm::FunctionCallee RTLFn =
|
|
RT.createRuntimeFunction(OMPRTL__kmpc_fork_call);
|
|
CGF.EmitRuntimeCall(RTLFn, RealArgs);
|
|
};
|
|
auto &&ElseGen = [OutlinedFn, CapturedVars, RTLoc, Loc](CodeGenFunction &CGF,
|
|
PrePostActionTy &) {
|
|
CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime();
|
|
llvm::Value *ThreadID = RT.getThreadID(CGF, Loc);
|
|
// Build calls:
|
|
// __kmpc_serialized_parallel(&Loc, GTid);
|
|
llvm::Value *Args[] = {RTLoc, ThreadID};
|
|
CGF.EmitRuntimeCall(
|
|
RT.createRuntimeFunction(OMPRTL__kmpc_serialized_parallel), Args);
|
|
|
|
// OutlinedFn(>id, &zero_bound, CapturedStruct);
|
|
Address ThreadIDAddr = RT.emitThreadIDAddress(CGF, Loc);
|
|
Address ZeroAddrBound =
|
|
CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty,
|
|
/*Name=*/".bound.zero.addr");
|
|
CGF.InitTempAlloca(ZeroAddrBound, CGF.Builder.getInt32(/*C*/ 0));
|
|
llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs;
|
|
// ThreadId for serialized parallels is 0.
|
|
OutlinedFnArgs.push_back(ThreadIDAddr.getPointer());
|
|
OutlinedFnArgs.push_back(ZeroAddrBound.getPointer());
|
|
OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end());
|
|
RT.emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, OutlinedFnArgs);
|
|
|
|
// __kmpc_end_serialized_parallel(&Loc, GTid);
|
|
llvm::Value *EndArgs[] = {RT.emitUpdateLocation(CGF, Loc), ThreadID};
|
|
CGF.EmitRuntimeCall(
|
|
RT.createRuntimeFunction(OMPRTL__kmpc_end_serialized_parallel),
|
|
EndArgs);
|
|
};
|
|
if (IfCond) {
|
|
emitIfClause(CGF, IfCond, ThenGen, ElseGen);
|
|
} else {
|
|
RegionCodeGenTy ThenRCG(ThenGen);
|
|
ThenRCG(CGF);
|
|
}
|
|
}
|
|
|
|
// If we're inside an (outlined) parallel region, use the region info's
|
|
// thread-ID variable (it is passed in a first argument of the outlined function
|
|
// as "kmp_int32 *gtid"). Otherwise, if we're not inside parallel region, but in
|
|
// regular serial code region, get thread ID by calling kmp_int32
|
|
// kmpc_global_thread_num(ident_t *loc), stash this thread ID in a temporary and
|
|
// return the address of that temp.
|
|
Address CGOpenMPRuntime::emitThreadIDAddress(CodeGenFunction &CGF,
|
|
SourceLocation Loc) {
|
|
if (auto *OMPRegionInfo =
|
|
dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo))
|
|
if (OMPRegionInfo->getThreadIDVariable())
|
|
return OMPRegionInfo->getThreadIDVariableLValue(CGF).getAddress(CGF);
|
|
|
|
llvm::Value *ThreadID = getThreadID(CGF, Loc);
|
|
QualType Int32Ty =
|
|
CGF.getContext().getIntTypeForBitwidth(/*DestWidth*/ 32, /*Signed*/ true);
|
|
Address ThreadIDTemp = CGF.CreateMemTemp(Int32Ty, /*Name*/ ".threadid_temp.");
|
|
CGF.EmitStoreOfScalar(ThreadID,
|
|
CGF.MakeAddrLValue(ThreadIDTemp, Int32Ty));
|
|
|
|
return ThreadIDTemp;
|
|
}
|
|
|
|
llvm::Constant *CGOpenMPRuntime::getOrCreateInternalVariable(
|
|
llvm::Type *Ty, const llvm::Twine &Name, unsigned AddressSpace) {
|
|
SmallString<256> Buffer;
|
|
llvm::raw_svector_ostream Out(Buffer);
|
|
Out << Name;
|
|
StringRef RuntimeName = Out.str();
|
|
auto &Elem = *InternalVars.try_emplace(RuntimeName, nullptr).first;
|
|
if (Elem.second) {
|
|
assert(Elem.second->getType()->getPointerElementType() == Ty &&
|
|
"OMP internal variable has different type than requested");
|
|
return &*Elem.second;
|
|
}
|
|
|
|
return Elem.second = new llvm::GlobalVariable(
|
|
CGM.getModule(), Ty, /*IsConstant*/ false,
|
|
llvm::GlobalValue::CommonLinkage, llvm::Constant::getNullValue(Ty),
|
|
Elem.first(), /*InsertBefore=*/nullptr,
|
|
llvm::GlobalValue::NotThreadLocal, AddressSpace);
|
|
}
|
|
|
|
llvm::Value *CGOpenMPRuntime::getCriticalRegionLock(StringRef CriticalName) {
|
|
std::string Prefix = Twine("gomp_critical_user_", CriticalName).str();
|
|
std::string Name = getName({Prefix, "var"});
|
|
return getOrCreateInternalVariable(KmpCriticalNameTy, Name);
|
|
}
|
|
|
|
namespace {
|
|
/// Common pre(post)-action for different OpenMP constructs.
|
|
class CommonActionTy final : public PrePostActionTy {
|
|
llvm::FunctionCallee EnterCallee;
|
|
ArrayRef<llvm::Value *> EnterArgs;
|
|
llvm::FunctionCallee ExitCallee;
|
|
ArrayRef<llvm::Value *> ExitArgs;
|
|
bool Conditional;
|
|
llvm::BasicBlock *ContBlock = nullptr;
|
|
|
|
public:
|
|
CommonActionTy(llvm::FunctionCallee EnterCallee,
|
|
ArrayRef<llvm::Value *> EnterArgs,
|
|
llvm::FunctionCallee ExitCallee,
|
|
ArrayRef<llvm::Value *> ExitArgs, bool Conditional = false)
|
|
: EnterCallee(EnterCallee), EnterArgs(EnterArgs), ExitCallee(ExitCallee),
|
|
ExitArgs(ExitArgs), Conditional(Conditional) {}
|
|
void Enter(CodeGenFunction &CGF) override {
|
|
llvm::Value *EnterRes = CGF.EmitRuntimeCall(EnterCallee, EnterArgs);
|
|
if (Conditional) {
|
|
llvm::Value *CallBool = CGF.Builder.CreateIsNotNull(EnterRes);
|
|
auto *ThenBlock = CGF.createBasicBlock("omp_if.then");
|
|
ContBlock = CGF.createBasicBlock("omp_if.end");
|
|
// Generate the branch (If-stmt)
|
|
CGF.Builder.CreateCondBr(CallBool, ThenBlock, ContBlock);
|
|
CGF.EmitBlock(ThenBlock);
|
|
}
|
|
}
|
|
void Done(CodeGenFunction &CGF) {
|
|
// Emit the rest of blocks/branches
|
|
CGF.EmitBranch(ContBlock);
|
|
CGF.EmitBlock(ContBlock, true);
|
|
}
|
|
void Exit(CodeGenFunction &CGF) override {
|
|
CGF.EmitRuntimeCall(ExitCallee, ExitArgs);
|
|
}
|
|
};
|
|
} // anonymous namespace
|
|
|
|
void CGOpenMPRuntime::emitCriticalRegion(CodeGenFunction &CGF,
|
|
StringRef CriticalName,
|
|
const RegionCodeGenTy &CriticalOpGen,
|
|
SourceLocation Loc, const Expr *Hint) {
|
|
// __kmpc_critical[_with_hint](ident_t *, gtid, Lock[, hint]);
|
|
// CriticalOpGen();
|
|
// __kmpc_end_critical(ident_t *, gtid, Lock);
|
|
// Prepare arguments and build a call to __kmpc_critical
|
|
if (!CGF.HaveInsertPoint())
|
|
return;
|
|
llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
|
|
getCriticalRegionLock(CriticalName)};
|
|
llvm::SmallVector<llvm::Value *, 4> EnterArgs(std::begin(Args),
|
|
std::end(Args));
|
|
if (Hint) {
|
|
EnterArgs.push_back(CGF.Builder.CreateIntCast(
|
|
CGF.EmitScalarExpr(Hint), CGM.IntPtrTy, /*isSigned=*/false));
|
|
}
|
|
CommonActionTy Action(
|
|
createRuntimeFunction(Hint ? OMPRTL__kmpc_critical_with_hint
|
|
: OMPRTL__kmpc_critical),
|
|
EnterArgs, createRuntimeFunction(OMPRTL__kmpc_end_critical), Args);
|
|
CriticalOpGen.setAction(Action);
|
|
emitInlinedDirective(CGF, OMPD_critical, CriticalOpGen);
|
|
}
|
|
|
|
void CGOpenMPRuntime::emitMasterRegion(CodeGenFunction &CGF,
|
|
const RegionCodeGenTy &MasterOpGen,
|
|
SourceLocation Loc) {
|
|
if (!CGF.HaveInsertPoint())
|
|
return;
|
|
// if(__kmpc_master(ident_t *, gtid)) {
|
|
// MasterOpGen();
|
|
// __kmpc_end_master(ident_t *, gtid);
|
|
// }
|
|
// Prepare arguments and build a call to __kmpc_master
|
|
llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
|
|
CommonActionTy Action(createRuntimeFunction(OMPRTL__kmpc_master), Args,
|
|
createRuntimeFunction(OMPRTL__kmpc_end_master), Args,
|
|
/*Conditional=*/true);
|
|
MasterOpGen.setAction(Action);
|
|
emitInlinedDirective(CGF, OMPD_master, MasterOpGen);
|
|
Action.Done(CGF);
|
|
}
|
|
|
|
void CGOpenMPRuntime::emitTaskyieldCall(CodeGenFunction &CGF,
|
|
SourceLocation Loc) {
|
|
if (!CGF.HaveInsertPoint())
|
|
return;
|
|
// Build call __kmpc_omp_taskyield(loc, thread_id, 0);
|
|
llvm::Value *Args[] = {
|
|
emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
|
|
llvm::ConstantInt::get(CGM.IntTy, /*V=*/0, /*isSigned=*/true)};
|
|
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_omp_taskyield), Args);
|
|
if (auto *Region = dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo))
|
|
Region->emitUntiedSwitch(CGF);
|
|
}
|
|
|
|
void CGOpenMPRuntime::emitTaskgroupRegion(CodeGenFunction &CGF,
|
|
const RegionCodeGenTy &TaskgroupOpGen,
|
|
SourceLocation Loc) {
|
|
if (!CGF.HaveInsertPoint())
|
|
return;
|
|
// __kmpc_taskgroup(ident_t *, gtid);
|
|
// TaskgroupOpGen();
|
|
// __kmpc_end_taskgroup(ident_t *, gtid);
|
|
// Prepare arguments and build a call to __kmpc_taskgroup
|
|
llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
|
|
CommonActionTy Action(createRuntimeFunction(OMPRTL__kmpc_taskgroup), Args,
|
|
createRuntimeFunction(OMPRTL__kmpc_end_taskgroup),
|
|
Args);
|
|
TaskgroupOpGen.setAction(Action);
|
|
emitInlinedDirective(CGF, OMPD_taskgroup, TaskgroupOpGen);
|
|
}
|
|
|
|
/// Given an array of pointers to variables, project the address of a
|
|
/// given variable.
|
|
static Address emitAddrOfVarFromArray(CodeGenFunction &CGF, Address Array,
|
|
unsigned Index, const VarDecl *Var) {
|
|
// Pull out the pointer to the variable.
|
|
Address PtrAddr = CGF.Builder.CreateConstArrayGEP(Array, Index);
|
|
llvm::Value *Ptr = CGF.Builder.CreateLoad(PtrAddr);
|
|
|
|
Address Addr = Address(Ptr, CGF.getContext().getDeclAlign(Var));
|
|
Addr = CGF.Builder.CreateElementBitCast(
|
|
Addr, CGF.ConvertTypeForMem(Var->getType()));
|
|
return Addr;
|
|
}
|
|
|
|
static llvm::Value *emitCopyprivateCopyFunction(
|
|
CodeGenModule &CGM, llvm::Type *ArgsType,
|
|
ArrayRef<const Expr *> CopyprivateVars, ArrayRef<const Expr *> DestExprs,
|
|
ArrayRef<const Expr *> SrcExprs, ArrayRef<const Expr *> AssignmentOps,
|
|
SourceLocation Loc) {
|
|
ASTContext &C = CGM.getContext();
|
|
// void copy_func(void *LHSArg, void *RHSArg);
|
|
FunctionArgList Args;
|
|
ImplicitParamDecl LHSArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
|
|
ImplicitParamDecl::Other);
|
|
ImplicitParamDecl RHSArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
|
|
ImplicitParamDecl::Other);
|
|
Args.push_back(&LHSArg);
|
|
Args.push_back(&RHSArg);
|
|
const auto &CGFI =
|
|
CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
|
|
std::string Name =
|
|
CGM.getOpenMPRuntime().getName({"omp", "copyprivate", "copy_func"});
|
|
auto *Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(CGFI),
|
|
llvm::GlobalValue::InternalLinkage, Name,
|
|
&CGM.getModule());
|
|
CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
|
|
Fn->setDoesNotRecurse();
|
|
CodeGenFunction CGF(CGM);
|
|
CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
|
|
// Dest = (void*[n])(LHSArg);
|
|
// Src = (void*[n])(RHSArg);
|
|
Address LHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
|
|
CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&LHSArg)),
|
|
ArgsType), CGF.getPointerAlign());
|
|
Address RHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
|
|
CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&RHSArg)),
|
|
ArgsType), CGF.getPointerAlign());
|
|
// *(Type0*)Dst[0] = *(Type0*)Src[0];
|
|
// *(Type1*)Dst[1] = *(Type1*)Src[1];
|
|
// ...
|
|
// *(Typen*)Dst[n] = *(Typen*)Src[n];
|
|
for (unsigned I = 0, E = AssignmentOps.size(); I < E; ++I) {
|
|
const auto *DestVar =
|
|
cast<VarDecl>(cast<DeclRefExpr>(DestExprs[I])->getDecl());
|
|
Address DestAddr = emitAddrOfVarFromArray(CGF, LHS, I, DestVar);
|
|
|
|
const auto *SrcVar =
|
|
cast<VarDecl>(cast<DeclRefExpr>(SrcExprs[I])->getDecl());
|
|
Address SrcAddr = emitAddrOfVarFromArray(CGF, RHS, I, SrcVar);
|
|
|
|
const auto *VD = cast<DeclRefExpr>(CopyprivateVars[I])->getDecl();
|
|
QualType Type = VD->getType();
|
|
CGF.EmitOMPCopy(Type, DestAddr, SrcAddr, DestVar, SrcVar, AssignmentOps[I]);
|
|
}
|
|
CGF.FinishFunction();
|
|
return Fn;
|
|
}
|
|
|
|
void CGOpenMPRuntime::emitSingleRegion(CodeGenFunction &CGF,
|
|
const RegionCodeGenTy &SingleOpGen,
|
|
SourceLocation Loc,
|
|
ArrayRef<const Expr *> CopyprivateVars,
|
|
ArrayRef<const Expr *> SrcExprs,
|
|
ArrayRef<const Expr *> DstExprs,
|
|
ArrayRef<const Expr *> AssignmentOps) {
|
|
if (!CGF.HaveInsertPoint())
|
|
return;
|
|
assert(CopyprivateVars.size() == SrcExprs.size() &&
|
|
CopyprivateVars.size() == DstExprs.size() &&
|
|
CopyprivateVars.size() == AssignmentOps.size());
|
|
ASTContext &C = CGM.getContext();
|
|
// int32 did_it = 0;
|
|
// if(__kmpc_single(ident_t *, gtid)) {
|
|
// SingleOpGen();
|
|
// __kmpc_end_single(ident_t *, gtid);
|
|
// did_it = 1;
|
|
// }
|
|
// call __kmpc_copyprivate(ident_t *, gtid, <buf_size>, <copyprivate list>,
|
|
// <copy_func>, did_it);
|
|
|
|
Address DidIt = Address::invalid();
|
|
if (!CopyprivateVars.empty()) {
|
|
// int32 did_it = 0;
|
|
QualType KmpInt32Ty =
|
|
C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1);
|
|
DidIt = CGF.CreateMemTemp(KmpInt32Ty, ".omp.copyprivate.did_it");
|
|
CGF.Builder.CreateStore(CGF.Builder.getInt32(0), DidIt);
|
|
}
|
|
// Prepare arguments and build a call to __kmpc_single
|
|
llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
|
|
CommonActionTy Action(createRuntimeFunction(OMPRTL__kmpc_single), Args,
|
|
createRuntimeFunction(OMPRTL__kmpc_end_single), Args,
|
|
/*Conditional=*/true);
|
|
SingleOpGen.setAction(Action);
|
|
emitInlinedDirective(CGF, OMPD_single, SingleOpGen);
|
|
if (DidIt.isValid()) {
|
|
// did_it = 1;
|
|
CGF.Builder.CreateStore(CGF.Builder.getInt32(1), DidIt);
|
|
}
|
|
Action.Done(CGF);
|
|
// call __kmpc_copyprivate(ident_t *, gtid, <buf_size>, <copyprivate list>,
|
|
// <copy_func>, did_it);
|
|
if (DidIt.isValid()) {
|
|
llvm::APInt ArraySize(/*unsigned int numBits=*/32, CopyprivateVars.size());
|
|
QualType CopyprivateArrayTy = C.getConstantArrayType(
|
|
C.VoidPtrTy, ArraySize, nullptr, ArrayType::Normal,
|
|
/*IndexTypeQuals=*/0);
|
|
// Create a list of all private variables for copyprivate.
|
|
Address CopyprivateList =
|
|
CGF.CreateMemTemp(CopyprivateArrayTy, ".omp.copyprivate.cpr_list");
|
|
for (unsigned I = 0, E = CopyprivateVars.size(); I < E; ++I) {
|
|
Address Elem = CGF.Builder.CreateConstArrayGEP(CopyprivateList, I);
|
|
CGF.Builder.CreateStore(
|
|
CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
|
|
CGF.EmitLValue(CopyprivateVars[I]).getPointer(CGF),
|
|
CGF.VoidPtrTy),
|
|
Elem);
|
|
}
|
|
// Build function that copies private values from single region to all other
|
|
// threads in the corresponding parallel region.
|
|
llvm::Value *CpyFn = emitCopyprivateCopyFunction(
|
|
CGM, CGF.ConvertTypeForMem(CopyprivateArrayTy)->getPointerTo(),
|
|
CopyprivateVars, SrcExprs, DstExprs, AssignmentOps, Loc);
|
|
llvm::Value *BufSize = CGF.getTypeSize(CopyprivateArrayTy);
|
|
Address CL =
|
|
CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(CopyprivateList,
|
|
CGF.VoidPtrTy);
|
|
llvm::Value *DidItVal = CGF.Builder.CreateLoad(DidIt);
|
|
llvm::Value *Args[] = {
|
|
emitUpdateLocation(CGF, Loc), // ident_t *<loc>
|
|
getThreadID(CGF, Loc), // i32 <gtid>
|
|
BufSize, // size_t <buf_size>
|
|
CL.getPointer(), // void *<copyprivate list>
|
|
CpyFn, // void (*) (void *, void *) <copy_func>
|
|
DidItVal // i32 did_it
|
|
};
|
|
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_copyprivate), Args);
|
|
}
|
|
}
|
|
|
|
void CGOpenMPRuntime::emitOrderedRegion(CodeGenFunction &CGF,
|
|
const RegionCodeGenTy &OrderedOpGen,
|
|
SourceLocation Loc, bool IsThreads) {
|
|
if (!CGF.HaveInsertPoint())
|
|
return;
|
|
// __kmpc_ordered(ident_t *, gtid);
|
|
// OrderedOpGen();
|
|
// __kmpc_end_ordered(ident_t *, gtid);
|
|
// Prepare arguments and build a call to __kmpc_ordered
|
|
if (IsThreads) {
|
|
llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
|
|
CommonActionTy Action(createRuntimeFunction(OMPRTL__kmpc_ordered), Args,
|
|
createRuntimeFunction(OMPRTL__kmpc_end_ordered),
|
|
Args);
|
|
OrderedOpGen.setAction(Action);
|
|
emitInlinedDirective(CGF, OMPD_ordered, OrderedOpGen);
|
|
return;
|
|
}
|
|
emitInlinedDirective(CGF, OMPD_ordered, OrderedOpGen);
|
|
}
|
|
|
|
unsigned CGOpenMPRuntime::getDefaultFlagsForBarriers(OpenMPDirectiveKind Kind) {
|
|
unsigned Flags;
|
|
if (Kind == OMPD_for)
|
|
Flags = OMP_IDENT_BARRIER_IMPL_FOR;
|
|
else if (Kind == OMPD_sections)
|
|
Flags = OMP_IDENT_BARRIER_IMPL_SECTIONS;
|
|
else if (Kind == OMPD_single)
|
|
Flags = OMP_IDENT_BARRIER_IMPL_SINGLE;
|
|
else if (Kind == OMPD_barrier)
|
|
Flags = OMP_IDENT_BARRIER_EXPL;
|
|
else
|
|
Flags = OMP_IDENT_BARRIER_IMPL;
|
|
return Flags;
|
|
}
|
|
|
|
void CGOpenMPRuntime::getDefaultScheduleAndChunk(
|
|
CodeGenFunction &CGF, const OMPLoopDirective &S,
|
|
OpenMPScheduleClauseKind &ScheduleKind, const Expr *&ChunkExpr) const {
|
|
// Check if the loop directive is actually a doacross loop directive. In this
|
|
// case choose static, 1 schedule.
|
|
if (llvm::any_of(
|
|
S.getClausesOfKind<OMPOrderedClause>(),
|
|
[](const OMPOrderedClause *C) { return C->getNumForLoops(); })) {
|
|
ScheduleKind = OMPC_SCHEDULE_static;
|
|
// Chunk size is 1 in this case.
|
|
llvm::APInt ChunkSize(32, 1);
|
|
ChunkExpr = IntegerLiteral::Create(
|
|
CGF.getContext(), ChunkSize,
|
|
CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0),
|
|
SourceLocation());
|
|
}
|
|
}
|
|
|
|
void CGOpenMPRuntime::emitBarrierCall(CodeGenFunction &CGF, SourceLocation Loc,
|
|
OpenMPDirectiveKind Kind, bool EmitChecks,
|
|
bool ForceSimpleCall) {
|
|
if (!CGF.HaveInsertPoint())
|
|
return;
|
|
// Build call __kmpc_cancel_barrier(loc, thread_id);
|
|
// Build call __kmpc_barrier(loc, thread_id);
|
|
unsigned Flags = getDefaultFlagsForBarriers(Kind);
|
|
// Build call __kmpc_cancel_barrier(loc, thread_id) or __kmpc_barrier(loc,
|
|
// thread_id);
|
|
llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc, Flags),
|
|
getThreadID(CGF, Loc)};
|
|
if (auto *OMPRegionInfo =
|
|
dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) {
|
|
if (!ForceSimpleCall && OMPRegionInfo->hasCancel()) {
|
|
llvm::Value *Result = CGF.EmitRuntimeCall(
|
|
createRuntimeFunction(OMPRTL__kmpc_cancel_barrier), Args);
|
|
if (EmitChecks) {
|
|
// if (__kmpc_cancel_barrier()) {
|
|
// exit from construct;
|
|
// }
|
|
llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".cancel.exit");
|
|
llvm::BasicBlock *ContBB = CGF.createBasicBlock(".cancel.continue");
|
|
llvm::Value *Cmp = CGF.Builder.CreateIsNotNull(Result);
|
|
CGF.Builder.CreateCondBr(Cmp, ExitBB, ContBB);
|
|
CGF.EmitBlock(ExitBB);
|
|
// exit from construct;
|
|
CodeGenFunction::JumpDest CancelDestination =
|
|
CGF.getOMPCancelDestination(OMPRegionInfo->getDirectiveKind());
|
|
CGF.EmitBranchThroughCleanup(CancelDestination);
|
|
CGF.EmitBlock(ContBB, /*IsFinished=*/true);
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_barrier), Args);
|
|
}
|
|
|
|
/// Map the OpenMP loop schedule to the runtime enumeration.
|
|
static OpenMPSchedType getRuntimeSchedule(OpenMPScheduleClauseKind ScheduleKind,
|
|
bool Chunked, bool Ordered) {
|
|
switch (ScheduleKind) {
|
|
case OMPC_SCHEDULE_static:
|
|
return Chunked ? (Ordered ? OMP_ord_static_chunked : OMP_sch_static_chunked)
|
|
: (Ordered ? OMP_ord_static : OMP_sch_static);
|
|
case OMPC_SCHEDULE_dynamic:
|
|
return Ordered ? OMP_ord_dynamic_chunked : OMP_sch_dynamic_chunked;
|
|
case OMPC_SCHEDULE_guided:
|
|
return Ordered ? OMP_ord_guided_chunked : OMP_sch_guided_chunked;
|
|
case OMPC_SCHEDULE_runtime:
|
|
return Ordered ? OMP_ord_runtime : OMP_sch_runtime;
|
|
case OMPC_SCHEDULE_auto:
|
|
return Ordered ? OMP_ord_auto : OMP_sch_auto;
|
|
case OMPC_SCHEDULE_unknown:
|
|
assert(!Chunked && "chunk was specified but schedule kind not known");
|
|
return Ordered ? OMP_ord_static : OMP_sch_static;
|
|
}
|
|
llvm_unreachable("Unexpected runtime schedule");
|
|
}
|
|
|
|
/// Map the OpenMP distribute schedule to the runtime enumeration.
|
|
static OpenMPSchedType
|
|
getRuntimeSchedule(OpenMPDistScheduleClauseKind ScheduleKind, bool Chunked) {
|
|
// only static is allowed for dist_schedule
|
|
return Chunked ? OMP_dist_sch_static_chunked : OMP_dist_sch_static;
|
|
}
|
|
|
|
bool CGOpenMPRuntime::isStaticNonchunked(OpenMPScheduleClauseKind ScheduleKind,
|
|
bool Chunked) const {
|
|
OpenMPSchedType Schedule =
|
|
getRuntimeSchedule(ScheduleKind, Chunked, /*Ordered=*/false);
|
|
return Schedule == OMP_sch_static;
|
|
}
|
|
|
|
bool CGOpenMPRuntime::isStaticNonchunked(
|
|
OpenMPDistScheduleClauseKind ScheduleKind, bool Chunked) const {
|
|
OpenMPSchedType Schedule = getRuntimeSchedule(ScheduleKind, Chunked);
|
|
return Schedule == OMP_dist_sch_static;
|
|
}
|
|
|
|
bool CGOpenMPRuntime::isStaticChunked(OpenMPScheduleClauseKind ScheduleKind,
|
|
bool Chunked) const {
|
|
OpenMPSchedType Schedule =
|
|
getRuntimeSchedule(ScheduleKind, Chunked, /*Ordered=*/false);
|
|
return Schedule == OMP_sch_static_chunked;
|
|
}
|
|
|
|
bool CGOpenMPRuntime::isStaticChunked(
|
|
OpenMPDistScheduleClauseKind ScheduleKind, bool Chunked) const {
|
|
OpenMPSchedType Schedule = getRuntimeSchedule(ScheduleKind, Chunked);
|
|
return Schedule == OMP_dist_sch_static_chunked;
|
|
}
|
|
|
|
bool CGOpenMPRuntime::isDynamic(OpenMPScheduleClauseKind ScheduleKind) const {
|
|
OpenMPSchedType Schedule =
|
|
getRuntimeSchedule(ScheduleKind, /*Chunked=*/false, /*Ordered=*/false);
|
|
assert(Schedule != OMP_sch_static_chunked && "cannot be chunked here");
|
|
return Schedule != OMP_sch_static;
|
|
}
|
|
|
|
static int addMonoNonMonoModifier(CodeGenModule &CGM, OpenMPSchedType Schedule,
|
|
OpenMPScheduleClauseModifier M1,
|
|
OpenMPScheduleClauseModifier M2) {
|
|
int Modifier = 0;
|
|
switch (M1) {
|
|
case OMPC_SCHEDULE_MODIFIER_monotonic:
|
|
Modifier = OMP_sch_modifier_monotonic;
|
|
break;
|
|
case OMPC_SCHEDULE_MODIFIER_nonmonotonic:
|
|
Modifier = OMP_sch_modifier_nonmonotonic;
|
|
break;
|
|
case OMPC_SCHEDULE_MODIFIER_simd:
|
|
if (Schedule == OMP_sch_static_chunked)
|
|
Schedule = OMP_sch_static_balanced_chunked;
|
|
break;
|
|
case OMPC_SCHEDULE_MODIFIER_last:
|
|
case OMPC_SCHEDULE_MODIFIER_unknown:
|
|
break;
|
|
}
|
|
switch (M2) {
|
|
case OMPC_SCHEDULE_MODIFIER_monotonic:
|
|
Modifier = OMP_sch_modifier_monotonic;
|
|
break;
|
|
case OMPC_SCHEDULE_MODIFIER_nonmonotonic:
|
|
Modifier = OMP_sch_modifier_nonmonotonic;
|
|
break;
|
|
case OMPC_SCHEDULE_MODIFIER_simd:
|
|
if (Schedule == OMP_sch_static_chunked)
|
|
Schedule = OMP_sch_static_balanced_chunked;
|
|
break;
|
|
case OMPC_SCHEDULE_MODIFIER_last:
|
|
case OMPC_SCHEDULE_MODIFIER_unknown:
|
|
break;
|
|
}
|
|
// OpenMP 5.0, 2.9.2 Worksharing-Loop Construct, Desription.
|
|
// If the static schedule kind is specified or if the ordered clause is
|
|
// specified, and if the nonmonotonic modifier is not specified, the effect is
|
|
// as if the monotonic modifier is specified. Otherwise, unless the monotonic
|
|
// modifier is specified, the effect is as if the nonmonotonic modifier is
|
|
// specified.
|
|
if (CGM.getLangOpts().OpenMP >= 50 && Modifier == 0) {
|
|
if (!(Schedule == OMP_sch_static_chunked || Schedule == OMP_sch_static ||
|
|
Schedule == OMP_sch_static_balanced_chunked ||
|
|
Schedule == OMP_ord_static_chunked || Schedule == OMP_ord_static ||
|
|
Schedule == OMP_dist_sch_static_chunked ||
|
|
Schedule == OMP_dist_sch_static))
|
|
Modifier = OMP_sch_modifier_nonmonotonic;
|
|
}
|
|
return Schedule | Modifier;
|
|
}
|
|
|
|
void CGOpenMPRuntime::emitForDispatchInit(
|
|
CodeGenFunction &CGF, SourceLocation Loc,
|
|
const OpenMPScheduleTy &ScheduleKind, unsigned IVSize, bool IVSigned,
|
|
bool Ordered, const DispatchRTInput &DispatchValues) {
|
|
if (!CGF.HaveInsertPoint())
|
|
return;
|
|
OpenMPSchedType Schedule = getRuntimeSchedule(
|
|
ScheduleKind.Schedule, DispatchValues.Chunk != nullptr, Ordered);
|
|
assert(Ordered ||
|
|
(Schedule != OMP_sch_static && Schedule != OMP_sch_static_chunked &&
|
|
Schedule != OMP_ord_static && Schedule != OMP_ord_static_chunked &&
|
|
Schedule != OMP_sch_static_balanced_chunked));
|
|
// Call __kmpc_dispatch_init(
|
|
// ident_t *loc, kmp_int32 tid, kmp_int32 schedule,
|
|
// kmp_int[32|64] lower, kmp_int[32|64] upper,
|
|
// kmp_int[32|64] stride, kmp_int[32|64] chunk);
|
|
|
|
// If the Chunk was not specified in the clause - use default value 1.
|
|
llvm::Value *Chunk = DispatchValues.Chunk ? DispatchValues.Chunk
|
|
: CGF.Builder.getIntN(IVSize, 1);
|
|
llvm::Value *Args[] = {
|
|
emitUpdateLocation(CGF, Loc),
|
|
getThreadID(CGF, Loc),
|
|
CGF.Builder.getInt32(addMonoNonMonoModifier(
|
|
CGM, Schedule, ScheduleKind.M1, ScheduleKind.M2)), // Schedule type
|
|
DispatchValues.LB, // Lower
|
|
DispatchValues.UB, // Upper
|
|
CGF.Builder.getIntN(IVSize, 1), // Stride
|
|
Chunk // Chunk
|
|
};
|
|
CGF.EmitRuntimeCall(createDispatchInitFunction(IVSize, IVSigned), Args);
|
|
}
|
|
|
|
static void emitForStaticInitCall(
|
|
CodeGenFunction &CGF, llvm::Value *UpdateLocation, llvm::Value *ThreadId,
|
|
llvm::FunctionCallee ForStaticInitFunction, OpenMPSchedType Schedule,
|
|
OpenMPScheduleClauseModifier M1, OpenMPScheduleClauseModifier M2,
|
|
const CGOpenMPRuntime::StaticRTInput &Values) {
|
|
if (!CGF.HaveInsertPoint())
|
|
return;
|
|
|
|
assert(!Values.Ordered);
|
|
assert(Schedule == OMP_sch_static || Schedule == OMP_sch_static_chunked ||
|
|
Schedule == OMP_sch_static_balanced_chunked ||
|
|
Schedule == OMP_ord_static || Schedule == OMP_ord_static_chunked ||
|
|
Schedule == OMP_dist_sch_static ||
|
|
Schedule == OMP_dist_sch_static_chunked);
|
|
|
|
// Call __kmpc_for_static_init(
|
|
// ident_t *loc, kmp_int32 tid, kmp_int32 schedtype,
|
|
// kmp_int32 *p_lastiter, kmp_int[32|64] *p_lower,
|
|
// kmp_int[32|64] *p_upper, kmp_int[32|64] *p_stride,
|
|
// kmp_int[32|64] incr, kmp_int[32|64] chunk);
|
|
llvm::Value *Chunk = Values.Chunk;
|
|
if (Chunk == nullptr) {
|
|
assert((Schedule == OMP_sch_static || Schedule == OMP_ord_static ||
|
|
Schedule == OMP_dist_sch_static) &&
|
|
"expected static non-chunked schedule");
|
|
// If the Chunk was not specified in the clause - use default value 1.
|
|
Chunk = CGF.Builder.getIntN(Values.IVSize, 1);
|
|
} else {
|
|
assert((Schedule == OMP_sch_static_chunked ||
|
|
Schedule == OMP_sch_static_balanced_chunked ||
|
|
Schedule == OMP_ord_static_chunked ||
|
|
Schedule == OMP_dist_sch_static_chunked) &&
|
|
"expected static chunked schedule");
|
|
}
|
|
llvm::Value *Args[] = {
|
|
UpdateLocation,
|
|
ThreadId,
|
|
CGF.Builder.getInt32(addMonoNonMonoModifier(CGF.CGM, Schedule, M1,
|
|
M2)), // Schedule type
|
|
Values.IL.getPointer(), // &isLastIter
|
|
Values.LB.getPointer(), // &LB
|
|
Values.UB.getPointer(), // &UB
|
|
Values.ST.getPointer(), // &Stride
|
|
CGF.Builder.getIntN(Values.IVSize, 1), // Incr
|
|
Chunk // Chunk
|
|
};
|
|
CGF.EmitRuntimeCall(ForStaticInitFunction, Args);
|
|
}
|
|
|
|
void CGOpenMPRuntime::emitForStaticInit(CodeGenFunction &CGF,
|
|
SourceLocation Loc,
|
|
OpenMPDirectiveKind DKind,
|
|
const OpenMPScheduleTy &ScheduleKind,
|
|
const StaticRTInput &Values) {
|
|
OpenMPSchedType ScheduleNum = getRuntimeSchedule(
|
|
ScheduleKind.Schedule, Values.Chunk != nullptr, Values.Ordered);
|
|
assert(isOpenMPWorksharingDirective(DKind) &&
|
|
"Expected loop-based or sections-based directive.");
|
|
llvm::Value *UpdatedLocation = emitUpdateLocation(CGF, Loc,
|
|
isOpenMPLoopDirective(DKind)
|
|
? OMP_IDENT_WORK_LOOP
|
|
: OMP_IDENT_WORK_SECTIONS);
|
|
llvm::Value *ThreadId = getThreadID(CGF, Loc);
|
|
llvm::FunctionCallee StaticInitFunction =
|
|
createForStaticInitFunction(Values.IVSize, Values.IVSigned);
|
|
emitForStaticInitCall(CGF, UpdatedLocation, ThreadId, StaticInitFunction,
|
|
ScheduleNum, ScheduleKind.M1, ScheduleKind.M2, Values);
|
|
}
|
|
|
|
void CGOpenMPRuntime::emitDistributeStaticInit(
|
|
CodeGenFunction &CGF, SourceLocation Loc,
|
|
OpenMPDistScheduleClauseKind SchedKind,
|
|
const CGOpenMPRuntime::StaticRTInput &Values) {
|
|
OpenMPSchedType ScheduleNum =
|
|
getRuntimeSchedule(SchedKind, Values.Chunk != nullptr);
|
|
llvm::Value *UpdatedLocation =
|
|
emitUpdateLocation(CGF, Loc, OMP_IDENT_WORK_DISTRIBUTE);
|
|
llvm::Value *ThreadId = getThreadID(CGF, Loc);
|
|
llvm::FunctionCallee StaticInitFunction =
|
|
createForStaticInitFunction(Values.IVSize, Values.IVSigned);
|
|
emitForStaticInitCall(CGF, UpdatedLocation, ThreadId, StaticInitFunction,
|
|
ScheduleNum, OMPC_SCHEDULE_MODIFIER_unknown,
|
|
OMPC_SCHEDULE_MODIFIER_unknown, Values);
|
|
}
|
|
|
|
void CGOpenMPRuntime::emitForStaticFinish(CodeGenFunction &CGF,
|
|
SourceLocation Loc,
|
|
OpenMPDirectiveKind DKind) {
|
|
if (!CGF.HaveInsertPoint())
|
|
return;
|
|
// Call __kmpc_for_static_fini(ident_t *loc, kmp_int32 tid);
|
|
llvm::Value *Args[] = {
|
|
emitUpdateLocation(CGF, Loc,
|
|
isOpenMPDistributeDirective(DKind)
|
|
? OMP_IDENT_WORK_DISTRIBUTE
|
|
: isOpenMPLoopDirective(DKind)
|
|
? OMP_IDENT_WORK_LOOP
|
|
: OMP_IDENT_WORK_SECTIONS),
|
|
getThreadID(CGF, Loc)};
|
|
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_for_static_fini),
|
|
Args);
|
|
}
|
|
|
|
void CGOpenMPRuntime::emitForOrderedIterationEnd(CodeGenFunction &CGF,
|
|
SourceLocation Loc,
|
|
unsigned IVSize,
|
|
bool IVSigned) {
|
|
if (!CGF.HaveInsertPoint())
|
|
return;
|
|
// Call __kmpc_for_dynamic_fini_(4|8)[u](ident_t *loc, kmp_int32 tid);
|
|
llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
|
|
CGF.EmitRuntimeCall(createDispatchFiniFunction(IVSize, IVSigned), Args);
|
|
}
|
|
|
|
llvm::Value *CGOpenMPRuntime::emitForNext(CodeGenFunction &CGF,
|
|
SourceLocation Loc, unsigned IVSize,
|
|
bool IVSigned, Address IL,
|
|
Address LB, Address UB,
|
|
Address ST) {
|
|
// Call __kmpc_dispatch_next(
|
|
// ident_t *loc, kmp_int32 tid, kmp_int32 *p_lastiter,
|
|
// kmp_int[32|64] *p_lower, kmp_int[32|64] *p_upper,
|
|
// kmp_int[32|64] *p_stride);
|
|
llvm::Value *Args[] = {
|
|
emitUpdateLocation(CGF, Loc),
|
|
getThreadID(CGF, Loc),
|
|
IL.getPointer(), // &isLastIter
|
|
LB.getPointer(), // &Lower
|
|
UB.getPointer(), // &Upper
|
|
ST.getPointer() // &Stride
|
|
};
|
|
llvm::Value *Call =
|
|
CGF.EmitRuntimeCall(createDispatchNextFunction(IVSize, IVSigned), Args);
|
|
return CGF.EmitScalarConversion(
|
|
Call, CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/1),
|
|
CGF.getContext().BoolTy, Loc);
|
|
}
|
|
|
|
void CGOpenMPRuntime::emitNumThreadsClause(CodeGenFunction &CGF,
|
|
llvm::Value *NumThreads,
|
|
SourceLocation Loc) {
|
|
if (!CGF.HaveInsertPoint())
|
|
return;
|
|
// Build call __kmpc_push_num_threads(&loc, global_tid, num_threads)
|
|
llvm::Value *Args[] = {
|
|
emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
|
|
CGF.Builder.CreateIntCast(NumThreads, CGF.Int32Ty, /*isSigned*/ true)};
|
|
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_push_num_threads),
|
|
Args);
|
|
}
|
|
|
|
void CGOpenMPRuntime::emitProcBindClause(CodeGenFunction &CGF,
|
|
OpenMPProcBindClauseKind ProcBind,
|
|
SourceLocation Loc) {
|
|
if (!CGF.HaveInsertPoint())
|
|
return;
|
|
// Constants for proc bind value accepted by the runtime.
|
|
enum ProcBindTy {
|
|
ProcBindFalse = 0,
|
|
ProcBindTrue,
|
|
ProcBindMaster,
|
|
ProcBindClose,
|
|
ProcBindSpread,
|
|
ProcBindIntel,
|
|
ProcBindDefault
|
|
} RuntimeProcBind;
|
|
switch (ProcBind) {
|
|
case OMPC_PROC_BIND_master:
|
|
RuntimeProcBind = ProcBindMaster;
|
|
break;
|
|
case OMPC_PROC_BIND_close:
|
|
RuntimeProcBind = ProcBindClose;
|
|
break;
|
|
case OMPC_PROC_BIND_spread:
|
|
RuntimeProcBind = ProcBindSpread;
|
|
break;
|
|
case OMPC_PROC_BIND_unknown:
|
|
llvm_unreachable("Unsupported proc_bind value.");
|
|
}
|
|
// Build call __kmpc_push_proc_bind(&loc, global_tid, proc_bind)
|
|
llvm::Value *Args[] = {
|
|
emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
|
|
llvm::ConstantInt::get(CGM.IntTy, RuntimeProcBind, /*isSigned=*/true)};
|
|
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_push_proc_bind), Args);
|
|
}
|
|
|
|
void CGOpenMPRuntime::emitFlush(CodeGenFunction &CGF, ArrayRef<const Expr *>,
|
|
SourceLocation Loc) {
|
|
if (!CGF.HaveInsertPoint())
|
|
return;
|
|
// Build call void __kmpc_flush(ident_t *loc)
|
|
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_flush),
|
|
emitUpdateLocation(CGF, Loc));
|
|
}
|
|
|
|
namespace {
|
|
/// Indexes of fields for type kmp_task_t.
|
|
enum KmpTaskTFields {
|
|
/// List of shared variables.
|
|
KmpTaskTShareds,
|
|
/// Task routine.
|
|
KmpTaskTRoutine,
|
|
/// Partition id for the untied tasks.
|
|
KmpTaskTPartId,
|
|
/// Function with call of destructors for private variables.
|
|
Data1,
|
|
/// Task priority.
|
|
Data2,
|
|
/// (Taskloops only) Lower bound.
|
|
KmpTaskTLowerBound,
|
|
/// (Taskloops only) Upper bound.
|
|
KmpTaskTUpperBound,
|
|
/// (Taskloops only) Stride.
|
|
KmpTaskTStride,
|
|
/// (Taskloops only) Is last iteration flag.
|
|
KmpTaskTLastIter,
|
|
/// (Taskloops only) Reduction data.
|
|
KmpTaskTReductions,
|
|
};
|
|
} // anonymous namespace
|
|
|
|
bool CGOpenMPRuntime::OffloadEntriesInfoManagerTy::empty() const {
|
|
return OffloadEntriesTargetRegion.empty() &&
|
|
OffloadEntriesDeviceGlobalVar.empty();
|
|
}
|
|
|
|
/// Initialize target region entry.
|
|
void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::
|
|
initializeTargetRegionEntryInfo(unsigned DeviceID, unsigned FileID,
|
|
StringRef ParentName, unsigned LineNum,
|
|
unsigned Order) {
|
|
assert(CGM.getLangOpts().OpenMPIsDevice && "Initialization of entries is "
|
|
"only required for the device "
|
|
"code generation.");
|
|
OffloadEntriesTargetRegion[DeviceID][FileID][ParentName][LineNum] =
|
|
OffloadEntryInfoTargetRegion(Order, /*Addr=*/nullptr, /*ID=*/nullptr,
|
|
OMPTargetRegionEntryTargetRegion);
|
|
++OffloadingEntriesNum;
|
|
}
|
|
|
|
void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::
|
|
registerTargetRegionEntryInfo(unsigned DeviceID, unsigned FileID,
|
|
StringRef ParentName, unsigned LineNum,
|
|
llvm::Constant *Addr, llvm::Constant *ID,
|
|
OMPTargetRegionEntryKind Flags) {
|
|
// If we are emitting code for a target, the entry is already initialized,
|
|
// only has to be registered.
|
|
if (CGM.getLangOpts().OpenMPIsDevice) {
|
|
if (!hasTargetRegionEntryInfo(DeviceID, FileID, ParentName, LineNum)) {
|
|
unsigned DiagID = CGM.getDiags().getCustomDiagID(
|
|
DiagnosticsEngine::Error,
|
|
"Unable to find target region on line '%0' in the device code.");
|
|
CGM.getDiags().Report(DiagID) << LineNum;
|
|
return;
|
|
}
|
|
auto &Entry =
|
|
OffloadEntriesTargetRegion[DeviceID][FileID][ParentName][LineNum];
|
|
assert(Entry.isValid() && "Entry not initialized!");
|
|
Entry.setAddress(Addr);
|
|
Entry.setID(ID);
|
|
Entry.setFlags(Flags);
|
|
} else {
|
|
OffloadEntryInfoTargetRegion Entry(OffloadingEntriesNum, Addr, ID, Flags);
|
|
OffloadEntriesTargetRegion[DeviceID][FileID][ParentName][LineNum] = Entry;
|
|
++OffloadingEntriesNum;
|
|
}
|
|
}
|
|
|
|
bool CGOpenMPRuntime::OffloadEntriesInfoManagerTy::hasTargetRegionEntryInfo(
|
|
unsigned DeviceID, unsigned FileID, StringRef ParentName,
|
|
unsigned LineNum) const {
|
|
auto PerDevice = OffloadEntriesTargetRegion.find(DeviceID);
|
|
if (PerDevice == OffloadEntriesTargetRegion.end())
|
|
return false;
|
|
auto PerFile = PerDevice->second.find(FileID);
|
|
if (PerFile == PerDevice->second.end())
|
|
return false;
|
|
auto PerParentName = PerFile->second.find(ParentName);
|
|
if (PerParentName == PerFile->second.end())
|
|
return false;
|
|
auto PerLine = PerParentName->second.find(LineNum);
|
|
if (PerLine == PerParentName->second.end())
|
|
return false;
|
|
// Fail if this entry is already registered.
|
|
if (PerLine->second.getAddress() || PerLine->second.getID())
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::actOnTargetRegionEntriesInfo(
|
|
const OffloadTargetRegionEntryInfoActTy &Action) {
|
|
// Scan all target region entries and perform the provided action.
|
|
for (const auto &D : OffloadEntriesTargetRegion)
|
|
for (const auto &F : D.second)
|
|
for (const auto &P : F.second)
|
|
for (const auto &L : P.second)
|
|
Action(D.first, F.first, P.first(), L.first, L.second);
|
|
}
|
|
|
|
void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::
|
|
initializeDeviceGlobalVarEntryInfo(StringRef Name,
|
|
OMPTargetGlobalVarEntryKind Flags,
|
|
unsigned Order) {
|
|
assert(CGM.getLangOpts().OpenMPIsDevice && "Initialization of entries is "
|
|
"only required for the device "
|
|
"code generation.");
|
|
OffloadEntriesDeviceGlobalVar.try_emplace(Name, Order, Flags);
|
|
++OffloadingEntriesNum;
|
|
}
|
|
|
|
void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::
|
|
registerDeviceGlobalVarEntryInfo(StringRef VarName, llvm::Constant *Addr,
|
|
CharUnits VarSize,
|
|
OMPTargetGlobalVarEntryKind Flags,
|
|
llvm::GlobalValue::LinkageTypes Linkage) {
|
|
if (CGM.getLangOpts().OpenMPIsDevice) {
|
|
auto &Entry = OffloadEntriesDeviceGlobalVar[VarName];
|
|
assert(Entry.isValid() && Entry.getFlags() == Flags &&
|
|
"Entry not initialized!");
|
|
assert((!Entry.getAddress() || Entry.getAddress() == Addr) &&
|
|
"Resetting with the new address.");
|
|
if (Entry.getAddress() && hasDeviceGlobalVarEntryInfo(VarName)) {
|
|
if (Entry.getVarSize().isZero()) {
|
|
Entry.setVarSize(VarSize);
|
|
Entry.setLinkage(Linkage);
|
|
}
|
|
return;
|
|
}
|
|
Entry.setVarSize(VarSize);
|
|
Entry.setLinkage(Linkage);
|
|
Entry.setAddress(Addr);
|
|
} else {
|
|
if (hasDeviceGlobalVarEntryInfo(VarName)) {
|
|
auto &Entry = OffloadEntriesDeviceGlobalVar[VarName];
|
|
assert(Entry.isValid() && Entry.getFlags() == Flags &&
|
|
"Entry not initialized!");
|
|
assert((!Entry.getAddress() || Entry.getAddress() == Addr) &&
|
|
"Resetting with the new address.");
|
|
if (Entry.getVarSize().isZero()) {
|
|
Entry.setVarSize(VarSize);
|
|
Entry.setLinkage(Linkage);
|
|
}
|
|
return;
|
|
}
|
|
OffloadEntriesDeviceGlobalVar.try_emplace(
|
|
VarName, OffloadingEntriesNum, Addr, VarSize, Flags, Linkage);
|
|
++OffloadingEntriesNum;
|
|
}
|
|
}
|
|
|
|
void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::
|
|
actOnDeviceGlobalVarEntriesInfo(
|
|
const OffloadDeviceGlobalVarEntryInfoActTy &Action) {
|
|
// Scan all target region entries and perform the provided action.
|
|
for (const auto &E : OffloadEntriesDeviceGlobalVar)
|
|
Action(E.getKey(), E.getValue());
|
|
}
|
|
|
|
void CGOpenMPRuntime::createOffloadEntry(
|
|
llvm::Constant *ID, llvm::Constant *Addr, uint64_t Size, int32_t Flags,
|
|
llvm::GlobalValue::LinkageTypes Linkage) {
|
|
StringRef Name = Addr->getName();
|
|
llvm::Module &M = CGM.getModule();
|
|
llvm::LLVMContext &C = M.getContext();
|
|
|
|
// Create constant string with the name.
|
|
llvm::Constant *StrPtrInit = llvm::ConstantDataArray::getString(C, Name);
|
|
|
|
std::string StringName = getName({"omp_offloading", "entry_name"});
|
|
auto *Str = new llvm::GlobalVariable(
|
|
M, StrPtrInit->getType(), /*isConstant=*/true,
|
|
llvm::GlobalValue::InternalLinkage, StrPtrInit, StringName);
|
|
Str->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
|
|
|
|
llvm::Constant *Data[] = {llvm::ConstantExpr::getBitCast(ID, CGM.VoidPtrTy),
|
|
llvm::ConstantExpr::getBitCast(Str, CGM.Int8PtrTy),
|
|
llvm::ConstantInt::get(CGM.SizeTy, Size),
|
|
llvm::ConstantInt::get(CGM.Int32Ty, Flags),
|
|
llvm::ConstantInt::get(CGM.Int32Ty, 0)};
|
|
std::string EntryName = getName({"omp_offloading", "entry", ""});
|
|
llvm::GlobalVariable *Entry = createGlobalStruct(
|
|
CGM, getTgtOffloadEntryQTy(), /*IsConstant=*/true, Data,
|
|
Twine(EntryName).concat(Name), llvm::GlobalValue::WeakAnyLinkage);
|
|
|
|
// The entry has to be created in the section the linker expects it to be.
|
|
Entry->setSection("omp_offloading_entries");
|
|
}
|
|
|
|
void CGOpenMPRuntime::createOffloadEntriesAndInfoMetadata() {
|
|
// Emit the offloading entries and metadata so that the device codegen side
|
|
// can easily figure out what to emit. The produced metadata looks like
|
|
// this:
|
|
//
|
|
// !omp_offload.info = !{!1, ...}
|
|
//
|
|
// Right now we only generate metadata for function that contain target
|
|
// regions.
|
|
|
|
// If we are in simd mode or there are no entries, we don't need to do
|
|
// anything.
|
|
if (CGM.getLangOpts().OpenMPSimd || OffloadEntriesInfoManager.empty())
|
|
return;
|
|
|
|
llvm::Module &M = CGM.getModule();
|
|
llvm::LLVMContext &C = M.getContext();
|
|
SmallVector<std::tuple<const OffloadEntriesInfoManagerTy::OffloadEntryInfo *,
|
|
SourceLocation, StringRef>,
|
|
16>
|
|
OrderedEntries(OffloadEntriesInfoManager.size());
|
|
llvm::SmallVector<StringRef, 16> ParentFunctions(
|
|
OffloadEntriesInfoManager.size());
|
|
|
|
// Auxiliary methods to create metadata values and strings.
|
|
auto &&GetMDInt = [this](unsigned V) {
|
|
return llvm::ConstantAsMetadata::get(
|
|
llvm::ConstantInt::get(CGM.Int32Ty, V));
|
|
};
|
|
|
|
auto &&GetMDString = [&C](StringRef V) { return llvm::MDString::get(C, V); };
|
|
|
|
// Create the offloading info metadata node.
|
|
llvm::NamedMDNode *MD = M.getOrInsertNamedMetadata("omp_offload.info");
|
|
|
|
// Create function that emits metadata for each target region entry;
|
|
auto &&TargetRegionMetadataEmitter =
|
|
[this, &C, MD, &OrderedEntries, &ParentFunctions, &GetMDInt,
|
|
&GetMDString](
|
|
unsigned DeviceID, unsigned FileID, StringRef ParentName,
|
|
unsigned Line,
|
|
const OffloadEntriesInfoManagerTy::OffloadEntryInfoTargetRegion &E) {
|
|
// Generate metadata for target regions. Each entry of this metadata
|
|
// contains:
|
|
// - Entry 0 -> Kind of this type of metadata (0).
|
|
// - Entry 1 -> Device ID of the file where the entry was identified.
|
|
// - Entry 2 -> File ID of the file where the entry was identified.
|
|
// - Entry 3 -> Mangled name of the function where the entry was
|
|
// identified.
|
|
// - Entry 4 -> Line in the file where the entry was identified.
|
|
// - Entry 5 -> Order the entry was created.
|
|
// The first element of the metadata node is the kind.
|
|
llvm::Metadata *Ops[] = {GetMDInt(E.getKind()), GetMDInt(DeviceID),
|
|
GetMDInt(FileID), GetMDString(ParentName),
|
|
GetMDInt(Line), GetMDInt(E.getOrder())};
|
|
|
|
SourceLocation Loc;
|
|
for (auto I = CGM.getContext().getSourceManager().fileinfo_begin(),
|
|
E = CGM.getContext().getSourceManager().fileinfo_end();
|
|
I != E; ++I) {
|
|
if (I->getFirst()->getUniqueID().getDevice() == DeviceID &&
|
|
I->getFirst()->getUniqueID().getFile() == FileID) {
|
|
Loc = CGM.getContext().getSourceManager().translateFileLineCol(
|
|
I->getFirst(), Line, 1);
|
|
break;
|
|
}
|
|
}
|
|
// Save this entry in the right position of the ordered entries array.
|
|
OrderedEntries[E.getOrder()] = std::make_tuple(&E, Loc, ParentName);
|
|
ParentFunctions[E.getOrder()] = ParentName;
|
|
|
|
// Add metadata to the named metadata node.
|
|
MD->addOperand(llvm::MDNode::get(C, Ops));
|
|
};
|
|
|
|
OffloadEntriesInfoManager.actOnTargetRegionEntriesInfo(
|
|
TargetRegionMetadataEmitter);
|
|
|
|
// Create function that emits metadata for each device global variable entry;
|
|
auto &&DeviceGlobalVarMetadataEmitter =
|
|
[&C, &OrderedEntries, &GetMDInt, &GetMDString,
|
|
MD](StringRef MangledName,
|
|
const OffloadEntriesInfoManagerTy::OffloadEntryInfoDeviceGlobalVar
|
|
&E) {
|
|
// Generate metadata for global variables. Each entry of this metadata
|
|
// contains:
|
|
// - Entry 0 -> Kind of this type of metadata (1).
|
|
// - Entry 1 -> Mangled name of the variable.
|
|
// - Entry 2 -> Declare target kind.
|
|
// - Entry 3 -> Order the entry was created.
|
|
// The first element of the metadata node is the kind.
|
|
llvm::Metadata *Ops[] = {
|
|
GetMDInt(E.getKind()), GetMDString(MangledName),
|
|
GetMDInt(E.getFlags()), GetMDInt(E.getOrder())};
|
|
|
|
// Save this entry in the right position of the ordered entries array.
|
|
OrderedEntries[E.getOrder()] =
|
|
std::make_tuple(&E, SourceLocation(), MangledName);
|
|
|
|
// Add metadata to the named metadata node.
|
|
MD->addOperand(llvm::MDNode::get(C, Ops));
|
|
};
|
|
|
|
OffloadEntriesInfoManager.actOnDeviceGlobalVarEntriesInfo(
|
|
DeviceGlobalVarMetadataEmitter);
|
|
|
|
for (const auto &E : OrderedEntries) {
|
|
assert(std::get<0>(E) && "All ordered entries must exist!");
|
|
if (const auto *CE =
|
|
dyn_cast<OffloadEntriesInfoManagerTy::OffloadEntryInfoTargetRegion>(
|
|
std::get<0>(E))) {
|
|
if (!CE->getID() || !CE->getAddress()) {
|
|
// Do not blame the entry if the parent funtion is not emitted.
|
|
StringRef FnName = ParentFunctions[CE->getOrder()];
|
|
if (!CGM.GetGlobalValue(FnName))
|
|
continue;
|
|
unsigned DiagID = CGM.getDiags().getCustomDiagID(
|
|
DiagnosticsEngine::Error,
|
|
"Offloading entry for target region in %0 is incorrect: either the "
|
|
"address or the ID is invalid.");
|
|
CGM.getDiags().Report(std::get<1>(E), DiagID) << FnName;
|
|
continue;
|
|
}
|
|
createOffloadEntry(CE->getID(), CE->getAddress(), /*Size=*/0,
|
|
CE->getFlags(), llvm::GlobalValue::WeakAnyLinkage);
|
|
} else if (const auto *CE = dyn_cast<OffloadEntriesInfoManagerTy::
|
|
OffloadEntryInfoDeviceGlobalVar>(
|
|
std::get<0>(E))) {
|
|
OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryKind Flags =
|
|
static_cast<OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryKind>(
|
|
CE->getFlags());
|
|
switch (Flags) {
|
|
case OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryTo: {
|
|
if (CGM.getLangOpts().OpenMPIsDevice &&
|
|
CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())
|
|
continue;
|
|
if (!CE->getAddress()) {
|
|
unsigned DiagID = CGM.getDiags().getCustomDiagID(
|
|
DiagnosticsEngine::Error, "Offloading entry for declare target "
|
|
"variable %0 is incorrect: the "
|
|
"address is invalid.");
|
|
CGM.getDiags().Report(std::get<1>(E), DiagID) << std::get<2>(E);
|
|
continue;
|
|
}
|
|
// The vaiable has no definition - no need to add the entry.
|
|
if (CE->getVarSize().isZero())
|
|
continue;
|
|
break;
|
|
}
|
|
case OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryLink:
|
|
assert(((CGM.getLangOpts().OpenMPIsDevice && !CE->getAddress()) ||
|
|
(!CGM.getLangOpts().OpenMPIsDevice && CE->getAddress())) &&
|
|
"Declaret target link address is set.");
|
|
if (CGM.getLangOpts().OpenMPIsDevice)
|
|
continue;
|
|
if (!CE->getAddress()) {
|
|
unsigned DiagID = CGM.getDiags().getCustomDiagID(
|
|
DiagnosticsEngine::Error,
|
|
"Offloading entry for declare target variable is incorrect: the "
|
|
"address is invalid.");
|
|
CGM.getDiags().Report(DiagID);
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
createOffloadEntry(CE->getAddress(), CE->getAddress(),
|
|
CE->getVarSize().getQuantity(), Flags,
|
|
CE->getLinkage());
|
|
} else {
|
|
llvm_unreachable("Unsupported entry kind.");
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Loads all the offload entries information from the host IR
|
|
/// metadata.
|
|
void CGOpenMPRuntime::loadOffloadInfoMetadata() {
|
|
// If we are in target mode, load the metadata from the host IR. This code has
|
|
// to match the metadaata creation in createOffloadEntriesAndInfoMetadata().
|
|
|
|
if (!CGM.getLangOpts().OpenMPIsDevice)
|
|
return;
|
|
|
|
if (CGM.getLangOpts().OMPHostIRFile.empty())
|
|
return;
|
|
|
|
auto Buf = llvm::MemoryBuffer::getFile(CGM.getLangOpts().OMPHostIRFile);
|
|
if (auto EC = Buf.getError()) {
|
|
CGM.getDiags().Report(diag::err_cannot_open_file)
|
|
<< CGM.getLangOpts().OMPHostIRFile << EC.message();
|
|
return;
|
|
}
|
|
|
|
llvm::LLVMContext C;
|
|
auto ME = expectedToErrorOrAndEmitErrors(
|
|
C, llvm::parseBitcodeFile(Buf.get()->getMemBufferRef(), C));
|
|
|
|
if (auto EC = ME.getError()) {
|
|
unsigned DiagID = CGM.getDiags().getCustomDiagID(
|
|
DiagnosticsEngine::Error, "Unable to parse host IR file '%0':'%1'");
|
|
CGM.getDiags().Report(DiagID)
|
|
<< CGM.getLangOpts().OMPHostIRFile << EC.message();
|
|
return;
|
|
}
|
|
|
|
llvm::NamedMDNode *MD = ME.get()->getNamedMetadata("omp_offload.info");
|
|
if (!MD)
|
|
return;
|
|
|
|
for (llvm::MDNode *MN : MD->operands()) {
|
|
auto &&GetMDInt = [MN](unsigned Idx) {
|
|
auto *V = cast<llvm::ConstantAsMetadata>(MN->getOperand(Idx));
|
|
return cast<llvm::ConstantInt>(V->getValue())->getZExtValue();
|
|
};
|
|
|
|
auto &&GetMDString = [MN](unsigned Idx) {
|
|
auto *V = cast<llvm::MDString>(MN->getOperand(Idx));
|
|
return V->getString();
|
|
};
|
|
|
|
switch (GetMDInt(0)) {
|
|
default:
|
|
llvm_unreachable("Unexpected metadata!");
|
|
break;
|
|
case OffloadEntriesInfoManagerTy::OffloadEntryInfo::
|
|
OffloadingEntryInfoTargetRegion:
|
|
OffloadEntriesInfoManager.initializeTargetRegionEntryInfo(
|
|
/*DeviceID=*/GetMDInt(1), /*FileID=*/GetMDInt(2),
|
|
/*ParentName=*/GetMDString(3), /*Line=*/GetMDInt(4),
|
|
/*Order=*/GetMDInt(5));
|
|
break;
|
|
case OffloadEntriesInfoManagerTy::OffloadEntryInfo::
|
|
OffloadingEntryInfoDeviceGlobalVar:
|
|
OffloadEntriesInfoManager.initializeDeviceGlobalVarEntryInfo(
|
|
/*MangledName=*/GetMDString(1),
|
|
static_cast<OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryKind>(
|
|
/*Flags=*/GetMDInt(2)),
|
|
/*Order=*/GetMDInt(3));
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void CGOpenMPRuntime::emitKmpRoutineEntryT(QualType KmpInt32Ty) {
|
|
if (!KmpRoutineEntryPtrTy) {
|
|
// Build typedef kmp_int32 (* kmp_routine_entry_t)(kmp_int32, void *); type.
|
|
ASTContext &C = CGM.getContext();
|
|
QualType KmpRoutineEntryTyArgs[] = {KmpInt32Ty, C.VoidPtrTy};
|
|
FunctionProtoType::ExtProtoInfo EPI;
|
|
KmpRoutineEntryPtrQTy = C.getPointerType(
|
|
C.getFunctionType(KmpInt32Ty, KmpRoutineEntryTyArgs, EPI));
|
|
KmpRoutineEntryPtrTy = CGM.getTypes().ConvertType(KmpRoutineEntryPtrQTy);
|
|
}
|
|
}
|
|
|
|
QualType CGOpenMPRuntime::getTgtOffloadEntryQTy() {
|
|
// Make sure the type of the entry is already created. This is the type we
|
|
// have to create:
|
|
// struct __tgt_offload_entry{
|
|
// void *addr; // Pointer to the offload entry info.
|
|
// // (function or global)
|
|
// char *name; // Name of the function or global.
|
|
// size_t size; // Size of the entry info (0 if it a function).
|
|
// int32_t flags; // Flags associated with the entry, e.g. 'link'.
|
|
// int32_t reserved; // Reserved, to use by the runtime library.
|
|
// };
|
|
if (TgtOffloadEntryQTy.isNull()) {
|
|
ASTContext &C = CGM.getContext();
|
|
RecordDecl *RD = C.buildImplicitRecord("__tgt_offload_entry");
|
|
RD->startDefinition();
|
|
addFieldToRecordDecl(C, RD, C.VoidPtrTy);
|
|
addFieldToRecordDecl(C, RD, C.getPointerType(C.CharTy));
|
|
addFieldToRecordDecl(C, RD, C.getSizeType());
|
|
addFieldToRecordDecl(
|
|
C, RD, C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/true));
|
|
addFieldToRecordDecl(
|
|
C, RD, C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/true));
|
|
RD->completeDefinition();
|
|
RD->addAttr(PackedAttr::CreateImplicit(C));
|
|
TgtOffloadEntryQTy = C.getRecordType(RD);
|
|
}
|
|
return TgtOffloadEntryQTy;
|
|
}
|
|
|
|
QualType CGOpenMPRuntime::getTgtDeviceImageQTy() {
|
|
// These are the types we need to build:
|
|
// struct __tgt_device_image{
|
|
// void *ImageStart; // Pointer to the target code start.
|
|
// void *ImageEnd; // Pointer to the target code end.
|
|
// // We also add the host entries to the device image, as it may be useful
|
|
// // for the target runtime to have access to that information.
|
|
// __tgt_offload_entry *EntriesBegin; // Begin of the table with all
|
|
// // the entries.
|
|
// __tgt_offload_entry *EntriesEnd; // End of the table with all the
|
|
// // entries (non inclusive).
|
|
// };
|
|
if (TgtDeviceImageQTy.isNull()) {
|
|
ASTContext &C = CGM.getContext();
|
|
RecordDecl *RD = C.buildImplicitRecord("__tgt_device_image");
|
|
RD->startDefinition();
|
|
addFieldToRecordDecl(C, RD, C.VoidPtrTy);
|
|
addFieldToRecordDecl(C, RD, C.VoidPtrTy);
|
|
addFieldToRecordDecl(C, RD, C.getPointerType(getTgtOffloadEntryQTy()));
|
|
addFieldToRecordDecl(C, RD, C.getPointerType(getTgtOffloadEntryQTy()));
|
|
RD->completeDefinition();
|
|
TgtDeviceImageQTy = C.getRecordType(RD);
|
|
}
|
|
return TgtDeviceImageQTy;
|
|
}
|
|
|
|
QualType CGOpenMPRuntime::getTgtBinaryDescriptorQTy() {
|
|
// struct __tgt_bin_desc{
|
|
// int32_t NumDevices; // Number of devices supported.
|
|
// __tgt_device_image *DeviceImages; // Arrays of device images
|
|
// // (one per device).
|
|
// __tgt_offload_entry *EntriesBegin; // Begin of the table with all the
|
|
// // entries.
|
|
// __tgt_offload_entry *EntriesEnd; // End of the table with all the
|
|
// // entries (non inclusive).
|
|
// };
|
|
if (TgtBinaryDescriptorQTy.isNull()) {
|
|
ASTContext &C = CGM.getContext();
|
|
RecordDecl *RD = C.buildImplicitRecord("__tgt_bin_desc");
|
|
RD->startDefinition();
|
|
addFieldToRecordDecl(
|
|
C, RD, C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/true));
|
|
addFieldToRecordDecl(C, RD, C.getPointerType(getTgtDeviceImageQTy()));
|
|
addFieldToRecordDecl(C, RD, C.getPointerType(getTgtOffloadEntryQTy()));
|
|
addFieldToRecordDecl(C, RD, C.getPointerType(getTgtOffloadEntryQTy()));
|
|
RD->completeDefinition();
|
|
TgtBinaryDescriptorQTy = C.getRecordType(RD);
|
|
}
|
|
return TgtBinaryDescriptorQTy;
|
|
}
|
|
|
|
namespace {
|
|
struct PrivateHelpersTy {
|
|
PrivateHelpersTy(const VarDecl *Original, const VarDecl *PrivateCopy,
|
|
const VarDecl *PrivateElemInit)
|
|
: Original(Original), PrivateCopy(PrivateCopy),
|
|
PrivateElemInit(PrivateElemInit) {}
|
|
const VarDecl *Original;
|
|
const VarDecl *PrivateCopy;
|
|
const VarDecl *PrivateElemInit;
|
|
};
|
|
typedef std::pair<CharUnits /*Align*/, PrivateHelpersTy> PrivateDataTy;
|
|
} // anonymous namespace
|
|
|
|
static RecordDecl *
|
|
createPrivatesRecordDecl(CodeGenModule &CGM, ArrayRef<PrivateDataTy> Privates) {
|
|
if (!Privates.empty()) {
|
|
ASTContext &C = CGM.getContext();
|
|
// Build struct .kmp_privates_t. {
|
|
// /* private vars */
|
|
// };
|
|
RecordDecl *RD = C.buildImplicitRecord(".kmp_privates.t");
|
|
RD->startDefinition();
|
|
for (const auto &Pair : Privates) {
|
|
const VarDecl *VD = Pair.second.Original;
|
|
QualType Type = VD->getType().getNonReferenceType();
|
|
FieldDecl *FD = addFieldToRecordDecl(C, RD, Type);
|
|
if (VD->hasAttrs()) {
|
|
for (specific_attr_iterator<AlignedAttr> I(VD->getAttrs().begin()),
|
|
E(VD->getAttrs().end());
|
|
I != E; ++I)
|
|
FD->addAttr(*I);
|
|
}
|
|
}
|
|
RD->completeDefinition();
|
|
return RD;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
static RecordDecl *
|
|
createKmpTaskTRecordDecl(CodeGenModule &CGM, OpenMPDirectiveKind Kind,
|
|
QualType KmpInt32Ty,
|
|
QualType KmpRoutineEntryPointerQTy) {
|
|
ASTContext &C = CGM.getContext();
|
|
// Build struct kmp_task_t {
|
|
// void * shareds;
|
|
// kmp_routine_entry_t routine;
|
|
// kmp_int32 part_id;
|
|
// kmp_cmplrdata_t data1;
|
|
// kmp_cmplrdata_t data2;
|
|
// For taskloops additional fields:
|
|
// kmp_uint64 lb;
|
|
// kmp_uint64 ub;
|
|
// kmp_int64 st;
|
|
// kmp_int32 liter;
|
|
// void * reductions;
|
|
// };
|
|
RecordDecl *UD = C.buildImplicitRecord("kmp_cmplrdata_t", TTK_Union);
|
|
UD->startDefinition();
|
|
addFieldToRecordDecl(C, UD, KmpInt32Ty);
|
|
addFieldToRecordDecl(C, UD, KmpRoutineEntryPointerQTy);
|
|
UD->completeDefinition();
|
|
QualType KmpCmplrdataTy = C.getRecordType(UD);
|
|
RecordDecl *RD = C.buildImplicitRecord("kmp_task_t");
|
|
RD->startDefinition();
|
|
addFieldToRecordDecl(C, RD, C.VoidPtrTy);
|
|
addFieldToRecordDecl(C, RD, KmpRoutineEntryPointerQTy);
|
|
addFieldToRecordDecl(C, RD, KmpInt32Ty);
|
|
addFieldToRecordDecl(C, RD, KmpCmplrdataTy);
|
|
addFieldToRecordDecl(C, RD, KmpCmplrdataTy);
|
|
if (isOpenMPTaskLoopDirective(Kind)) {
|
|
QualType KmpUInt64Ty =
|
|
CGM.getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/0);
|
|
QualType KmpInt64Ty =
|
|
CGM.getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1);
|
|
addFieldToRecordDecl(C, RD, KmpUInt64Ty);
|
|
addFieldToRecordDecl(C, RD, KmpUInt64Ty);
|
|
addFieldToRecordDecl(C, RD, KmpInt64Ty);
|
|
addFieldToRecordDecl(C, RD, KmpInt32Ty);
|
|
addFieldToRecordDecl(C, RD, C.VoidPtrTy);
|
|
}
|
|
RD->completeDefinition();
|
|
return RD;
|
|
}
|
|
|
|
static RecordDecl *
|
|
createKmpTaskTWithPrivatesRecordDecl(CodeGenModule &CGM, QualType KmpTaskTQTy,
|
|
ArrayRef<PrivateDataTy> Privates) {
|
|
ASTContext &C = CGM.getContext();
|
|
// Build struct kmp_task_t_with_privates {
|
|
// kmp_task_t task_data;
|
|
// .kmp_privates_t. privates;
|
|
// };
|
|
RecordDecl *RD = C.buildImplicitRecord("kmp_task_t_with_privates");
|
|
RD->startDefinition();
|
|
addFieldToRecordDecl(C, RD, KmpTaskTQTy);
|
|
if (const RecordDecl *PrivateRD = createPrivatesRecordDecl(CGM, Privates))
|
|
addFieldToRecordDecl(C, RD, C.getRecordType(PrivateRD));
|
|
RD->completeDefinition();
|
|
return RD;
|
|
}
|
|
|
|
/// Emit a proxy function which accepts kmp_task_t as the second
|
|
/// argument.
|
|
/// \code
|
|
/// kmp_int32 .omp_task_entry.(kmp_int32 gtid, kmp_task_t *tt) {
|
|
/// TaskFunction(gtid, tt->part_id, &tt->privates, task_privates_map, tt,
|
|
/// For taskloops:
|
|
/// tt->task_data.lb, tt->task_data.ub, tt->task_data.st, tt->task_data.liter,
|
|
/// tt->reductions, tt->shareds);
|
|
/// return 0;
|
|
/// }
|
|
/// \endcode
|
|
static llvm::Function *
|
|
emitProxyTaskFunction(CodeGenModule &CGM, SourceLocation Loc,
|
|
OpenMPDirectiveKind Kind, QualType KmpInt32Ty,
|
|
QualType KmpTaskTWithPrivatesPtrQTy,
|
|
QualType KmpTaskTWithPrivatesQTy, QualType KmpTaskTQTy,
|
|
QualType SharedsPtrTy, llvm::Function *TaskFunction,
|
|
llvm::Value *TaskPrivatesMap) {
|
|
ASTContext &C = CGM.getContext();
|
|
FunctionArgList Args;
|
|
ImplicitParamDecl GtidArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, KmpInt32Ty,
|
|
ImplicitParamDecl::Other);
|
|
ImplicitParamDecl TaskTypeArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
|
|
KmpTaskTWithPrivatesPtrQTy.withRestrict(),
|
|
ImplicitParamDecl::Other);
|
|
Args.push_back(&GtidArg);
|
|
Args.push_back(&TaskTypeArg);
|
|
const auto &TaskEntryFnInfo =
|
|
CGM.getTypes().arrangeBuiltinFunctionDeclaration(KmpInt32Ty, Args);
|
|
llvm::FunctionType *TaskEntryTy =
|
|
CGM.getTypes().GetFunctionType(TaskEntryFnInfo);
|
|
std::string Name = CGM.getOpenMPRuntime().getName({"omp_task_entry", ""});
|
|
auto *TaskEntry = llvm::Function::Create(
|
|
TaskEntryTy, llvm::GlobalValue::InternalLinkage, Name, &CGM.getModule());
|
|
CGM.SetInternalFunctionAttributes(GlobalDecl(), TaskEntry, TaskEntryFnInfo);
|
|
TaskEntry->setDoesNotRecurse();
|
|
CodeGenFunction CGF(CGM);
|
|
CGF.StartFunction(GlobalDecl(), KmpInt32Ty, TaskEntry, TaskEntryFnInfo, Args,
|
|
Loc, Loc);
|
|
|
|
// TaskFunction(gtid, tt->task_data.part_id, &tt->privates, task_privates_map,
|
|
// tt,
|
|
// For taskloops:
|
|
// tt->task_data.lb, tt->task_data.ub, tt->task_data.st, tt->task_data.liter,
|
|
// tt->task_data.shareds);
|
|
llvm::Value *GtidParam = CGF.EmitLoadOfScalar(
|
|
CGF.GetAddrOfLocalVar(&GtidArg), /*Volatile=*/false, KmpInt32Ty, Loc);
|
|
LValue TDBase = CGF.EmitLoadOfPointerLValue(
|
|
CGF.GetAddrOfLocalVar(&TaskTypeArg),
|
|
KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>());
|
|
const auto *KmpTaskTWithPrivatesQTyRD =
|
|
cast<RecordDecl>(KmpTaskTWithPrivatesQTy->getAsTagDecl());
|
|
LValue Base =
|
|
CGF.EmitLValueForField(TDBase, *KmpTaskTWithPrivatesQTyRD->field_begin());
|
|
const auto *KmpTaskTQTyRD = cast<RecordDecl>(KmpTaskTQTy->getAsTagDecl());
|
|
auto PartIdFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTPartId);
|
|
LValue PartIdLVal = CGF.EmitLValueForField(Base, *PartIdFI);
|
|
llvm::Value *PartidParam = PartIdLVal.getPointer(CGF);
|
|
|
|
auto SharedsFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTShareds);
|
|
LValue SharedsLVal = CGF.EmitLValueForField(Base, *SharedsFI);
|
|
llvm::Value *SharedsParam = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
|
|
CGF.EmitLoadOfScalar(SharedsLVal, Loc),
|
|
CGF.ConvertTypeForMem(SharedsPtrTy));
|
|
|
|
auto PrivatesFI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin(), 1);
|
|
llvm::Value *PrivatesParam;
|
|
if (PrivatesFI != KmpTaskTWithPrivatesQTyRD->field_end()) {
|
|
LValue PrivatesLVal = CGF.EmitLValueForField(TDBase, *PrivatesFI);
|
|
PrivatesParam = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
|
|
PrivatesLVal.getPointer(CGF), CGF.VoidPtrTy);
|
|
} else {
|
|
PrivatesParam = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
|
|
}
|
|
|
|
llvm::Value *CommonArgs[] = {GtidParam, PartidParam, PrivatesParam,
|
|
TaskPrivatesMap,
|
|
CGF.Builder
|
|
.CreatePointerBitCastOrAddrSpaceCast(
|
|
TDBase.getAddress(CGF), CGF.VoidPtrTy)
|
|
.getPointer()};
|
|
SmallVector<llvm::Value *, 16> CallArgs(std::begin(CommonArgs),
|
|
std::end(CommonArgs));
|
|
if (isOpenMPTaskLoopDirective(Kind)) {
|
|
auto LBFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTLowerBound);
|
|
LValue LBLVal = CGF.EmitLValueForField(Base, *LBFI);
|
|
llvm::Value *LBParam = CGF.EmitLoadOfScalar(LBLVal, Loc);
|
|
auto UBFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTUpperBound);
|
|
LValue UBLVal = CGF.EmitLValueForField(Base, *UBFI);
|
|
llvm::Value *UBParam = CGF.EmitLoadOfScalar(UBLVal, Loc);
|
|
auto StFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTStride);
|
|
LValue StLVal = CGF.EmitLValueForField(Base, *StFI);
|
|
llvm::Value *StParam = CGF.EmitLoadOfScalar(StLVal, Loc);
|
|
auto LIFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTLastIter);
|
|
LValue LILVal = CGF.EmitLValueForField(Base, *LIFI);
|
|
llvm::Value *LIParam = CGF.EmitLoadOfScalar(LILVal, Loc);
|
|
auto RFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTReductions);
|
|
LValue RLVal = CGF.EmitLValueForField(Base, *RFI);
|
|
llvm::Value *RParam = CGF.EmitLoadOfScalar(RLVal, Loc);
|
|
CallArgs.push_back(LBParam);
|
|
CallArgs.push_back(UBParam);
|
|
CallArgs.push_back(StParam);
|
|
CallArgs.push_back(LIParam);
|
|
CallArgs.push_back(RParam);
|
|
}
|
|
CallArgs.push_back(SharedsParam);
|
|
|
|
CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, Loc, TaskFunction,
|
|
CallArgs);
|
|
CGF.EmitStoreThroughLValue(RValue::get(CGF.Builder.getInt32(/*C=*/0)),
|
|
CGF.MakeAddrLValue(CGF.ReturnValue, KmpInt32Ty));
|
|
CGF.FinishFunction();
|
|
return TaskEntry;
|
|
}
|
|
|
|
static llvm::Value *emitDestructorsFunction(CodeGenModule &CGM,
|
|
SourceLocation Loc,
|
|
QualType KmpInt32Ty,
|
|
QualType KmpTaskTWithPrivatesPtrQTy,
|
|
QualType KmpTaskTWithPrivatesQTy) {
|
|
ASTContext &C = CGM.getContext();
|
|
FunctionArgList Args;
|
|
ImplicitParamDecl GtidArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, KmpInt32Ty,
|
|
ImplicitParamDecl::Other);
|
|
ImplicitParamDecl TaskTypeArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
|
|
KmpTaskTWithPrivatesPtrQTy.withRestrict(),
|
|
ImplicitParamDecl::Other);
|
|
Args.push_back(&GtidArg);
|
|
Args.push_back(&TaskTypeArg);
|
|
const auto &DestructorFnInfo =
|
|
CGM.getTypes().arrangeBuiltinFunctionDeclaration(KmpInt32Ty, Args);
|
|
llvm::FunctionType *DestructorFnTy =
|
|
CGM.getTypes().GetFunctionType(DestructorFnInfo);
|
|
std::string Name =
|
|
CGM.getOpenMPRuntime().getName({"omp_task_destructor", ""});
|
|
auto *DestructorFn =
|
|
llvm::Function::Create(DestructorFnTy, llvm::GlobalValue::InternalLinkage,
|
|
Name, &CGM.getModule());
|
|
CGM.SetInternalFunctionAttributes(GlobalDecl(), DestructorFn,
|
|
DestructorFnInfo);
|
|
DestructorFn->setDoesNotRecurse();
|
|
CodeGenFunction CGF(CGM);
|
|
CGF.StartFunction(GlobalDecl(), KmpInt32Ty, DestructorFn, DestructorFnInfo,
|
|
Args, Loc, Loc);
|
|
|
|
LValue Base = CGF.EmitLoadOfPointerLValue(
|
|
CGF.GetAddrOfLocalVar(&TaskTypeArg),
|
|
KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>());
|
|
const auto *KmpTaskTWithPrivatesQTyRD =
|
|
cast<RecordDecl>(KmpTaskTWithPrivatesQTy->getAsTagDecl());
|
|
auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin());
|
|
Base = CGF.EmitLValueForField(Base, *FI);
|
|
for (const auto *Field :
|
|
cast<RecordDecl>(FI->getType()->getAsTagDecl())->fields()) {
|
|
if (QualType::DestructionKind DtorKind =
|
|
Field->getType().isDestructedType()) {
|
|
LValue FieldLValue = CGF.EmitLValueForField(Base, Field);
|
|
CGF.pushDestroy(DtorKind, FieldLValue.getAddress(CGF), Field->getType());
|
|
}
|
|
}
|
|
CGF.FinishFunction();
|
|
return DestructorFn;
|
|
}
|
|
|
|
/// Emit a privates mapping function for correct handling of private and
|
|
/// firstprivate variables.
|
|
/// \code
|
|
/// void .omp_task_privates_map.(const .privates. *noalias privs, <ty1>
|
|
/// **noalias priv1,..., <tyn> **noalias privn) {
|
|
/// *priv1 = &.privates.priv1;
|
|
/// ...;
|
|
/// *privn = &.privates.privn;
|
|
/// }
|
|
/// \endcode
|
|
static llvm::Value *
|
|
emitTaskPrivateMappingFunction(CodeGenModule &CGM, SourceLocation Loc,
|
|
ArrayRef<const Expr *> PrivateVars,
|
|
ArrayRef<const Expr *> FirstprivateVars,
|
|
ArrayRef<const Expr *> LastprivateVars,
|
|
QualType PrivatesQTy,
|
|
ArrayRef<PrivateDataTy> Privates) {
|
|
ASTContext &C = CGM.getContext();
|
|
FunctionArgList Args;
|
|
ImplicitParamDecl TaskPrivatesArg(
|
|
C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
|
|
C.getPointerType(PrivatesQTy).withConst().withRestrict(),
|
|
ImplicitParamDecl::Other);
|
|
Args.push_back(&TaskPrivatesArg);
|
|
llvm::DenseMap<const VarDecl *, unsigned> PrivateVarsPos;
|
|
unsigned Counter = 1;
|
|
for (const Expr *E : PrivateVars) {
|
|
Args.push_back(ImplicitParamDecl::Create(
|
|
C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
|
|
C.getPointerType(C.getPointerType(E->getType()))
|
|
.withConst()
|
|
.withRestrict(),
|
|
ImplicitParamDecl::Other));
|
|
const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
|
|
PrivateVarsPos[VD] = Counter;
|
|
++Counter;
|
|
}
|
|
for (const Expr *E : FirstprivateVars) {
|
|
Args.push_back(ImplicitParamDecl::Create(
|
|
C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
|
|
C.getPointerType(C.getPointerType(E->getType()))
|
|
.withConst()
|
|
.withRestrict(),
|
|
ImplicitParamDecl::Other));
|
|
const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
|
|
PrivateVarsPos[VD] = Counter;
|
|
++Counter;
|
|
}
|
|
for (const Expr *E : LastprivateVars) {
|
|
Args.push_back(ImplicitParamDecl::Create(
|
|
C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
|
|
C.getPointerType(C.getPointerType(E->getType()))
|
|
.withConst()
|
|
.withRestrict(),
|
|
ImplicitParamDecl::Other));
|
|
const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
|
|
PrivateVarsPos[VD] = Counter;
|
|
++Counter;
|
|
}
|
|
const auto &TaskPrivatesMapFnInfo =
|
|
CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
|
|
llvm::FunctionType *TaskPrivatesMapTy =
|
|
CGM.getTypes().GetFunctionType(TaskPrivatesMapFnInfo);
|
|
std::string Name =
|
|
CGM.getOpenMPRuntime().getName({"omp_task_privates_map", ""});
|
|
auto *TaskPrivatesMap = llvm::Function::Create(
|
|
TaskPrivatesMapTy, llvm::GlobalValue::InternalLinkage, Name,
|
|
&CGM.getModule());
|
|
CGM.SetInternalFunctionAttributes(GlobalDecl(), TaskPrivatesMap,
|
|
TaskPrivatesMapFnInfo);
|
|
if (CGM.getLangOpts().Optimize) {
|
|
TaskPrivatesMap->removeFnAttr(llvm::Attribute::NoInline);
|
|
TaskPrivatesMap->removeFnAttr(llvm::Attribute::OptimizeNone);
|
|
TaskPrivatesMap->addFnAttr(llvm::Attribute::AlwaysInline);
|
|
}
|
|
CodeGenFunction CGF(CGM);
|
|
CGF.StartFunction(GlobalDecl(), C.VoidTy, TaskPrivatesMap,
|
|
TaskPrivatesMapFnInfo, Args, Loc, Loc);
|
|
|
|
// *privi = &.privates.privi;
|
|
LValue Base = CGF.EmitLoadOfPointerLValue(
|
|
CGF.GetAddrOfLocalVar(&TaskPrivatesArg),
|
|
TaskPrivatesArg.getType()->castAs<PointerType>());
|
|
const auto *PrivatesQTyRD = cast<RecordDecl>(PrivatesQTy->getAsTagDecl());
|
|
Counter = 0;
|
|
for (const FieldDecl *Field : PrivatesQTyRD->fields()) {
|
|
LValue FieldLVal = CGF.EmitLValueForField(Base, Field);
|
|
const VarDecl *VD = Args[PrivateVarsPos[Privates[Counter].second.Original]];
|
|
LValue RefLVal =
|
|
CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(VD), VD->getType());
|
|
LValue RefLoadLVal = CGF.EmitLoadOfPointerLValue(
|
|
RefLVal.getAddress(CGF), RefLVal.getType()->castAs<PointerType>());
|
|
CGF.EmitStoreOfScalar(FieldLVal.getPointer(CGF), RefLoadLVal);
|
|
++Counter;
|
|
}
|
|
CGF.FinishFunction();
|
|
return TaskPrivatesMap;
|
|
}
|
|
|
|
/// Emit initialization for private variables in task-based directives.
|
|
static void emitPrivatesInit(CodeGenFunction &CGF,
|
|
const OMPExecutableDirective &D,
|
|
Address KmpTaskSharedsPtr, LValue TDBase,
|
|
const RecordDecl *KmpTaskTWithPrivatesQTyRD,
|
|
QualType SharedsTy, QualType SharedsPtrTy,
|
|
const OMPTaskDataTy &Data,
|
|
ArrayRef<PrivateDataTy> Privates, bool ForDup) {
|
|
ASTContext &C = CGF.getContext();
|
|
auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin());
|
|
LValue PrivatesBase = CGF.EmitLValueForField(TDBase, *FI);
|
|
OpenMPDirectiveKind Kind = isOpenMPTaskLoopDirective(D.getDirectiveKind())
|
|
? OMPD_taskloop
|
|
: OMPD_task;
|
|
const CapturedStmt &CS = *D.getCapturedStmt(Kind);
|
|
CodeGenFunction::CGCapturedStmtInfo CapturesInfo(CS);
|
|
LValue SrcBase;
|
|
bool IsTargetTask =
|
|
isOpenMPTargetDataManagementDirective(D.getDirectiveKind()) ||
|
|
isOpenMPTargetExecutionDirective(D.getDirectiveKind());
|
|
// For target-based directives skip 3 firstprivate arrays BasePointersArray,
|
|
// PointersArray and SizesArray. The original variables for these arrays are
|
|
// not captured and we get their addresses explicitly.
|
|
if ((!IsTargetTask && !Data.FirstprivateVars.empty()) ||
|
|
(IsTargetTask && KmpTaskSharedsPtr.isValid())) {
|
|
SrcBase = CGF.MakeAddrLValue(
|
|
CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
|
|
KmpTaskSharedsPtr, CGF.ConvertTypeForMem(SharedsPtrTy)),
|
|
SharedsTy);
|
|
}
|
|
FI = cast<RecordDecl>(FI->getType()->getAsTagDecl())->field_begin();
|
|
for (const PrivateDataTy &Pair : Privates) {
|
|
const VarDecl *VD = Pair.second.PrivateCopy;
|
|
const Expr *Init = VD->getAnyInitializer();
|
|
if (Init && (!ForDup || (isa<CXXConstructExpr>(Init) &&
|
|
!CGF.isTrivialInitializer(Init)))) {
|
|
LValue PrivateLValue = CGF.EmitLValueForField(PrivatesBase, *FI);
|
|
if (const VarDecl *Elem = Pair.second.PrivateElemInit) {
|
|
const VarDecl *OriginalVD = Pair.second.Original;
|
|
// Check if the variable is the target-based BasePointersArray,
|
|
// PointersArray or SizesArray.
|
|
LValue SharedRefLValue;
|
|
QualType Type = PrivateLValue.getType();
|
|
const FieldDecl *SharedField = CapturesInfo.lookup(OriginalVD);
|
|
if (IsTargetTask && !SharedField) {
|
|
assert(isa<ImplicitParamDecl>(OriginalVD) &&
|
|
isa<CapturedDecl>(OriginalVD->getDeclContext()) &&
|
|
cast<CapturedDecl>(OriginalVD->getDeclContext())
|
|
->getNumParams() == 0 &&
|
|
isa<TranslationUnitDecl>(
|
|
cast<CapturedDecl>(OriginalVD->getDeclContext())
|
|
->getDeclContext()) &&
|
|
"Expected artificial target data variable.");
|
|
SharedRefLValue =
|
|
CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(OriginalVD), Type);
|
|
} else {
|
|
SharedRefLValue = CGF.EmitLValueForField(SrcBase, SharedField);
|
|
SharedRefLValue = CGF.MakeAddrLValue(
|
|
Address(SharedRefLValue.getPointer(CGF),
|
|
C.getDeclAlign(OriginalVD)),
|
|
SharedRefLValue.getType(), LValueBaseInfo(AlignmentSource::Decl),
|
|
SharedRefLValue.getTBAAInfo());
|
|
}
|
|
if (Type->isArrayType()) {
|
|
// Initialize firstprivate array.
|
|
if (!isa<CXXConstructExpr>(Init) || CGF.isTrivialInitializer(Init)) {
|
|
// Perform simple memcpy.
|
|
CGF.EmitAggregateAssign(PrivateLValue, SharedRefLValue, Type);
|
|
} else {
|
|
// Initialize firstprivate array using element-by-element
|
|
// initialization.
|
|
CGF.EmitOMPAggregateAssign(
|
|
PrivateLValue.getAddress(CGF), SharedRefLValue.getAddress(CGF),
|
|
Type,
|
|
[&CGF, Elem, Init, &CapturesInfo](Address DestElement,
|
|
Address SrcElement) {
|
|
// Clean up any temporaries needed by the initialization.
|
|
CodeGenFunction::OMPPrivateScope InitScope(CGF);
|
|
InitScope.addPrivate(
|
|
Elem, [SrcElement]() -> Address { return SrcElement; });
|
|
(void)InitScope.Privatize();
|
|
// Emit initialization for single element.
|
|
CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(
|
|
CGF, &CapturesInfo);
|
|
CGF.EmitAnyExprToMem(Init, DestElement,
|
|
Init->getType().getQualifiers(),
|
|
/*IsInitializer=*/false);
|
|
});
|
|
}
|
|
} else {
|
|
CodeGenFunction::OMPPrivateScope InitScope(CGF);
|
|
InitScope.addPrivate(Elem, [SharedRefLValue, &CGF]() -> Address {
|
|
return SharedRefLValue.getAddress(CGF);
|
|
});
|
|
(void)InitScope.Privatize();
|
|
CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CapturesInfo);
|
|
CGF.EmitExprAsInit(Init, VD, PrivateLValue,
|
|
/*capturedByInit=*/false);
|
|
}
|
|
} else {
|
|
CGF.EmitExprAsInit(Init, VD, PrivateLValue, /*capturedByInit=*/false);
|
|
}
|
|
}
|
|
++FI;
|
|
}
|
|
}
|
|
|
|
/// Check if duplication function is required for taskloops.
|
|
static bool checkInitIsRequired(CodeGenFunction &CGF,
|
|
ArrayRef<PrivateDataTy> Privates) {
|
|
bool InitRequired = false;
|
|
for (const PrivateDataTy &Pair : Privates) {
|
|
const VarDecl *VD = Pair.second.PrivateCopy;
|
|
const Expr *Init = VD->getAnyInitializer();
|
|
InitRequired = InitRequired || (Init && isa<CXXConstructExpr>(Init) &&
|
|
!CGF.isTrivialInitializer(Init));
|
|
if (InitRequired)
|
|
break;
|
|
}
|
|
return InitRequired;
|
|
}
|
|
|
|
|
|
/// Emit task_dup function (for initialization of
|
|
/// private/firstprivate/lastprivate vars and last_iter flag)
|
|
/// \code
|
|
/// void __task_dup_entry(kmp_task_t *task_dst, const kmp_task_t *task_src, int
|
|
/// lastpriv) {
|
|
/// // setup lastprivate flag
|
|
/// task_dst->last = lastpriv;
|
|
/// // could be constructor calls here...
|
|
/// }
|
|
/// \endcode
|
|
static llvm::Value *
|
|
emitTaskDupFunction(CodeGenModule &CGM, SourceLocation Loc,
|
|
const OMPExecutableDirective &D,
|
|
QualType KmpTaskTWithPrivatesPtrQTy,
|
|
const RecordDecl *KmpTaskTWithPrivatesQTyRD,
|
|
const RecordDecl *KmpTaskTQTyRD, QualType SharedsTy,
|
|
QualType SharedsPtrTy, const OMPTaskDataTy &Data,
|
|
ArrayRef<PrivateDataTy> Privates, bool WithLastIter) {
|
|
ASTContext &C = CGM.getContext();
|
|
FunctionArgList Args;
|
|
ImplicitParamDecl DstArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
|
|
KmpTaskTWithPrivatesPtrQTy,
|
|
ImplicitParamDecl::Other);
|
|
ImplicitParamDecl SrcArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
|
|
KmpTaskTWithPrivatesPtrQTy,
|
|
ImplicitParamDecl::Other);
|
|
ImplicitParamDecl LastprivArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
|
|
ImplicitParamDecl::Other);
|
|
Args.push_back(&DstArg);
|
|
Args.push_back(&SrcArg);
|
|
Args.push_back(&LastprivArg);
|
|
const auto &TaskDupFnInfo =
|
|
CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
|
|
llvm::FunctionType *TaskDupTy = CGM.getTypes().GetFunctionType(TaskDupFnInfo);
|
|
std::string Name = CGM.getOpenMPRuntime().getName({"omp_task_dup", ""});
|
|
auto *TaskDup = llvm::Function::Create(
|
|
TaskDupTy, llvm::GlobalValue::InternalLinkage, Name, &CGM.getModule());
|
|
CGM.SetInternalFunctionAttributes(GlobalDecl(), TaskDup, TaskDupFnInfo);
|
|
TaskDup->setDoesNotRecurse();
|
|
CodeGenFunction CGF(CGM);
|
|
CGF.StartFunction(GlobalDecl(), C.VoidTy, TaskDup, TaskDupFnInfo, Args, Loc,
|
|
Loc);
|
|
|
|
LValue TDBase = CGF.EmitLoadOfPointerLValue(
|
|
CGF.GetAddrOfLocalVar(&DstArg),
|
|
KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>());
|
|
// task_dst->liter = lastpriv;
|
|
if (WithLastIter) {
|
|
auto LIFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTLastIter);
|
|
LValue Base = CGF.EmitLValueForField(
|
|
TDBase, *KmpTaskTWithPrivatesQTyRD->field_begin());
|
|
LValue LILVal = CGF.EmitLValueForField(Base, *LIFI);
|
|
llvm::Value *Lastpriv = CGF.EmitLoadOfScalar(
|
|
CGF.GetAddrOfLocalVar(&LastprivArg), /*Volatile=*/false, C.IntTy, Loc);
|
|
CGF.EmitStoreOfScalar(Lastpriv, LILVal);
|
|
}
|
|
|
|
// Emit initial values for private copies (if any).
|
|
assert(!Privates.empty());
|
|
Address KmpTaskSharedsPtr = Address::invalid();
|
|
if (!Data.FirstprivateVars.empty()) {
|
|
LValue TDBase = CGF.EmitLoadOfPointerLValue(
|
|
CGF.GetAddrOfLocalVar(&SrcArg),
|
|
KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>());
|
|
LValue Base = CGF.EmitLValueForField(
|
|
TDBase, *KmpTaskTWithPrivatesQTyRD->field_begin());
|
|
KmpTaskSharedsPtr = Address(
|
|
CGF.EmitLoadOfScalar(CGF.EmitLValueForField(
|
|
Base, *std::next(KmpTaskTQTyRD->field_begin(),
|
|
KmpTaskTShareds)),
|
|
Loc),
|
|
CGF.getNaturalTypeAlignment(SharedsTy));
|
|
}
|
|
emitPrivatesInit(CGF, D, KmpTaskSharedsPtr, TDBase, KmpTaskTWithPrivatesQTyRD,
|
|
SharedsTy, SharedsPtrTy, Data, Privates, /*ForDup=*/true);
|
|
CGF.FinishFunction();
|
|
return TaskDup;
|
|
}
|
|
|
|
/// Checks if destructor function is required to be generated.
|
|
/// \return true if cleanups are required, false otherwise.
|
|
static bool
|
|
checkDestructorsRequired(const RecordDecl *KmpTaskTWithPrivatesQTyRD) {
|
|
bool NeedsCleanup = false;
|
|
auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin(), 1);
|
|
const auto *PrivateRD = cast<RecordDecl>(FI->getType()->getAsTagDecl());
|
|
for (const FieldDecl *FD : PrivateRD->fields()) {
|
|
NeedsCleanup = NeedsCleanup || FD->getType().isDestructedType();
|
|
if (NeedsCleanup)
|
|
break;
|
|
}
|
|
return NeedsCleanup;
|
|
}
|
|
|
|
CGOpenMPRuntime::TaskResultTy
|
|
CGOpenMPRuntime::emitTaskInit(CodeGenFunction &CGF, SourceLocation Loc,
|
|
const OMPExecutableDirective &D,
|
|
llvm::Function *TaskFunction, QualType SharedsTy,
|
|
Address Shareds, const OMPTaskDataTy &Data) {
|
|
ASTContext &C = CGM.getContext();
|
|
llvm::SmallVector<PrivateDataTy, 4> Privates;
|
|
// Aggregate privates and sort them by the alignment.
|
|
auto I = Data.PrivateCopies.begin();
|
|
for (const Expr *E : Data.PrivateVars) {
|
|
const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
|
|
Privates.emplace_back(
|
|
C.getDeclAlign(VD),
|
|
PrivateHelpersTy(VD, cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()),
|
|
/*PrivateElemInit=*/nullptr));
|
|
++I;
|
|
}
|
|
I = Data.FirstprivateCopies.begin();
|
|
auto IElemInitRef = Data.FirstprivateInits.begin();
|
|
for (const Expr *E : Data.FirstprivateVars) {
|
|
const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
|
|
Privates.emplace_back(
|
|
C.getDeclAlign(VD),
|
|
PrivateHelpersTy(
|
|
VD, cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()),
|
|
cast<VarDecl>(cast<DeclRefExpr>(*IElemInitRef)->getDecl())));
|
|
++I;
|
|
++IElemInitRef;
|
|
}
|
|
I = Data.LastprivateCopies.begin();
|
|
for (const Expr *E : Data.LastprivateVars) {
|
|
const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
|
|
Privates.emplace_back(
|
|
C.getDeclAlign(VD),
|
|
PrivateHelpersTy(VD, cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()),
|
|
/*PrivateElemInit=*/nullptr));
|
|
++I;
|
|
}
|
|
llvm::stable_sort(Privates, [](PrivateDataTy L, PrivateDataTy R) {
|
|
return L.first > R.first;
|
|
});
|
|
QualType KmpInt32Ty = C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1);
|
|
// Build type kmp_routine_entry_t (if not built yet).
|
|
emitKmpRoutineEntryT(KmpInt32Ty);
|
|
// Build type kmp_task_t (if not built yet).
|
|
if (isOpenMPTaskLoopDirective(D.getDirectiveKind())) {
|
|
if (SavedKmpTaskloopTQTy.isNull()) {
|
|
SavedKmpTaskloopTQTy = C.getRecordType(createKmpTaskTRecordDecl(
|
|
CGM, D.getDirectiveKind(), KmpInt32Ty, KmpRoutineEntryPtrQTy));
|
|
}
|
|
KmpTaskTQTy = SavedKmpTaskloopTQTy;
|
|
} else {
|
|
assert((D.getDirectiveKind() == OMPD_task ||
|
|
isOpenMPTargetExecutionDirective(D.getDirectiveKind()) ||
|
|
isOpenMPTargetDataManagementDirective(D.getDirectiveKind())) &&
|
|
"Expected taskloop, task or target directive");
|
|
if (SavedKmpTaskTQTy.isNull()) {
|
|
SavedKmpTaskTQTy = C.getRecordType(createKmpTaskTRecordDecl(
|
|
CGM, D.getDirectiveKind(), KmpInt32Ty, KmpRoutineEntryPtrQTy));
|
|
}
|
|
KmpTaskTQTy = SavedKmpTaskTQTy;
|
|
}
|
|
const auto *KmpTaskTQTyRD = cast<RecordDecl>(KmpTaskTQTy->getAsTagDecl());
|
|
// Build particular struct kmp_task_t for the given task.
|
|
const RecordDecl *KmpTaskTWithPrivatesQTyRD =
|
|
createKmpTaskTWithPrivatesRecordDecl(CGM, KmpTaskTQTy, Privates);
|
|
QualType KmpTaskTWithPrivatesQTy = C.getRecordType(KmpTaskTWithPrivatesQTyRD);
|
|
QualType KmpTaskTWithPrivatesPtrQTy =
|
|
C.getPointerType(KmpTaskTWithPrivatesQTy);
|
|
llvm::Type *KmpTaskTWithPrivatesTy = CGF.ConvertType(KmpTaskTWithPrivatesQTy);
|
|
llvm::Type *KmpTaskTWithPrivatesPtrTy =
|
|
KmpTaskTWithPrivatesTy->getPointerTo();
|
|
llvm::Value *KmpTaskTWithPrivatesTySize =
|
|
CGF.getTypeSize(KmpTaskTWithPrivatesQTy);
|
|
QualType SharedsPtrTy = C.getPointerType(SharedsTy);
|
|
|
|
// Emit initial values for private copies (if any).
|
|
llvm::Value *TaskPrivatesMap = nullptr;
|
|
llvm::Type *TaskPrivatesMapTy =
|
|
std::next(TaskFunction->arg_begin(), 3)->getType();
|
|
if (!Privates.empty()) {
|
|
auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin());
|
|
TaskPrivatesMap = emitTaskPrivateMappingFunction(
|
|
CGM, Loc, Data.PrivateVars, Data.FirstprivateVars, Data.LastprivateVars,
|
|
FI->getType(), Privates);
|
|
TaskPrivatesMap = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
|
|
TaskPrivatesMap, TaskPrivatesMapTy);
|
|
} else {
|
|
TaskPrivatesMap = llvm::ConstantPointerNull::get(
|
|
cast<llvm::PointerType>(TaskPrivatesMapTy));
|
|
}
|
|
// Build a proxy function kmp_int32 .omp_task_entry.(kmp_int32 gtid,
|
|
// kmp_task_t *tt);
|
|
llvm::Function *TaskEntry = emitProxyTaskFunction(
|
|
CGM, Loc, D.getDirectiveKind(), KmpInt32Ty, KmpTaskTWithPrivatesPtrQTy,
|
|
KmpTaskTWithPrivatesQTy, KmpTaskTQTy, SharedsPtrTy, TaskFunction,
|
|
TaskPrivatesMap);
|
|
|
|
// Build call kmp_task_t * __kmpc_omp_task_alloc(ident_t *, kmp_int32 gtid,
|
|
// kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds,
|
|
// kmp_routine_entry_t *task_entry);
|
|
// Task flags. Format is taken from
|
|
// https://github.com/llvm/llvm-project/blob/master/openmp/runtime/src/kmp.h,
|
|
// description of kmp_tasking_flags struct.
|
|
enum {
|
|
TiedFlag = 0x1,
|
|
FinalFlag = 0x2,
|
|
DestructorsFlag = 0x8,
|
|
PriorityFlag = 0x20
|
|
};
|
|
unsigned Flags = Data.Tied ? TiedFlag : 0;
|
|
bool NeedsCleanup = false;
|
|
if (!Privates.empty()) {
|
|
NeedsCleanup = checkDestructorsRequired(KmpTaskTWithPrivatesQTyRD);
|
|
if (NeedsCleanup)
|
|
Flags = Flags | DestructorsFlag;
|
|
}
|
|
if (Data.Priority.getInt())
|
|
Flags = Flags | PriorityFlag;
|
|
llvm::Value *TaskFlags =
|
|
Data.Final.getPointer()
|
|
? CGF.Builder.CreateSelect(Data.Final.getPointer(),
|
|
CGF.Builder.getInt32(FinalFlag),
|
|
CGF.Builder.getInt32(/*C=*/0))
|
|
: CGF.Builder.getInt32(Data.Final.getInt() ? FinalFlag : 0);
|
|
TaskFlags = CGF.Builder.CreateOr(TaskFlags, CGF.Builder.getInt32(Flags));
|
|
llvm::Value *SharedsSize = CGM.getSize(C.getTypeSizeInChars(SharedsTy));
|
|
SmallVector<llvm::Value *, 8> AllocArgs = {emitUpdateLocation(CGF, Loc),
|
|
getThreadID(CGF, Loc), TaskFlags, KmpTaskTWithPrivatesTySize,
|
|
SharedsSize, CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
|
|
TaskEntry, KmpRoutineEntryPtrTy)};
|
|
llvm::Value *NewTask;
|
|
if (D.hasClausesOfKind<OMPNowaitClause>()) {
|
|
// Check if we have any device clause associated with the directive.
|
|
const Expr *Device = nullptr;
|
|
if (auto *C = D.getSingleClause<OMPDeviceClause>())
|
|
Device = C->getDevice();
|
|
// Emit device ID if any otherwise use default value.
|
|
llvm::Value *DeviceID;
|
|
if (Device)
|
|
DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
|
|
CGF.Int64Ty, /*isSigned=*/true);
|
|
else
|
|
DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF);
|
|
AllocArgs.push_back(DeviceID);
|
|
NewTask = CGF.EmitRuntimeCall(
|
|
createRuntimeFunction(OMPRTL__kmpc_omp_target_task_alloc), AllocArgs);
|
|
} else {
|
|
NewTask = CGF.EmitRuntimeCall(
|
|
createRuntimeFunction(OMPRTL__kmpc_omp_task_alloc), AllocArgs);
|
|
}
|
|
llvm::Value *NewTaskNewTaskTTy =
|
|
CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
|
|
NewTask, KmpTaskTWithPrivatesPtrTy);
|
|
LValue Base = CGF.MakeNaturalAlignAddrLValue(NewTaskNewTaskTTy,
|
|
KmpTaskTWithPrivatesQTy);
|
|
LValue TDBase =
|
|
CGF.EmitLValueForField(Base, *KmpTaskTWithPrivatesQTyRD->field_begin());
|
|
// Fill the data in the resulting kmp_task_t record.
|
|
// Copy shareds if there are any.
|
|
Address KmpTaskSharedsPtr = Address::invalid();
|
|
if (!SharedsTy->getAsStructureType()->getDecl()->field_empty()) {
|
|
KmpTaskSharedsPtr =
|
|
Address(CGF.EmitLoadOfScalar(
|
|
CGF.EmitLValueForField(
|
|
TDBase, *std::next(KmpTaskTQTyRD->field_begin(),
|
|
KmpTaskTShareds)),
|
|
Loc),
|
|
CGF.getNaturalTypeAlignment(SharedsTy));
|
|
LValue Dest = CGF.MakeAddrLValue(KmpTaskSharedsPtr, SharedsTy);
|
|
LValue Src = CGF.MakeAddrLValue(Shareds, SharedsTy);
|
|
CGF.EmitAggregateCopy(Dest, Src, SharedsTy, AggValueSlot::DoesNotOverlap);
|
|
}
|
|
// Emit initial values for private copies (if any).
|
|
TaskResultTy Result;
|
|
if (!Privates.empty()) {
|
|
emitPrivatesInit(CGF, D, KmpTaskSharedsPtr, Base, KmpTaskTWithPrivatesQTyRD,
|
|
SharedsTy, SharedsPtrTy, Data, Privates,
|
|
/*ForDup=*/false);
|
|
if (isOpenMPTaskLoopDirective(D.getDirectiveKind()) &&
|
|
(!Data.LastprivateVars.empty() || checkInitIsRequired(CGF, Privates))) {
|
|
Result.TaskDupFn = emitTaskDupFunction(
|
|
CGM, Loc, D, KmpTaskTWithPrivatesPtrQTy, KmpTaskTWithPrivatesQTyRD,
|
|
KmpTaskTQTyRD, SharedsTy, SharedsPtrTy, Data, Privates,
|
|
/*WithLastIter=*/!Data.LastprivateVars.empty());
|
|
}
|
|
}
|
|
// Fields of union "kmp_cmplrdata_t" for destructors and priority.
|
|
enum { Priority = 0, Destructors = 1 };
|
|
// Provide pointer to function with destructors for privates.
|
|
auto FI = std::next(KmpTaskTQTyRD->field_begin(), Data1);
|
|
const RecordDecl *KmpCmplrdataUD =
|
|
(*FI)->getType()->getAsUnionType()->getDecl();
|
|
if (NeedsCleanup) {
|
|
llvm::Value *DestructorFn = emitDestructorsFunction(
|
|
CGM, Loc, KmpInt32Ty, KmpTaskTWithPrivatesPtrQTy,
|
|
KmpTaskTWithPrivatesQTy);
|
|
LValue Data1LV = CGF.EmitLValueForField(TDBase, *FI);
|
|
LValue DestructorsLV = CGF.EmitLValueForField(
|
|
Data1LV, *std::next(KmpCmplrdataUD->field_begin(), Destructors));
|
|
CGF.EmitStoreOfScalar(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
|
|
DestructorFn, KmpRoutineEntryPtrTy),
|
|
DestructorsLV);
|
|
}
|
|
// Set priority.
|
|
if (Data.Priority.getInt()) {
|
|
LValue Data2LV = CGF.EmitLValueForField(
|
|
TDBase, *std::next(KmpTaskTQTyRD->field_begin(), Data2));
|
|
LValue PriorityLV = CGF.EmitLValueForField(
|
|
Data2LV, *std::next(KmpCmplrdataUD->field_begin(), Priority));
|
|
CGF.EmitStoreOfScalar(Data.Priority.getPointer(), PriorityLV);
|
|
}
|
|
Result.NewTask = NewTask;
|
|
Result.TaskEntry = TaskEntry;
|
|
Result.NewTaskNewTaskTTy = NewTaskNewTaskTTy;
|
|
Result.TDBase = TDBase;
|
|
Result.KmpTaskTQTyRD = KmpTaskTQTyRD;
|
|
return Result;
|
|
}
|
|
|
|
void CGOpenMPRuntime::emitTaskCall(CodeGenFunction &CGF, SourceLocation Loc,
|
|
const OMPExecutableDirective &D,
|
|
llvm::Function *TaskFunction,
|
|
QualType SharedsTy, Address Shareds,
|
|
const Expr *IfCond,
|
|
const OMPTaskDataTy &Data) {
|
|
if (!CGF.HaveInsertPoint())
|
|
return;
|
|
|
|
TaskResultTy Result =
|
|
emitTaskInit(CGF, Loc, D, TaskFunction, SharedsTy, Shareds, Data);
|
|
llvm::Value *NewTask = Result.NewTask;
|
|
llvm::Function *TaskEntry = Result.TaskEntry;
|
|
llvm::Value *NewTaskNewTaskTTy = Result.NewTaskNewTaskTTy;
|
|
LValue TDBase = Result.TDBase;
|
|
const RecordDecl *KmpTaskTQTyRD = Result.KmpTaskTQTyRD;
|
|
ASTContext &C = CGM.getContext();
|
|
// Process list of dependences.
|
|
Address DependenciesArray = Address::invalid();
|
|
unsigned NumDependencies = Data.Dependences.size();
|
|
if (NumDependencies) {
|
|
// Dependence kind for RTL.
|
|
enum RTLDependenceKindTy { DepIn = 0x01, DepInOut = 0x3, DepMutexInOutSet = 0x4 };
|
|
enum RTLDependInfoFieldsTy { BaseAddr, Len, Flags };
|
|
RecordDecl *KmpDependInfoRD;
|
|
QualType FlagsTy =
|
|
C.getIntTypeForBitwidth(C.getTypeSize(C.BoolTy), /*Signed=*/false);
|
|
llvm::Type *LLVMFlagsTy = CGF.ConvertTypeForMem(FlagsTy);
|
|
if (KmpDependInfoTy.isNull()) {
|
|
KmpDependInfoRD = C.buildImplicitRecord("kmp_depend_info");
|
|
KmpDependInfoRD->startDefinition();
|
|
addFieldToRecordDecl(C, KmpDependInfoRD, C.getIntPtrType());
|
|
addFieldToRecordDecl(C, KmpDependInfoRD, C.getSizeType());
|
|
addFieldToRecordDecl(C, KmpDependInfoRD, FlagsTy);
|
|
KmpDependInfoRD->completeDefinition();
|
|
KmpDependInfoTy = C.getRecordType(KmpDependInfoRD);
|
|
} else {
|
|
KmpDependInfoRD = cast<RecordDecl>(KmpDependInfoTy->getAsTagDecl());
|
|
}
|
|
// Define type kmp_depend_info[<Dependences.size()>];
|
|
QualType KmpDependInfoArrayTy = C.getConstantArrayType(
|
|
KmpDependInfoTy, llvm::APInt(/*numBits=*/64, NumDependencies),
|
|
nullptr, ArrayType::Normal, /*IndexTypeQuals=*/0);
|
|
// kmp_depend_info[<Dependences.size()>] deps;
|
|
DependenciesArray =
|
|
CGF.CreateMemTemp(KmpDependInfoArrayTy, ".dep.arr.addr");
|
|
for (unsigned I = 0; I < NumDependencies; ++I) {
|
|
const Expr *E = Data.Dependences[I].second;
|
|
LValue Addr = CGF.EmitLValue(E);
|
|
llvm::Value *Size;
|
|
QualType Ty = E->getType();
|
|
if (const auto *ASE =
|
|
dyn_cast<OMPArraySectionExpr>(E->IgnoreParenImpCasts())) {
|
|
LValue UpAddrLVal =
|
|
CGF.EmitOMPArraySectionExpr(ASE, /*IsLowerBound=*/false);
|
|
llvm::Value *UpAddr = CGF.Builder.CreateConstGEP1_32(
|
|
UpAddrLVal.getPointer(CGF), /*Idx0=*/1);
|
|
llvm::Value *LowIntPtr =
|
|
CGF.Builder.CreatePtrToInt(Addr.getPointer(CGF), CGM.SizeTy);
|
|
llvm::Value *UpIntPtr = CGF.Builder.CreatePtrToInt(UpAddr, CGM.SizeTy);
|
|
Size = CGF.Builder.CreateNUWSub(UpIntPtr, LowIntPtr);
|
|
} else {
|
|
Size = CGF.getTypeSize(Ty);
|
|
}
|
|
LValue Base = CGF.MakeAddrLValue(
|
|
CGF.Builder.CreateConstArrayGEP(DependenciesArray, I),
|
|
KmpDependInfoTy);
|
|
// deps[i].base_addr = &<Dependences[i].second>;
|
|
LValue BaseAddrLVal = CGF.EmitLValueForField(
|
|
Base, *std::next(KmpDependInfoRD->field_begin(), BaseAddr));
|
|
CGF.EmitStoreOfScalar(
|
|
CGF.Builder.CreatePtrToInt(Addr.getPointer(CGF), CGF.IntPtrTy),
|
|
BaseAddrLVal);
|
|
// deps[i].len = sizeof(<Dependences[i].second>);
|
|
LValue LenLVal = CGF.EmitLValueForField(
|
|
Base, *std::next(KmpDependInfoRD->field_begin(), Len));
|
|
CGF.EmitStoreOfScalar(Size, LenLVal);
|
|
// deps[i].flags = <Dependences[i].first>;
|
|
RTLDependenceKindTy DepKind;
|
|
switch (Data.Dependences[I].first) {
|
|
case OMPC_DEPEND_in:
|
|
DepKind = DepIn;
|
|
break;
|
|
// Out and InOut dependencies must use the same code.
|
|
case OMPC_DEPEND_out:
|
|
case OMPC_DEPEND_inout:
|
|
DepKind = DepInOut;
|
|
break;
|
|
case OMPC_DEPEND_mutexinoutset:
|
|
DepKind = DepMutexInOutSet;
|
|
break;
|
|
case OMPC_DEPEND_source:
|
|
case OMPC_DEPEND_sink:
|
|
case OMPC_DEPEND_unknown:
|
|
llvm_unreachable("Unknown task dependence type");
|
|
}
|
|
LValue FlagsLVal = CGF.EmitLValueForField(
|
|
Base, *std::next(KmpDependInfoRD->field_begin(), Flags));
|
|
CGF.EmitStoreOfScalar(llvm::ConstantInt::get(LLVMFlagsTy, DepKind),
|
|
FlagsLVal);
|
|
}
|
|
DependenciesArray = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
|
|
CGF.Builder.CreateConstArrayGEP(DependenciesArray, 0), CGF.VoidPtrTy);
|
|
}
|
|
|
|
// NOTE: routine and part_id fields are initialized by __kmpc_omp_task_alloc()
|
|
// libcall.
|
|
// Build kmp_int32 __kmpc_omp_task_with_deps(ident_t *, kmp_int32 gtid,
|
|
// kmp_task_t *new_task, kmp_int32 ndeps, kmp_depend_info_t *dep_list,
|
|
// kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list) if dependence
|
|
// list is not empty
|
|
llvm::Value *ThreadID = getThreadID(CGF, Loc);
|
|
llvm::Value *UpLoc = emitUpdateLocation(CGF, Loc);
|
|
llvm::Value *TaskArgs[] = { UpLoc, ThreadID, NewTask };
|
|
llvm::Value *DepTaskArgs[7];
|
|
if (NumDependencies) {
|
|
DepTaskArgs[0] = UpLoc;
|
|
DepTaskArgs[1] = ThreadID;
|
|
DepTaskArgs[2] = NewTask;
|
|
DepTaskArgs[3] = CGF.Builder.getInt32(NumDependencies);
|
|
DepTaskArgs[4] = DependenciesArray.getPointer();
|
|
DepTaskArgs[5] = CGF.Builder.getInt32(0);
|
|
DepTaskArgs[6] = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
|
|
}
|
|
auto &&ThenCodeGen = [this, &Data, TDBase, KmpTaskTQTyRD, NumDependencies,
|
|
&TaskArgs,
|
|
&DepTaskArgs](CodeGenFunction &CGF, PrePostActionTy &) {
|
|
if (!Data.Tied) {
|
|
auto PartIdFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTPartId);
|
|
LValue PartIdLVal = CGF.EmitLValueForField(TDBase, *PartIdFI);
|
|
CGF.EmitStoreOfScalar(CGF.Builder.getInt32(0), PartIdLVal);
|
|
}
|
|
if (NumDependencies) {
|
|
CGF.EmitRuntimeCall(
|
|
createRuntimeFunction(OMPRTL__kmpc_omp_task_with_deps), DepTaskArgs);
|
|
} else {
|
|
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_omp_task),
|
|
TaskArgs);
|
|
}
|
|
// Check if parent region is untied and build return for untied task;
|
|
if (auto *Region =
|
|
dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo))
|
|
Region->emitUntiedSwitch(CGF);
|
|
};
|
|
|
|
llvm::Value *DepWaitTaskArgs[6];
|
|
if (NumDependencies) {
|
|
DepWaitTaskArgs[0] = UpLoc;
|
|
DepWaitTaskArgs[1] = ThreadID;
|
|
DepWaitTaskArgs[2] = CGF.Builder.getInt32(NumDependencies);
|
|
DepWaitTaskArgs[3] = DependenciesArray.getPointer();
|
|
DepWaitTaskArgs[4] = CGF.Builder.getInt32(0);
|
|
DepWaitTaskArgs[5] = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
|
|
}
|
|
auto &&ElseCodeGen = [&TaskArgs, ThreadID, NewTaskNewTaskTTy, TaskEntry,
|
|
NumDependencies, &DepWaitTaskArgs,
|
|
Loc](CodeGenFunction &CGF, PrePostActionTy &) {
|
|
CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime();
|
|
CodeGenFunction::RunCleanupsScope LocalScope(CGF);
|
|
// Build void __kmpc_omp_wait_deps(ident_t *, kmp_int32 gtid,
|
|
// kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32
|
|
// ndeps_noalias, kmp_depend_info_t *noalias_dep_list); if dependence info
|
|
// is specified.
|
|
if (NumDependencies)
|
|
CGF.EmitRuntimeCall(RT.createRuntimeFunction(OMPRTL__kmpc_omp_wait_deps),
|
|
DepWaitTaskArgs);
|
|
// Call proxy_task_entry(gtid, new_task);
|
|
auto &&CodeGen = [TaskEntry, ThreadID, NewTaskNewTaskTTy,
|
|
Loc](CodeGenFunction &CGF, PrePostActionTy &Action) {
|
|
Action.Enter(CGF);
|
|
llvm::Value *OutlinedFnArgs[] = {ThreadID, NewTaskNewTaskTTy};
|
|
CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, Loc, TaskEntry,
|
|
OutlinedFnArgs);
|
|
};
|
|
|
|
// Build void __kmpc_omp_task_begin_if0(ident_t *, kmp_int32 gtid,
|
|
// kmp_task_t *new_task);
|
|
// Build void __kmpc_omp_task_complete_if0(ident_t *, kmp_int32 gtid,
|
|
// kmp_task_t *new_task);
|
|
RegionCodeGenTy RCG(CodeGen);
|
|
CommonActionTy Action(
|
|
RT.createRuntimeFunction(OMPRTL__kmpc_omp_task_begin_if0), TaskArgs,
|
|
RT.createRuntimeFunction(OMPRTL__kmpc_omp_task_complete_if0), TaskArgs);
|
|
RCG.setAction(Action);
|
|
RCG(CGF);
|
|
};
|
|
|
|
if (IfCond) {
|
|
emitIfClause(CGF, IfCond, ThenCodeGen, ElseCodeGen);
|
|
} else {
|
|
RegionCodeGenTy ThenRCG(ThenCodeGen);
|
|
ThenRCG(CGF);
|
|
}
|
|
}
|
|
|
|
void CGOpenMPRuntime::emitTaskLoopCall(CodeGenFunction &CGF, SourceLocation Loc,
|
|
const OMPLoopDirective &D,
|
|
llvm::Function *TaskFunction,
|
|
QualType SharedsTy, Address Shareds,
|
|
const Expr *IfCond,
|
|
const OMPTaskDataTy &Data) {
|
|
if (!CGF.HaveInsertPoint())
|
|
return;
|
|
TaskResultTy Result =
|
|
emitTaskInit(CGF, Loc, D, TaskFunction, SharedsTy, Shareds, Data);
|
|
// NOTE: routine and part_id fields are initialized by __kmpc_omp_task_alloc()
|
|
// libcall.
|
|
// Call to void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int
|
|
// if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int
|
|
// sched, kmp_uint64 grainsize, void *task_dup);
|
|
llvm::Value *ThreadID = getThreadID(CGF, Loc);
|
|
llvm::Value *UpLoc = emitUpdateLocation(CGF, Loc);
|
|
llvm::Value *IfVal;
|
|
if (IfCond) {
|
|
IfVal = CGF.Builder.CreateIntCast(CGF.EvaluateExprAsBool(IfCond), CGF.IntTy,
|
|
/*isSigned=*/true);
|
|
} else {
|
|
IfVal = llvm::ConstantInt::getSigned(CGF.IntTy, /*V=*/1);
|
|
}
|
|
|
|
LValue LBLVal = CGF.EmitLValueForField(
|
|
Result.TDBase,
|
|
*std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTLowerBound));
|
|
const auto *LBVar =
|
|
cast<VarDecl>(cast<DeclRefExpr>(D.getLowerBoundVariable())->getDecl());
|
|
CGF.EmitAnyExprToMem(LBVar->getInit(), LBLVal.getAddress(CGF),
|
|
LBLVal.getQuals(),
|
|
/*IsInitializer=*/true);
|
|
LValue UBLVal = CGF.EmitLValueForField(
|
|
Result.TDBase,
|
|
*std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTUpperBound));
|
|
const auto *UBVar =
|
|
cast<VarDecl>(cast<DeclRefExpr>(D.getUpperBoundVariable())->getDecl());
|
|
CGF.EmitAnyExprToMem(UBVar->getInit(), UBLVal.getAddress(CGF),
|
|
UBLVal.getQuals(),
|
|
/*IsInitializer=*/true);
|
|
LValue StLVal = CGF.EmitLValueForField(
|
|
Result.TDBase,
|
|
*std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTStride));
|
|
const auto *StVar =
|
|
cast<VarDecl>(cast<DeclRefExpr>(D.getStrideVariable())->getDecl());
|
|
CGF.EmitAnyExprToMem(StVar->getInit(), StLVal.getAddress(CGF),
|
|
StLVal.getQuals(),
|
|
/*IsInitializer=*/true);
|
|
// Store reductions address.
|
|
LValue RedLVal = CGF.EmitLValueForField(
|
|
Result.TDBase,
|
|
*std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTReductions));
|
|
if (Data.Reductions) {
|
|
CGF.EmitStoreOfScalar(Data.Reductions, RedLVal);
|
|
} else {
|
|
CGF.EmitNullInitialization(RedLVal.getAddress(CGF),
|
|
CGF.getContext().VoidPtrTy);
|
|
}
|
|
enum { NoSchedule = 0, Grainsize = 1, NumTasks = 2 };
|
|
llvm::Value *TaskArgs[] = {
|
|
UpLoc,
|
|
ThreadID,
|
|
Result.NewTask,
|
|
IfVal,
|
|
LBLVal.getPointer(CGF),
|
|
UBLVal.getPointer(CGF),
|
|
CGF.EmitLoadOfScalar(StLVal, Loc),
|
|
llvm::ConstantInt::getSigned(
|
|
CGF.IntTy, 1), // Always 1 because taskgroup emitted by the compiler
|
|
llvm::ConstantInt::getSigned(
|
|
CGF.IntTy, Data.Schedule.getPointer()
|
|
? Data.Schedule.getInt() ? NumTasks : Grainsize
|
|
: NoSchedule),
|
|
Data.Schedule.getPointer()
|
|
? CGF.Builder.CreateIntCast(Data.Schedule.getPointer(), CGF.Int64Ty,
|
|
/*isSigned=*/false)
|
|
: llvm::ConstantInt::get(CGF.Int64Ty, /*V=*/0),
|
|
Result.TaskDupFn ? CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
|
|
Result.TaskDupFn, CGF.VoidPtrTy)
|
|
: llvm::ConstantPointerNull::get(CGF.VoidPtrTy)};
|
|
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_taskloop), TaskArgs);
|
|
}
|
|
|
|
/// Emit reduction operation for each element of array (required for
|
|
/// array sections) LHS op = RHS.
|
|
/// \param Type Type of array.
|
|
/// \param LHSVar Variable on the left side of the reduction operation
|
|
/// (references element of array in original variable).
|
|
/// \param RHSVar Variable on the right side of the reduction operation
|
|
/// (references element of array in original variable).
|
|
/// \param RedOpGen Generator of reduction operation with use of LHSVar and
|
|
/// RHSVar.
|
|
static void EmitOMPAggregateReduction(
|
|
CodeGenFunction &CGF, QualType Type, const VarDecl *LHSVar,
|
|
const VarDecl *RHSVar,
|
|
const llvm::function_ref<void(CodeGenFunction &CGF, const Expr *,
|
|
const Expr *, const Expr *)> &RedOpGen,
|
|
const Expr *XExpr = nullptr, const Expr *EExpr = nullptr,
|
|
const Expr *UpExpr = nullptr) {
|
|
// Perform element-by-element initialization.
|
|
QualType ElementTy;
|
|
Address LHSAddr = CGF.GetAddrOfLocalVar(LHSVar);
|
|
Address RHSAddr = CGF.GetAddrOfLocalVar(RHSVar);
|
|
|
|
// Drill down to the base element type on both arrays.
|
|
const ArrayType *ArrayTy = Type->getAsArrayTypeUnsafe();
|
|
llvm::Value *NumElements = CGF.emitArrayLength(ArrayTy, ElementTy, LHSAddr);
|
|
|
|
llvm::Value *RHSBegin = RHSAddr.getPointer();
|
|
llvm::Value *LHSBegin = LHSAddr.getPointer();
|
|
// Cast from pointer to array type to pointer to single element.
|
|
llvm::Value *LHSEnd = CGF.Builder.CreateGEP(LHSBegin, NumElements);
|
|
// The basic structure here is a while-do loop.
|
|
llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.arraycpy.body");
|
|
llvm::BasicBlock *DoneBB = CGF.createBasicBlock("omp.arraycpy.done");
|
|
llvm::Value *IsEmpty =
|
|
CGF.Builder.CreateICmpEQ(LHSBegin, LHSEnd, "omp.arraycpy.isempty");
|
|
CGF.Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
|
|
|
|
// Enter the loop body, making that address the current address.
|
|
llvm::BasicBlock *EntryBB = CGF.Builder.GetInsertBlock();
|
|
CGF.EmitBlock(BodyBB);
|
|
|
|
CharUnits ElementSize = CGF.getContext().getTypeSizeInChars(ElementTy);
|
|
|
|
llvm::PHINode *RHSElementPHI = CGF.Builder.CreatePHI(
|
|
RHSBegin->getType(), 2, "omp.arraycpy.srcElementPast");
|
|
RHSElementPHI->addIncoming(RHSBegin, EntryBB);
|
|
Address RHSElementCurrent =
|
|
Address(RHSElementPHI,
|
|
RHSAddr.getAlignment().alignmentOfArrayElement(ElementSize));
|
|
|
|
llvm::PHINode *LHSElementPHI = CGF.Builder.CreatePHI(
|
|
LHSBegin->getType(), 2, "omp.arraycpy.destElementPast");
|
|
LHSElementPHI->addIncoming(LHSBegin, EntryBB);
|
|
Address LHSElementCurrent =
|
|
Address(LHSElementPHI,
|
|
LHSAddr.getAlignment().alignmentOfArrayElement(ElementSize));
|
|
|
|
// Emit copy.
|
|
CodeGenFunction::OMPPrivateScope Scope(CGF);
|
|
Scope.addPrivate(LHSVar, [=]() { return LHSElementCurrent; });
|
|
Scope.addPrivate(RHSVar, [=]() { return RHSElementCurrent; });
|
|
Scope.Privatize();
|
|
RedOpGen(CGF, XExpr, EExpr, UpExpr);
|
|
Scope.ForceCleanup();
|
|
|
|
// Shift the address forward by one element.
|
|
llvm::Value *LHSElementNext = CGF.Builder.CreateConstGEP1_32(
|
|
LHSElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element");
|
|
llvm::Value *RHSElementNext = CGF.Builder.CreateConstGEP1_32(
|
|
RHSElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element");
|
|
// Check whether we've reached the end.
|
|
llvm::Value *Done =
|
|
CGF.Builder.CreateICmpEQ(LHSElementNext, LHSEnd, "omp.arraycpy.done");
|
|
CGF.Builder.CreateCondBr(Done, DoneBB, BodyBB);
|
|
LHSElementPHI->addIncoming(LHSElementNext, CGF.Builder.GetInsertBlock());
|
|
RHSElementPHI->addIncoming(RHSElementNext, CGF.Builder.GetInsertBlock());
|
|
|
|
// Done.
|
|
CGF.EmitBlock(DoneBB, /*IsFinished=*/true);
|
|
}
|
|
|
|
/// Emit reduction combiner. If the combiner is a simple expression emit it as
|
|
/// is, otherwise consider it as combiner of UDR decl and emit it as a call of
|
|
/// UDR combiner function.
|
|
static void emitReductionCombiner(CodeGenFunction &CGF,
|
|
const Expr *ReductionOp) {
|
|
if (const auto *CE = dyn_cast<CallExpr>(ReductionOp))
|
|
if (const auto *OVE = dyn_cast<OpaqueValueExpr>(CE->getCallee()))
|
|
if (const auto *DRE =
|
|
dyn_cast<DeclRefExpr>(OVE->getSourceExpr()->IgnoreImpCasts()))
|
|
if (const auto *DRD =
|
|
dyn_cast<OMPDeclareReductionDecl>(DRE->getDecl())) {
|
|
std::pair<llvm::Function *, llvm::Function *> Reduction =
|
|
CGF.CGM.getOpenMPRuntime().getUserDefinedReduction(DRD);
|
|
RValue Func = RValue::get(Reduction.first);
|
|
CodeGenFunction::OpaqueValueMapping Map(CGF, OVE, Func);
|
|
CGF.EmitIgnoredExpr(ReductionOp);
|
|
return;
|
|
}
|
|
CGF.EmitIgnoredExpr(ReductionOp);
|
|
}
|
|
|
|
llvm::Function *CGOpenMPRuntime::emitReductionFunction(
|
|
SourceLocation Loc, llvm::Type *ArgsType, ArrayRef<const Expr *> Privates,
|
|
ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs,
|
|
ArrayRef<const Expr *> ReductionOps) {
|
|
ASTContext &C = CGM.getContext();
|
|
|
|
// void reduction_func(void *LHSArg, void *RHSArg);
|
|
FunctionArgList Args;
|
|
ImplicitParamDecl LHSArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
|
|
ImplicitParamDecl::Other);
|
|
ImplicitParamDecl RHSArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
|
|
ImplicitParamDecl::Other);
|
|
Args.push_back(&LHSArg);
|
|
Args.push_back(&RHSArg);
|
|
const auto &CGFI =
|
|
CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
|
|
std::string Name = getName({"omp", "reduction", "reduction_func"});
|
|
auto *Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(CGFI),
|
|
llvm::GlobalValue::InternalLinkage, Name,
|
|
&CGM.getModule());
|
|
CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
|
|
Fn->setDoesNotRecurse();
|
|
CodeGenFunction CGF(CGM);
|
|
CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
|
|
|
|
// Dst = (void*[n])(LHSArg);
|
|
// Src = (void*[n])(RHSArg);
|
|
Address LHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
|
|
CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&LHSArg)),
|
|
ArgsType), CGF.getPointerAlign());
|
|
Address RHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
|
|
CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&RHSArg)),
|
|
ArgsType), CGF.getPointerAlign());
|
|
|
|
// ...
|
|
// *(Type<i>*)lhs[i] = RedOp<i>(*(Type<i>*)lhs[i], *(Type<i>*)rhs[i]);
|
|
// ...
|
|
CodeGenFunction::OMPPrivateScope Scope(CGF);
|
|
auto IPriv = Privates.begin();
|
|
unsigned Idx = 0;
|
|
for (unsigned I = 0, E = ReductionOps.size(); I < E; ++I, ++IPriv, ++Idx) {
|
|
const auto *RHSVar =
|
|
cast<VarDecl>(cast<DeclRefExpr>(RHSExprs[I])->getDecl());
|
|
Scope.addPrivate(RHSVar, [&CGF, RHS, Idx, RHSVar]() {
|
|
return emitAddrOfVarFromArray(CGF, RHS, Idx, RHSVar);
|
|
});
|
|
const auto *LHSVar =
|
|
cast<VarDecl>(cast<DeclRefExpr>(LHSExprs[I])->getDecl());
|
|
Scope.addPrivate(LHSVar, [&CGF, LHS, Idx, LHSVar]() {
|
|
return emitAddrOfVarFromArray(CGF, LHS, Idx, LHSVar);
|
|
});
|
|
QualType PrivTy = (*IPriv)->getType();
|
|
if (PrivTy->isVariablyModifiedType()) {
|
|
// Get array size and emit VLA type.
|
|
++Idx;
|
|
Address Elem = CGF.Builder.CreateConstArrayGEP(LHS, Idx);
|
|
llvm::Value *Ptr = CGF.Builder.CreateLoad(Elem);
|
|
const VariableArrayType *VLA =
|
|
CGF.getContext().getAsVariableArrayType(PrivTy);
|
|
const auto *OVE = cast<OpaqueValueExpr>(VLA->getSizeExpr());
|
|
CodeGenFunction::OpaqueValueMapping OpaqueMap(
|
|
CGF, OVE, RValue::get(CGF.Builder.CreatePtrToInt(Ptr, CGF.SizeTy)));
|
|
CGF.EmitVariablyModifiedType(PrivTy);
|
|
}
|
|
}
|
|
Scope.Privatize();
|
|
IPriv = Privates.begin();
|
|
auto ILHS = LHSExprs.begin();
|
|
auto IRHS = RHSExprs.begin();
|
|
for (const Expr *E : ReductionOps) {
|
|
if ((*IPriv)->getType()->isArrayType()) {
|
|
// Emit reduction for array section.
|
|
const auto *LHSVar = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
|
|
const auto *RHSVar = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
|
|
EmitOMPAggregateReduction(
|
|
CGF, (*IPriv)->getType(), LHSVar, RHSVar,
|
|
[=](CodeGenFunction &CGF, const Expr *, const Expr *, const Expr *) {
|
|
emitReductionCombiner(CGF, E);
|
|
});
|
|
} else {
|
|
// Emit reduction for array subscript or single variable.
|
|
emitReductionCombiner(CGF, E);
|
|
}
|
|
++IPriv;
|
|
++ILHS;
|
|
++IRHS;
|
|
}
|
|
Scope.ForceCleanup();
|
|
CGF.FinishFunction();
|
|
return Fn;
|
|
}
|
|
|
|
void CGOpenMPRuntime::emitSingleReductionCombiner(CodeGenFunction &CGF,
|
|
const Expr *ReductionOp,
|
|
const Expr *PrivateRef,
|
|
const DeclRefExpr *LHS,
|
|
const DeclRefExpr *RHS) {
|
|
if (PrivateRef->getType()->isArrayType()) {
|
|
// Emit reduction for array section.
|
|
const auto *LHSVar = cast<VarDecl>(LHS->getDecl());
|
|
const auto *RHSVar = cast<VarDecl>(RHS->getDecl());
|
|
EmitOMPAggregateReduction(
|
|
CGF, PrivateRef->getType(), LHSVar, RHSVar,
|
|
[=](CodeGenFunction &CGF, const Expr *, const Expr *, const Expr *) {
|
|
emitReductionCombiner(CGF, ReductionOp);
|
|
});
|
|
} else {
|
|
// Emit reduction for array subscript or single variable.
|
|
emitReductionCombiner(CGF, ReductionOp);
|
|
}
|
|
}
|
|
|
|
void CGOpenMPRuntime::emitReduction(CodeGenFunction &CGF, SourceLocation Loc,
|
|
ArrayRef<const Expr *> Privates,
|
|
ArrayRef<const Expr *> LHSExprs,
|
|
ArrayRef<const Expr *> RHSExprs,
|
|
ArrayRef<const Expr *> ReductionOps,
|
|
ReductionOptionsTy Options) {
|
|
if (!CGF.HaveInsertPoint())
|
|
return;
|
|
|
|
bool WithNowait = Options.WithNowait;
|
|
bool SimpleReduction = Options.SimpleReduction;
|
|
|
|
// Next code should be emitted for reduction:
|
|
//
|
|
// static kmp_critical_name lock = { 0 };
|
|
//
|
|
// void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
|
|
// *(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
|
|
// ...
|
|
// *(Type<n>-1*)lhs[<n>-1] = ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
|
|
// *(Type<n>-1*)rhs[<n>-1]);
|
|
// }
|
|
//
|
|
// ...
|
|
// void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
|
|
// switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList),
|
|
// RedList, reduce_func, &<lock>)) {
|
|
// case 1:
|
|
// ...
|
|
// <LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]);
|
|
// ...
|
|
// __kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
|
|
// break;
|
|
// case 2:
|
|
// ...
|
|
// Atomic(<LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]));
|
|
// ...
|
|
// [__kmpc_end_reduce(<loc>, <gtid>, &<lock>);]
|
|
// break;
|
|
// default:;
|
|
// }
|
|
//
|
|
// if SimpleReduction is true, only the next code is generated:
|
|
// ...
|
|
// <LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]);
|
|
// ...
|
|
|
|
ASTContext &C = CGM.getContext();
|
|
|
|
if (SimpleReduction) {
|
|
CodeGenFunction::RunCleanupsScope Scope(CGF);
|
|
auto IPriv = Privates.begin();
|
|
auto ILHS = LHSExprs.begin();
|
|
auto IRHS = RHSExprs.begin();
|
|
for (const Expr *E : ReductionOps) {
|
|
emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS),
|
|
cast<DeclRefExpr>(*IRHS));
|
|
++IPriv;
|
|
++ILHS;
|
|
++IRHS;
|
|
}
|
|
return;
|
|
}
|
|
|
|
// 1. Build a list of reduction variables.
|
|
// void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
|
|
auto Size = RHSExprs.size();
|
|
for (const Expr *E : Privates) {
|
|
if (E->getType()->isVariablyModifiedType())
|
|
// Reserve place for array size.
|
|
++Size;
|
|
}
|
|
llvm::APInt ArraySize(/*unsigned int numBits=*/32, Size);
|
|
QualType ReductionArrayTy =
|
|
C.getConstantArrayType(C.VoidPtrTy, ArraySize, nullptr, ArrayType::Normal,
|
|
/*IndexTypeQuals=*/0);
|
|
Address ReductionList =
|
|
CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
|
|
auto IPriv = Privates.begin();
|
|
unsigned Idx = 0;
|
|
for (unsigned I = 0, E = RHSExprs.size(); I < E; ++I, ++IPriv, ++Idx) {
|
|
Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
|
|
CGF.Builder.CreateStore(
|
|
CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
|
|
CGF.EmitLValue(RHSExprs[I]).getPointer(CGF), CGF.VoidPtrTy),
|
|
Elem);
|
|
if ((*IPriv)->getType()->isVariablyModifiedType()) {
|
|
// Store array size.
|
|
++Idx;
|
|
Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
|
|
llvm::Value *Size = CGF.Builder.CreateIntCast(
|
|
CGF.getVLASize(
|
|
CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
|
|
.NumElts,
|
|
CGF.SizeTy, /*isSigned=*/false);
|
|
CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
|
|
Elem);
|
|
}
|
|
}
|
|
|
|
// 2. Emit reduce_func().
|
|
llvm::Function *ReductionFn = emitReductionFunction(
|
|
Loc, CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo(), Privates,
|
|
LHSExprs, RHSExprs, ReductionOps);
|
|
|
|
// 3. Create static kmp_critical_name lock = { 0 };
|
|
std::string Name = getName({"reduction"});
|
|
llvm::Value *Lock = getCriticalRegionLock(Name);
|
|
|
|
// 4. Build res = __kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList),
|
|
// RedList, reduce_func, &<lock>);
|
|
llvm::Value *IdentTLoc = emitUpdateLocation(CGF, Loc, OMP_ATOMIC_REDUCE);
|
|
llvm::Value *ThreadId = getThreadID(CGF, Loc);
|
|
llvm::Value *ReductionArrayTySize = CGF.getTypeSize(ReductionArrayTy);
|
|
llvm::Value *RL = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
|
|
ReductionList.getPointer(), CGF.VoidPtrTy);
|
|
llvm::Value *Args[] = {
|
|
IdentTLoc, // ident_t *<loc>
|
|
ThreadId, // i32 <gtid>
|
|
CGF.Builder.getInt32(RHSExprs.size()), // i32 <n>
|
|
ReductionArrayTySize, // size_type sizeof(RedList)
|
|
RL, // void *RedList
|
|
ReductionFn, // void (*) (void *, void *) <reduce_func>
|
|
Lock // kmp_critical_name *&<lock>
|
|
};
|
|
llvm::Value *Res = CGF.EmitRuntimeCall(
|
|
createRuntimeFunction(WithNowait ? OMPRTL__kmpc_reduce_nowait
|
|
: OMPRTL__kmpc_reduce),
|
|
Args);
|
|
|
|
// 5. Build switch(res)
|
|
llvm::BasicBlock *DefaultBB = CGF.createBasicBlock(".omp.reduction.default");
|
|
llvm::SwitchInst *SwInst =
|
|
CGF.Builder.CreateSwitch(Res, DefaultBB, /*NumCases=*/2);
|
|
|
|
// 6. Build case 1:
|
|
// ...
|
|
// <LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]);
|
|
// ...
|
|
// __kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
|
|
// break;
|
|
llvm::BasicBlock *Case1BB = CGF.createBasicBlock(".omp.reduction.case1");
|
|
SwInst->addCase(CGF.Builder.getInt32(1), Case1BB);
|
|
CGF.EmitBlock(Case1BB);
|
|
|
|
// Add emission of __kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
|
|
llvm::Value *EndArgs[] = {
|
|
IdentTLoc, // ident_t *<loc>
|
|
ThreadId, // i32 <gtid>
|
|
Lock // kmp_critical_name *&<lock>
|
|
};
|
|
auto &&CodeGen = [Privates, LHSExprs, RHSExprs, ReductionOps](
|
|
CodeGenFunction &CGF, PrePostActionTy &Action) {
|
|
CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime();
|
|
auto IPriv = Privates.begin();
|
|
auto ILHS = LHSExprs.begin();
|
|
auto IRHS = RHSExprs.begin();
|
|
for (const Expr *E : ReductionOps) {
|
|
RT.emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS),
|
|
cast<DeclRefExpr>(*IRHS));
|
|
++IPriv;
|
|
++ILHS;
|
|
++IRHS;
|
|
}
|
|
};
|
|
RegionCodeGenTy RCG(CodeGen);
|
|
CommonActionTy Action(
|
|
nullptr, llvm::None,
|
|
createRuntimeFunction(WithNowait ? OMPRTL__kmpc_end_reduce_nowait
|
|
: OMPRTL__kmpc_end_reduce),
|
|
EndArgs);
|
|
RCG.setAction(Action);
|
|
RCG(CGF);
|
|
|
|
CGF.EmitBranch(DefaultBB);
|
|
|
|
// 7. Build case 2:
|
|
// ...
|
|
// Atomic(<LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]));
|
|
// ...
|
|
// break;
|
|
llvm::BasicBlock *Case2BB = CGF.createBasicBlock(".omp.reduction.case2");
|
|
SwInst->addCase(CGF.Builder.getInt32(2), Case2BB);
|
|
CGF.EmitBlock(Case2BB);
|
|
|
|
auto &&AtomicCodeGen = [Loc, Privates, LHSExprs, RHSExprs, ReductionOps](
|
|
CodeGenFunction &CGF, PrePostActionTy &Action) {
|
|
auto ILHS = LHSExprs.begin();
|
|
auto IRHS = RHSExprs.begin();
|
|
auto IPriv = Privates.begin();
|
|
for (const Expr *E : ReductionOps) {
|
|
const Expr *XExpr = nullptr;
|
|
const Expr *EExpr = nullptr;
|
|
const Expr *UpExpr = nullptr;
|
|
BinaryOperatorKind BO = BO_Comma;
|
|
if (const auto *BO = dyn_cast<BinaryOperator>(E)) {
|
|
if (BO->getOpcode() == BO_Assign) {
|
|
XExpr = BO->getLHS();
|
|
UpExpr = BO->getRHS();
|
|
}
|
|
}
|
|
// Try to emit update expression as a simple atomic.
|
|
const Expr *RHSExpr = UpExpr;
|
|
if (RHSExpr) {
|
|
// Analyze RHS part of the whole expression.
|
|
if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(
|
|
RHSExpr->IgnoreParenImpCasts())) {
|
|
// If this is a conditional operator, analyze its condition for
|
|
// min/max reduction operator.
|
|
RHSExpr = ACO->getCond();
|
|
}
|
|
if (const auto *BORHS =
|
|
dyn_cast<BinaryOperator>(RHSExpr->IgnoreParenImpCasts())) {
|
|
EExpr = BORHS->getRHS();
|
|
BO = BORHS->getOpcode();
|
|
}
|
|
}
|
|
if (XExpr) {
|
|
const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
|
|
auto &&AtomicRedGen = [BO, VD,
|
|
Loc](CodeGenFunction &CGF, const Expr *XExpr,
|
|
const Expr *EExpr, const Expr *UpExpr) {
|
|
LValue X = CGF.EmitLValue(XExpr);
|
|
RValue E;
|
|
if (EExpr)
|
|
E = CGF.EmitAnyExpr(EExpr);
|
|
CGF.EmitOMPAtomicSimpleUpdateExpr(
|
|
X, E, BO, /*IsXLHSInRHSPart=*/true,
|
|
llvm::AtomicOrdering::Monotonic, Loc,
|
|
[&CGF, UpExpr, VD, Loc](RValue XRValue) {
|
|
CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
|
|
PrivateScope.addPrivate(
|
|
VD, [&CGF, VD, XRValue, Loc]() {
|
|
Address LHSTemp = CGF.CreateMemTemp(VD->getType());
|
|
CGF.emitOMPSimpleStore(
|
|
CGF.MakeAddrLValue(LHSTemp, VD->getType()), XRValue,
|
|
VD->getType().getNonReferenceType(), Loc);
|
|
return LHSTemp;
|
|
});
|
|
(void)PrivateScope.Privatize();
|
|
return CGF.EmitAnyExpr(UpExpr);
|
|
});
|
|
};
|
|
if ((*IPriv)->getType()->isArrayType()) {
|
|
// Emit atomic reduction for array section.
|
|
const auto *RHSVar =
|
|
cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
|
|
EmitOMPAggregateReduction(CGF, (*IPriv)->getType(), VD, RHSVar,
|
|
AtomicRedGen, XExpr, EExpr, UpExpr);
|
|
} else {
|
|
// Emit atomic reduction for array subscript or single variable.
|
|
AtomicRedGen(CGF, XExpr, EExpr, UpExpr);
|
|
}
|
|
} else {
|
|
// Emit as a critical region.
|
|
auto &&CritRedGen = [E, Loc](CodeGenFunction &CGF, const Expr *,
|
|
const Expr *, const Expr *) {
|
|
CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime();
|
|
std::string Name = RT.getName({"atomic_reduction"});
|
|
RT.emitCriticalRegion(
|
|
CGF, Name,
|
|
[=](CodeGenFunction &CGF, PrePostActionTy &Action) {
|
|
Action.Enter(CGF);
|
|
emitReductionCombiner(CGF, E);
|
|
},
|
|
Loc);
|
|
};
|
|
if ((*IPriv)->getType()->isArrayType()) {
|
|
const auto *LHSVar =
|
|
cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
|
|
const auto *RHSVar =
|
|
cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
|
|
EmitOMPAggregateReduction(CGF, (*IPriv)->getType(), LHSVar, RHSVar,
|
|
CritRedGen);
|
|
} else {
|
|
CritRedGen(CGF, nullptr, nullptr, nullptr);
|
|
}
|
|
}
|
|
++ILHS;
|
|
++IRHS;
|
|
++IPriv;
|
|
}
|
|
};
|
|
RegionCodeGenTy AtomicRCG(AtomicCodeGen);
|
|
if (!WithNowait) {
|
|
// Add emission of __kmpc_end_reduce(<loc>, <gtid>, &<lock>);
|
|
llvm::Value *EndArgs[] = {
|
|
IdentTLoc, // ident_t *<loc>
|
|
ThreadId, // i32 <gtid>
|
|
Lock // kmp_critical_name *&<lock>
|
|
};
|
|
CommonActionTy Action(nullptr, llvm::None,
|
|
createRuntimeFunction(OMPRTL__kmpc_end_reduce),
|
|
EndArgs);
|
|
AtomicRCG.setAction(Action);
|
|
AtomicRCG(CGF);
|
|
} else {
|
|
AtomicRCG(CGF);
|
|
}
|
|
|
|
CGF.EmitBranch(DefaultBB);
|
|
CGF.EmitBlock(DefaultBB, /*IsFinished=*/true);
|
|
}
|
|
|
|
/// Generates unique name for artificial threadprivate variables.
|
|
/// Format is: <Prefix> "." <Decl_mangled_name> "_" "<Decl_start_loc_raw_enc>"
|
|
static std::string generateUniqueName(CodeGenModule &CGM, StringRef Prefix,
|
|
const Expr *Ref) {
|
|
SmallString<256> Buffer;
|
|
llvm::raw_svector_ostream Out(Buffer);
|
|
const clang::DeclRefExpr *DE;
|
|
const VarDecl *D = ::getBaseDecl(Ref, DE);
|
|
if (!D)
|
|
D = cast<VarDecl>(cast<DeclRefExpr>(Ref)->getDecl());
|
|
D = D->getCanonicalDecl();
|
|
std::string Name = CGM.getOpenMPRuntime().getName(
|
|
{D->isLocalVarDeclOrParm() ? D->getName() : CGM.getMangledName(D)});
|
|
Out << Prefix << Name << "_"
|
|
<< D->getCanonicalDecl()->getBeginLoc().getRawEncoding();
|
|
return Out.str();
|
|
}
|
|
|
|
/// Emits reduction initializer function:
|
|
/// \code
|
|
/// void @.red_init(void* %arg) {
|
|
/// %0 = bitcast void* %arg to <type>*
|
|
/// store <type> <init>, <type>* %0
|
|
/// ret void
|
|
/// }
|
|
/// \endcode
|
|
static llvm::Value *emitReduceInitFunction(CodeGenModule &CGM,
|
|
SourceLocation Loc,
|
|
ReductionCodeGen &RCG, unsigned N) {
|
|
ASTContext &C = CGM.getContext();
|
|
FunctionArgList Args;
|
|
ImplicitParamDecl Param(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
|
|
ImplicitParamDecl::Other);
|
|
Args.emplace_back(&Param);
|
|
const auto &FnInfo =
|
|
CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
|
|
llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo);
|
|
std::string Name = CGM.getOpenMPRuntime().getName({"red_init", ""});
|
|
auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage,
|
|
Name, &CGM.getModule());
|
|
CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo);
|
|
Fn->setDoesNotRecurse();
|
|
CodeGenFunction CGF(CGM);
|
|
CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, Loc, Loc);
|
|
Address PrivateAddr = CGF.EmitLoadOfPointer(
|
|
CGF.GetAddrOfLocalVar(&Param),
|
|
C.getPointerType(C.VoidPtrTy).castAs<PointerType>());
|
|
llvm::Value *Size = nullptr;
|
|
// If the size of the reduction item is non-constant, load it from global
|
|
// threadprivate variable.
|
|
if (RCG.getSizes(N).second) {
|
|
Address SizeAddr = CGM.getOpenMPRuntime().getAddrOfArtificialThreadPrivate(
|
|
CGF, CGM.getContext().getSizeType(),
|
|
generateUniqueName(CGM, "reduction_size", RCG.getRefExpr(N)));
|
|
Size = CGF.EmitLoadOfScalar(SizeAddr, /*Volatile=*/false,
|
|
CGM.getContext().getSizeType(), Loc);
|
|
}
|
|
RCG.emitAggregateType(CGF, N, Size);
|
|
LValue SharedLVal;
|
|
// If initializer uses initializer from declare reduction construct, emit a
|
|
// pointer to the address of the original reduction item (reuired by reduction
|
|
// initializer)
|
|
if (RCG.usesReductionInitializer(N)) {
|
|
Address SharedAddr =
|
|
CGM.getOpenMPRuntime().getAddrOfArtificialThreadPrivate(
|
|
CGF, CGM.getContext().VoidPtrTy,
|
|
generateUniqueName(CGM, "reduction", RCG.getRefExpr(N)));
|
|
SharedAddr = CGF.EmitLoadOfPointer(
|
|
SharedAddr,
|
|
CGM.getContext().VoidPtrTy.castAs<PointerType>()->getTypePtr());
|
|
SharedLVal = CGF.MakeAddrLValue(SharedAddr, CGM.getContext().VoidPtrTy);
|
|
} else {
|
|
SharedLVal = CGF.MakeNaturalAlignAddrLValue(
|
|
llvm::ConstantPointerNull::get(CGM.VoidPtrTy),
|
|
CGM.getContext().VoidPtrTy);
|
|
}
|
|
// Emit the initializer:
|
|
// %0 = bitcast void* %arg to <type>*
|
|
// store <type> <init>, <type>* %0
|
|
RCG.emitInitialization(CGF, N, PrivateAddr, SharedLVal,
|
|
[](CodeGenFunction &) { return false; });
|
|
CGF.FinishFunction();
|
|
return Fn;
|
|
}
|
|
|
|
/// Emits reduction combiner function:
|
|
/// \code
|
|
/// void @.red_comb(void* %arg0, void* %arg1) {
|
|
/// %lhs = bitcast void* %arg0 to <type>*
|
|
/// %rhs = bitcast void* %arg1 to <type>*
|
|
/// %2 = <ReductionOp>(<type>* %lhs, <type>* %rhs)
|
|
/// store <type> %2, <type>* %lhs
|
|
/// ret void
|
|
/// }
|
|
/// \endcode
|
|
static llvm::Value *emitReduceCombFunction(CodeGenModule &CGM,
|
|
SourceLocation Loc,
|
|
ReductionCodeGen &RCG, unsigned N,
|
|
const Expr *ReductionOp,
|
|
const Expr *LHS, const Expr *RHS,
|
|
const Expr *PrivateRef) {
|
|
ASTContext &C = CGM.getContext();
|
|
const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(LHS)->getDecl());
|
|
const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(RHS)->getDecl());
|
|
FunctionArgList Args;
|
|
ImplicitParamDecl ParamInOut(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
|
|
C.VoidPtrTy, ImplicitParamDecl::Other);
|
|
ImplicitParamDecl ParamIn(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
|
|
ImplicitParamDecl::Other);
|
|
Args.emplace_back(&ParamInOut);
|
|
Args.emplace_back(&ParamIn);
|
|
const auto &FnInfo =
|
|
CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
|
|
llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo);
|
|
std::string Name = CGM.getOpenMPRuntime().getName({"red_comb", ""});
|
|
auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage,
|
|
Name, &CGM.getModule());
|
|
CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo);
|
|
Fn->setDoesNotRecurse();
|
|
CodeGenFunction CGF(CGM);
|
|
CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, Loc, Loc);
|
|
llvm::Value *Size = nullptr;
|
|
// If the size of the reduction item is non-constant, load it from global
|
|
// threadprivate variable.
|
|
if (RCG.getSizes(N).second) {
|
|
Address SizeAddr = CGM.getOpenMPRuntime().getAddrOfArtificialThreadPrivate(
|
|
CGF, CGM.getContext().getSizeType(),
|
|
generateUniqueName(CGM, "reduction_size", RCG.getRefExpr(N)));
|
|
Size = CGF.EmitLoadOfScalar(SizeAddr, /*Volatile=*/false,
|
|
CGM.getContext().getSizeType(), Loc);
|
|
}
|
|
RCG.emitAggregateType(CGF, N, Size);
|
|
// Remap lhs and rhs variables to the addresses of the function arguments.
|
|
// %lhs = bitcast void* %arg0 to <type>*
|
|
// %rhs = bitcast void* %arg1 to <type>*
|
|
CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
|
|
PrivateScope.addPrivate(LHSVD, [&C, &CGF, &ParamInOut, LHSVD]() {
|
|
// Pull out the pointer to the variable.
|
|
Address PtrAddr = CGF.EmitLoadOfPointer(
|
|
CGF.GetAddrOfLocalVar(&ParamInOut),
|
|
C.getPointerType(C.VoidPtrTy).castAs<PointerType>());
|
|
return CGF.Builder.CreateElementBitCast(
|
|
PtrAddr, CGF.ConvertTypeForMem(LHSVD->getType()));
|
|
});
|
|
PrivateScope.addPrivate(RHSVD, [&C, &CGF, &ParamIn, RHSVD]() {
|
|
// Pull out the pointer to the variable.
|
|
Address PtrAddr = CGF.EmitLoadOfPointer(
|
|
CGF.GetAddrOfLocalVar(&ParamIn),
|
|
C.getPointerType(C.VoidPtrTy).castAs<PointerType>());
|
|
return CGF.Builder.CreateElementBitCast(
|
|
PtrAddr, CGF.ConvertTypeForMem(RHSVD->getType()));
|
|
});
|
|
PrivateScope.Privatize();
|
|
// Emit the combiner body:
|
|
// %2 = <ReductionOp>(<type> *%lhs, <type> *%rhs)
|
|
// store <type> %2, <type>* %lhs
|
|
CGM.getOpenMPRuntime().emitSingleReductionCombiner(
|
|
CGF, ReductionOp, PrivateRef, cast<DeclRefExpr>(LHS),
|
|
cast<DeclRefExpr>(RHS));
|
|
CGF.FinishFunction();
|
|
return Fn;
|
|
}
|
|
|
|
/// Emits reduction finalizer function:
|
|
/// \code
|
|
/// void @.red_fini(void* %arg) {
|
|
/// %0 = bitcast void* %arg to <type>*
|
|
/// <destroy>(<type>* %0)
|
|
/// ret void
|
|
/// }
|
|
/// \endcode
|
|
static llvm::Value *emitReduceFiniFunction(CodeGenModule &CGM,
|
|
SourceLocation Loc,
|
|
ReductionCodeGen &RCG, unsigned N) {
|
|
if (!RCG.needCleanups(N))
|
|
return nullptr;
|
|
ASTContext &C = CGM.getContext();
|
|
FunctionArgList Args;
|
|
ImplicitParamDecl Param(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
|
|
ImplicitParamDecl::Other);
|
|
Args.emplace_back(&Param);
|
|
const auto &FnInfo =
|
|
CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
|
|
llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo);
|
|
std::string Name = CGM.getOpenMPRuntime().getName({"red_fini", ""});
|
|
auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage,
|
|
Name, &CGM.getModule());
|
|
CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo);
|
|
Fn->setDoesNotRecurse();
|
|
CodeGenFunction CGF(CGM);
|
|
CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, Loc, Loc);
|
|
Address PrivateAddr = CGF.EmitLoadOfPointer(
|
|
CGF.GetAddrOfLocalVar(&Param),
|
|
C.getPointerType(C.VoidPtrTy).castAs<PointerType>());
|
|
llvm::Value *Size = nullptr;
|
|
// If the size of the reduction item is non-constant, load it from global
|
|
// threadprivate variable.
|
|
if (RCG.getSizes(N).second) {
|
|
Address SizeAddr = CGM.getOpenMPRuntime().getAddrOfArtificialThreadPrivate(
|
|
CGF, CGM.getContext().getSizeType(),
|
|
generateUniqueName(CGM, "reduction_size", RCG.getRefExpr(N)));
|
|
Size = CGF.EmitLoadOfScalar(SizeAddr, /*Volatile=*/false,
|
|
CGM.getContext().getSizeType(), Loc);
|
|
}
|
|
RCG.emitAggregateType(CGF, N, Size);
|
|
// Emit the finalizer body:
|
|
// <destroy>(<type>* %0)
|
|
RCG.emitCleanups(CGF, N, PrivateAddr);
|
|
CGF.FinishFunction(Loc);
|
|
return Fn;
|
|
}
|
|
|
|
llvm::Value *CGOpenMPRuntime::emitTaskReductionInit(
|
|
CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> LHSExprs,
|
|
ArrayRef<const Expr *> RHSExprs, const OMPTaskDataTy &Data) {
|
|
if (!CGF.HaveInsertPoint() || Data.ReductionVars.empty())
|
|
return nullptr;
|
|
|
|
// Build typedef struct:
|
|
// kmp_task_red_input {
|
|
// void *reduce_shar; // shared reduction item
|
|
// size_t reduce_size; // size of data item
|
|
// void *reduce_init; // data initialization routine
|
|
// void *reduce_fini; // data finalization routine
|
|
// void *reduce_comb; // data combiner routine
|
|
// kmp_task_red_flags_t flags; // flags for additional info from compiler
|
|
// } kmp_task_red_input_t;
|
|
ASTContext &C = CGM.getContext();
|
|
RecordDecl *RD = C.buildImplicitRecord("kmp_task_red_input_t");
|
|
RD->startDefinition();
|
|
const FieldDecl *SharedFD = addFieldToRecordDecl(C, RD, C.VoidPtrTy);
|
|
const FieldDecl *SizeFD = addFieldToRecordDecl(C, RD, C.getSizeType());
|
|
const FieldDecl *InitFD = addFieldToRecordDecl(C, RD, C.VoidPtrTy);
|
|
const FieldDecl *FiniFD = addFieldToRecordDecl(C, RD, C.VoidPtrTy);
|
|
const FieldDecl *CombFD = addFieldToRecordDecl(C, RD, C.VoidPtrTy);
|
|
const FieldDecl *FlagsFD = addFieldToRecordDecl(
|
|
C, RD, C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/false));
|
|
RD->completeDefinition();
|
|
QualType RDType = C.getRecordType(RD);
|
|
unsigned Size = Data.ReductionVars.size();
|
|
llvm::APInt ArraySize(/*numBits=*/64, Size);
|
|
QualType ArrayRDType = C.getConstantArrayType(
|
|
RDType, ArraySize, nullptr, ArrayType::Normal, /*IndexTypeQuals=*/0);
|
|
// kmp_task_red_input_t .rd_input.[Size];
|
|
Address TaskRedInput = CGF.CreateMemTemp(ArrayRDType, ".rd_input.");
|
|
ReductionCodeGen RCG(Data.ReductionVars, Data.ReductionCopies,
|
|
Data.ReductionOps);
|
|
for (unsigned Cnt = 0; Cnt < Size; ++Cnt) {
|
|
// kmp_task_red_input_t &ElemLVal = .rd_input.[Cnt];
|
|
llvm::Value *Idxs[] = {llvm::ConstantInt::get(CGM.SizeTy, /*V=*/0),
|
|
llvm::ConstantInt::get(CGM.SizeTy, Cnt)};
|
|
llvm::Value *GEP = CGF.EmitCheckedInBoundsGEP(
|
|
TaskRedInput.getPointer(), Idxs,
|
|
/*SignedIndices=*/false, /*IsSubtraction=*/false, Loc,
|
|
".rd_input.gep.");
|
|
LValue ElemLVal = CGF.MakeNaturalAlignAddrLValue(GEP, RDType);
|
|
// ElemLVal.reduce_shar = &Shareds[Cnt];
|
|
LValue SharedLVal = CGF.EmitLValueForField(ElemLVal, SharedFD);
|
|
RCG.emitSharedLValue(CGF, Cnt);
|
|
llvm::Value *CastedShared =
|
|
CGF.EmitCastToVoidPtr(RCG.getSharedLValue(Cnt).getPointer(CGF));
|
|
CGF.EmitStoreOfScalar(CastedShared, SharedLVal);
|
|
RCG.emitAggregateType(CGF, Cnt);
|
|
llvm::Value *SizeValInChars;
|
|
llvm::Value *SizeVal;
|
|
std::tie(SizeValInChars, SizeVal) = RCG.getSizes(Cnt);
|
|
// We use delayed creation/initialization for VLAs, array sections and
|
|
// custom reduction initializations. It is required because runtime does not
|
|
// provide the way to pass the sizes of VLAs/array sections to
|
|
// initializer/combiner/finalizer functions and does not pass the pointer to
|
|
// original reduction item to the initializer. Instead threadprivate global
|
|
// variables are used to store these values and use them in the functions.
|
|
bool DelayedCreation = !!SizeVal;
|
|
SizeValInChars = CGF.Builder.CreateIntCast(SizeValInChars, CGM.SizeTy,
|
|
/*isSigned=*/false);
|
|
LValue SizeLVal = CGF.EmitLValueForField(ElemLVal, SizeFD);
|
|
CGF.EmitStoreOfScalar(SizeValInChars, SizeLVal);
|
|
// ElemLVal.reduce_init = init;
|
|
LValue InitLVal = CGF.EmitLValueForField(ElemLVal, InitFD);
|
|
llvm::Value *InitAddr =
|
|
CGF.EmitCastToVoidPtr(emitReduceInitFunction(CGM, Loc, RCG, Cnt));
|
|
CGF.EmitStoreOfScalar(InitAddr, InitLVal);
|
|
DelayedCreation = DelayedCreation || RCG.usesReductionInitializer(Cnt);
|
|
// ElemLVal.reduce_fini = fini;
|
|
LValue FiniLVal = CGF.EmitLValueForField(ElemLVal, FiniFD);
|
|
llvm::Value *Fini = emitReduceFiniFunction(CGM, Loc, RCG, Cnt);
|
|
llvm::Value *FiniAddr = Fini
|
|
? CGF.EmitCastToVoidPtr(Fini)
|
|
: llvm::ConstantPointerNull::get(CGM.VoidPtrTy);
|
|
CGF.EmitStoreOfScalar(FiniAddr, FiniLVal);
|
|
// ElemLVal.reduce_comb = comb;
|
|
LValue CombLVal = CGF.EmitLValueForField(ElemLVal, CombFD);
|
|
llvm::Value *CombAddr = CGF.EmitCastToVoidPtr(emitReduceCombFunction(
|
|
CGM, Loc, RCG, Cnt, Data.ReductionOps[Cnt], LHSExprs[Cnt],
|
|
RHSExprs[Cnt], Data.ReductionCopies[Cnt]));
|
|
CGF.EmitStoreOfScalar(CombAddr, CombLVal);
|
|
// ElemLVal.flags = 0;
|
|
LValue FlagsLVal = CGF.EmitLValueForField(ElemLVal, FlagsFD);
|
|
if (DelayedCreation) {
|
|
CGF.EmitStoreOfScalar(
|
|
llvm::ConstantInt::get(CGM.Int32Ty, /*V=*/1, /*isSigned=*/true),
|
|
FlagsLVal);
|
|
} else
|
|
CGF.EmitNullInitialization(FlagsLVal.getAddress(CGF),
|
|
FlagsLVal.getType());
|
|
}
|
|
// Build call void *__kmpc_task_reduction_init(int gtid, int num_data, void
|
|
// *data);
|
|
llvm::Value *Args[] = {
|
|
CGF.Builder.CreateIntCast(getThreadID(CGF, Loc), CGM.IntTy,
|
|
/*isSigned=*/true),
|
|
llvm::ConstantInt::get(CGM.IntTy, Size, /*isSigned=*/true),
|
|
CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(TaskRedInput.getPointer(),
|
|
CGM.VoidPtrTy)};
|
|
return CGF.EmitRuntimeCall(
|
|
createRuntimeFunction(OMPRTL__kmpc_task_reduction_init), Args);
|
|
}
|
|
|
|
void CGOpenMPRuntime::emitTaskReductionFixups(CodeGenFunction &CGF,
|
|
SourceLocation Loc,
|
|
ReductionCodeGen &RCG,
|
|
unsigned N) {
|
|
auto Sizes = RCG.getSizes(N);
|
|
// Emit threadprivate global variable if the type is non-constant
|
|
// (Sizes.second = nullptr).
|
|
if (Sizes.second) {
|
|
llvm::Value *SizeVal = CGF.Builder.CreateIntCast(Sizes.second, CGM.SizeTy,
|
|
/*isSigned=*/false);
|
|
Address SizeAddr = getAddrOfArtificialThreadPrivate(
|
|
CGF, CGM.getContext().getSizeType(),
|
|
generateUniqueName(CGM, "reduction_size", RCG.getRefExpr(N)));
|
|
CGF.Builder.CreateStore(SizeVal, SizeAddr, /*IsVolatile=*/false);
|
|
}
|
|
// Store address of the original reduction item if custom initializer is used.
|
|
if (RCG.usesReductionInitializer(N)) {
|
|
Address SharedAddr = getAddrOfArtificialThreadPrivate(
|
|
CGF, CGM.getContext().VoidPtrTy,
|
|
generateUniqueName(CGM, "reduction", RCG.getRefExpr(N)));
|
|
CGF.Builder.CreateStore(
|
|
CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
|
|
RCG.getSharedLValue(N).getPointer(CGF), CGM.VoidPtrTy),
|
|
SharedAddr, /*IsVolatile=*/false);
|
|
}
|
|
}
|
|
|
|
Address CGOpenMPRuntime::getTaskReductionItem(CodeGenFunction &CGF,
|
|
SourceLocation Loc,
|
|
llvm::Value *ReductionsPtr,
|
|
LValue SharedLVal) {
|
|
// Build call void *__kmpc_task_reduction_get_th_data(int gtid, void *tg, void
|
|
// *d);
|
|
llvm::Value *Args[] = {CGF.Builder.CreateIntCast(getThreadID(CGF, Loc),
|
|
CGM.IntTy,
|
|
/*isSigned=*/true),
|
|
ReductionsPtr,
|
|
CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
|
|
SharedLVal.getPointer(CGF), CGM.VoidPtrTy)};
|
|
return Address(
|
|
CGF.EmitRuntimeCall(
|
|
createRuntimeFunction(OMPRTL__kmpc_task_reduction_get_th_data), Args),
|
|
SharedLVal.getAlignment());
|
|
}
|
|
|
|
void CGOpenMPRuntime::emitTaskwaitCall(CodeGenFunction &CGF,
|
|
SourceLocation Loc) {
|
|
if (!CGF.HaveInsertPoint())
|
|
return;
|
|
// Build call kmp_int32 __kmpc_omp_taskwait(ident_t *loc, kmp_int32
|
|
// global_tid);
|
|
llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
|
|
// Ignore return result until untied tasks are supported.
|
|
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_omp_taskwait), Args);
|
|
if (auto *Region = dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo))
|
|
Region->emitUntiedSwitch(CGF);
|
|
}
|
|
|
|
void CGOpenMPRuntime::emitInlinedDirective(CodeGenFunction &CGF,
|
|
OpenMPDirectiveKind InnerKind,
|
|
const RegionCodeGenTy &CodeGen,
|
|
bool HasCancel) {
|
|
if (!CGF.HaveInsertPoint())
|
|
return;
|
|
InlinedOpenMPRegionRAII Region(CGF, CodeGen, InnerKind, HasCancel);
|
|
CGF.CapturedStmtInfo->EmitBody(CGF, /*S=*/nullptr);
|
|
}
|
|
|
|
namespace {
|
|
enum RTCancelKind {
|
|
CancelNoreq = 0,
|
|
CancelParallel = 1,
|
|
CancelLoop = 2,
|
|
CancelSections = 3,
|
|
CancelTaskgroup = 4
|
|
};
|
|
} // anonymous namespace
|
|
|
|
static RTCancelKind getCancellationKind(OpenMPDirectiveKind CancelRegion) {
|
|
RTCancelKind CancelKind = CancelNoreq;
|
|
if (CancelRegion == OMPD_parallel)
|
|
CancelKind = CancelParallel;
|
|
else if (CancelRegion == OMPD_for)
|
|
CancelKind = CancelLoop;
|
|
else if (CancelRegion == OMPD_sections)
|
|
CancelKind = CancelSections;
|
|
else {
|
|
assert(CancelRegion == OMPD_taskgroup);
|
|
CancelKind = CancelTaskgroup;
|
|
}
|
|
return CancelKind;
|
|
}
|
|
|
|
void CGOpenMPRuntime::emitCancellationPointCall(
|
|
CodeGenFunction &CGF, SourceLocation Loc,
|
|
OpenMPDirectiveKind CancelRegion) {
|
|
if (!CGF.HaveInsertPoint())
|
|
return;
|
|
// Build call kmp_int32 __kmpc_cancellationpoint(ident_t *loc, kmp_int32
|
|
// global_tid, kmp_int32 cncl_kind);
|
|
if (auto *OMPRegionInfo =
|
|
dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) {
|
|
// For 'cancellation point taskgroup', the task region info may not have a
|
|
// cancel. This may instead happen in another adjacent task.
|
|
if (CancelRegion == OMPD_taskgroup || OMPRegionInfo->hasCancel()) {
|
|
llvm::Value *Args[] = {
|
|
emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
|
|
CGF.Builder.getInt32(getCancellationKind(CancelRegion))};
|
|
// Ignore return result until untied tasks are supported.
|
|
llvm::Value *Result = CGF.EmitRuntimeCall(
|
|
createRuntimeFunction(OMPRTL__kmpc_cancellationpoint), Args);
|
|
// if (__kmpc_cancellationpoint()) {
|
|
// exit from construct;
|
|
// }
|
|
llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".cancel.exit");
|
|
llvm::BasicBlock *ContBB = CGF.createBasicBlock(".cancel.continue");
|
|
llvm::Value *Cmp = CGF.Builder.CreateIsNotNull(Result);
|
|
CGF.Builder.CreateCondBr(Cmp, ExitBB, ContBB);
|
|
CGF.EmitBlock(ExitBB);
|
|
// exit from construct;
|
|
CodeGenFunction::JumpDest CancelDest =
|
|
CGF.getOMPCancelDestination(OMPRegionInfo->getDirectiveKind());
|
|
CGF.EmitBranchThroughCleanup(CancelDest);
|
|
CGF.EmitBlock(ContBB, /*IsFinished=*/true);
|
|
}
|
|
}
|
|
}
|
|
|
|
void CGOpenMPRuntime::emitCancelCall(CodeGenFunction &CGF, SourceLocation Loc,
|
|
const Expr *IfCond,
|
|
OpenMPDirectiveKind CancelRegion) {
|
|
if (!CGF.HaveInsertPoint())
|
|
return;
|
|
// Build call kmp_int32 __kmpc_cancel(ident_t *loc, kmp_int32 global_tid,
|
|
// kmp_int32 cncl_kind);
|
|
if (auto *OMPRegionInfo =
|
|
dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) {
|
|
auto &&ThenGen = [Loc, CancelRegion, OMPRegionInfo](CodeGenFunction &CGF,
|
|
PrePostActionTy &) {
|
|
CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime();
|
|
llvm::Value *Args[] = {
|
|
RT.emitUpdateLocation(CGF, Loc), RT.getThreadID(CGF, Loc),
|
|
CGF.Builder.getInt32(getCancellationKind(CancelRegion))};
|
|
// Ignore return result until untied tasks are supported.
|
|
llvm::Value *Result = CGF.EmitRuntimeCall(
|
|
RT.createRuntimeFunction(OMPRTL__kmpc_cancel), Args);
|
|
// if (__kmpc_cancel()) {
|
|
// exit from construct;
|
|
// }
|
|
llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".cancel.exit");
|
|
llvm::BasicBlock *ContBB = CGF.createBasicBlock(".cancel.continue");
|
|
llvm::Value *Cmp = CGF.Builder.CreateIsNotNull(Result);
|
|
CGF.Builder.CreateCondBr(Cmp, ExitBB, ContBB);
|
|
CGF.EmitBlock(ExitBB);
|
|
// exit from construct;
|
|
CodeGenFunction::JumpDest CancelDest =
|
|
CGF.getOMPCancelDestination(OMPRegionInfo->getDirectiveKind());
|
|
CGF.EmitBranchThroughCleanup(CancelDest);
|
|
CGF.EmitBlock(ContBB, /*IsFinished=*/true);
|
|
};
|
|
if (IfCond) {
|
|
emitIfClause(CGF, IfCond, ThenGen,
|
|
[](CodeGenFunction &, PrePostActionTy &) {});
|
|
} else {
|
|
RegionCodeGenTy ThenRCG(ThenGen);
|
|
ThenRCG(CGF);
|
|
}
|
|
}
|
|
}
|
|
|
|
void CGOpenMPRuntime::emitTargetOutlinedFunction(
|
|
const OMPExecutableDirective &D, StringRef ParentName,
|
|
llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID,
|
|
bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) {
|
|
assert(!ParentName.empty() && "Invalid target region parent name!");
|
|
HasEmittedTargetRegion = true;
|
|
emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID,
|
|
IsOffloadEntry, CodeGen);
|
|
}
|
|
|
|
void CGOpenMPRuntime::emitTargetOutlinedFunctionHelper(
|
|
const OMPExecutableDirective &D, StringRef ParentName,
|
|
llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID,
|
|
bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) {
|
|
// Create a unique name for the entry function using the source location
|
|
// information of the current target region. The name will be something like:
|
|
//
|
|
// __omp_offloading_DD_FFFF_PP_lBB
|
|
//
|
|
// where DD_FFFF is an ID unique to the file (device and file IDs), PP is the
|
|
// mangled name of the function that encloses the target region and BB is the
|
|
// line number of the target region.
|
|
|
|
unsigned DeviceID;
|
|
unsigned FileID;
|
|
unsigned Line;
|
|
getTargetEntryUniqueInfo(CGM.getContext(), D.getBeginLoc(), DeviceID, FileID,
|
|
Line);
|
|
SmallString<64> EntryFnName;
|
|
{
|
|
llvm::raw_svector_ostream OS(EntryFnName);
|
|
OS << "__omp_offloading" << llvm::format("_%x", DeviceID)
|
|
<< llvm::format("_%x_", FileID) << ParentName << "_l" << Line;
|
|
}
|
|
|
|
const CapturedStmt &CS = *D.getCapturedStmt(OMPD_target);
|
|
|
|
CodeGenFunction CGF(CGM, true);
|
|
CGOpenMPTargetRegionInfo CGInfo(CS, CodeGen, EntryFnName);
|
|
CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
|
|
|
|
OutlinedFn = CGF.GenerateOpenMPCapturedStmtFunction(CS);
|
|
|
|
// If this target outline function is not an offload entry, we don't need to
|
|
// register it.
|
|
if (!IsOffloadEntry)
|
|
return;
|
|
|
|
// The target region ID is used by the runtime library to identify the current
|
|
// target region, so it only has to be unique and not necessarily point to
|
|
// anything. It could be the pointer to the outlined function that implements
|
|
// the target region, but we aren't using that so that the compiler doesn't
|
|
// need to keep that, and could therefore inline the host function if proven
|
|
// worthwhile during optimization. In the other hand, if emitting code for the
|
|
// device, the ID has to be the function address so that it can retrieved from
|
|
// the offloading entry and launched by the runtime library. We also mark the
|
|
// outlined function to have external linkage in case we are emitting code for
|
|
// the device, because these functions will be entry points to the device.
|
|
|
|
if (CGM.getLangOpts().OpenMPIsDevice) {
|
|
OutlinedFnID = llvm::ConstantExpr::getBitCast(OutlinedFn, CGM.Int8PtrTy);
|
|
OutlinedFn->setLinkage(llvm::GlobalValue::WeakAnyLinkage);
|
|
OutlinedFn->setDSOLocal(false);
|
|
} else {
|
|
std::string Name = getName({EntryFnName, "region_id"});
|
|
OutlinedFnID = new llvm::GlobalVariable(
|
|
CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true,
|
|
llvm::GlobalValue::WeakAnyLinkage,
|
|
llvm::Constant::getNullValue(CGM.Int8Ty), Name);
|
|
}
|
|
|
|
// Register the information for the entry associated with this target region.
|
|
OffloadEntriesInfoManager.registerTargetRegionEntryInfo(
|
|
DeviceID, FileID, ParentName, Line, OutlinedFn, OutlinedFnID,
|
|
OffloadEntriesInfoManagerTy::OMPTargetRegionEntryTargetRegion);
|
|
}
|
|
|
|
/// Checks if the expression is constant or does not have non-trivial function
|
|
/// calls.
|
|
static bool isTrivial(ASTContext &Ctx, const Expr * E) {
|
|
// We can skip constant expressions.
|
|
// We can skip expressions with trivial calls or simple expressions.
|
|
return (E->isEvaluatable(Ctx, Expr::SE_AllowUndefinedBehavior) ||
|
|
!E->hasNonTrivialCall(Ctx)) &&
|
|
!E->HasSideEffects(Ctx, /*IncludePossibleEffects=*/true);
|
|
}
|
|
|
|
const Stmt *CGOpenMPRuntime::getSingleCompoundChild(ASTContext &Ctx,
|
|
const Stmt *Body) {
|
|
const Stmt *Child = Body->IgnoreContainers();
|
|
while (const auto *C = dyn_cast_or_null<CompoundStmt>(Child)) {
|
|
Child = nullptr;
|
|
for (const Stmt *S : C->body()) {
|
|
if (const auto *E = dyn_cast<Expr>(S)) {
|
|
if (isTrivial(Ctx, E))
|
|
continue;
|
|
}
|
|
// Some of the statements can be ignored.
|
|
if (isa<AsmStmt>(S) || isa<NullStmt>(S) || isa<OMPFlushDirective>(S) ||
|
|
isa<OMPBarrierDirective>(S) || isa<OMPTaskyieldDirective>(S))
|
|
continue;
|
|
// Analyze declarations.
|
|
if (const auto *DS = dyn_cast<DeclStmt>(S)) {
|
|
if (llvm::all_of(DS->decls(), [&Ctx](const Decl *D) {
|
|
if (isa<EmptyDecl>(D) || isa<DeclContext>(D) ||
|
|
isa<TypeDecl>(D) || isa<PragmaCommentDecl>(D) ||
|
|
isa<PragmaDetectMismatchDecl>(D) || isa<UsingDecl>(D) ||
|
|
isa<UsingDirectiveDecl>(D) ||
|
|
isa<OMPDeclareReductionDecl>(D) ||
|
|
isa<OMPThreadPrivateDecl>(D) || isa<OMPAllocateDecl>(D))
|
|
return true;
|
|
const auto *VD = dyn_cast<VarDecl>(D);
|
|
if (!VD)
|
|
return false;
|
|
return VD->isConstexpr() ||
|
|
((VD->getType().isTrivialType(Ctx) ||
|
|
VD->getType()->isReferenceType()) &&
|
|
(!VD->hasInit() || isTrivial(Ctx, VD->getInit())));
|
|
}))
|
|
continue;
|
|
}
|
|
// Found multiple children - cannot get the one child only.
|
|
if (Child)
|
|
return nullptr;
|
|
Child = S;
|
|
}
|
|
if (Child)
|
|
Child = Child->IgnoreContainers();
|
|
}
|
|
return Child;
|
|
}
|
|
|
|
/// Emit the number of teams for a target directive. Inspect the num_teams
|
|
/// clause associated with a teams construct combined or closely nested
|
|
/// with the target directive.
|
|
///
|
|
/// Emit a team of size one for directives such as 'target parallel' that
|
|
/// have no associated teams construct.
|
|
///
|
|
/// Otherwise, return nullptr.
|
|
static llvm::Value *
|
|
emitNumTeamsForTargetDirective(CodeGenFunction &CGF,
|
|
const OMPExecutableDirective &D) {
|
|
assert(!CGF.getLangOpts().OpenMPIsDevice &&
|
|
"Clauses associated with the teams directive expected to be emitted "
|
|
"only for the host!");
|
|
OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind();
|
|
assert(isOpenMPTargetExecutionDirective(DirectiveKind) &&
|
|
"Expected target-based executable directive.");
|
|
CGBuilderTy &Bld = CGF.Builder;
|
|
switch (DirectiveKind) {
|
|
case OMPD_target: {
|
|
const auto *CS = D.getInnermostCapturedStmt();
|
|
const auto *Body =
|
|
CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
|
|
const Stmt *ChildStmt =
|
|
CGOpenMPRuntime::getSingleCompoundChild(CGF.getContext(), Body);
|
|
if (const auto *NestedDir =
|
|
dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
|
|
if (isOpenMPTeamsDirective(NestedDir->getDirectiveKind())) {
|
|
if (NestedDir->hasClausesOfKind<OMPNumTeamsClause>()) {
|
|
CGOpenMPInnerExprInfo CGInfo(CGF, *CS);
|
|
CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
|
|
const Expr *NumTeams =
|
|
NestedDir->getSingleClause<OMPNumTeamsClause>()->getNumTeams();
|
|
llvm::Value *NumTeamsVal =
|
|
CGF.EmitScalarExpr(NumTeams,
|
|
/*IgnoreResultAssign*/ true);
|
|
return Bld.CreateIntCast(NumTeamsVal, CGF.Int32Ty,
|
|
/*isSigned=*/true);
|
|
}
|
|
return Bld.getInt32(0);
|
|
}
|
|
if (isOpenMPParallelDirective(NestedDir->getDirectiveKind()) ||
|
|
isOpenMPSimdDirective(NestedDir->getDirectiveKind()))
|
|
return Bld.getInt32(1);
|
|
return Bld.getInt32(0);
|
|
}
|
|
return nullptr;
|
|
}
|
|
case OMPD_target_teams:
|
|
case OMPD_target_teams_distribute:
|
|
case OMPD_target_teams_distribute_simd:
|
|
case OMPD_target_teams_distribute_parallel_for:
|
|
case OMPD_target_teams_distribute_parallel_for_simd: {
|
|
if (D.hasClausesOfKind<OMPNumTeamsClause>()) {
|
|
CodeGenFunction::RunCleanupsScope NumTeamsScope(CGF);
|
|
const Expr *NumTeams =
|
|
D.getSingleClause<OMPNumTeamsClause>()->getNumTeams();
|
|
llvm::Value *NumTeamsVal =
|
|
CGF.EmitScalarExpr(NumTeams,
|
|
/*IgnoreResultAssign*/ true);
|
|
return Bld.CreateIntCast(NumTeamsVal, CGF.Int32Ty,
|
|
/*isSigned=*/true);
|
|
}
|
|
return Bld.getInt32(0);
|
|
}
|
|
case OMPD_target_parallel:
|
|
case OMPD_target_parallel_for:
|
|
case OMPD_target_parallel_for_simd:
|
|
case OMPD_target_simd:
|
|
return Bld.getInt32(1);
|
|
case OMPD_parallel:
|
|
case OMPD_for:
|
|
case OMPD_parallel_for:
|
|
case OMPD_parallel_master:
|
|
case OMPD_parallel_sections:
|
|
case OMPD_for_simd:
|
|
case OMPD_parallel_for_simd:
|
|
case OMPD_cancel:
|
|
case OMPD_cancellation_point:
|
|
case OMPD_ordered:
|
|
case OMPD_threadprivate:
|
|
case OMPD_allocate:
|
|
case OMPD_task:
|
|
case OMPD_simd:
|
|
case OMPD_sections:
|
|
case OMPD_section:
|
|
case OMPD_single:
|
|
case OMPD_master:
|
|
case OMPD_critical:
|
|
case OMPD_taskyield:
|
|
case OMPD_barrier:
|
|
case OMPD_taskwait:
|
|
case OMPD_taskgroup:
|
|
case OMPD_atomic:
|
|
case OMPD_flush:
|
|
case OMPD_teams:
|
|
case OMPD_target_data:
|
|
case OMPD_target_exit_data:
|
|
case OMPD_target_enter_data:
|
|
case OMPD_distribute:
|
|
case OMPD_distribute_simd:
|
|
case OMPD_distribute_parallel_for:
|
|
case OMPD_distribute_parallel_for_simd:
|
|
case OMPD_teams_distribute:
|
|
case OMPD_teams_distribute_simd:
|
|
case OMPD_teams_distribute_parallel_for:
|
|
case OMPD_teams_distribute_parallel_for_simd:
|
|
case OMPD_target_update:
|
|
case OMPD_declare_simd:
|
|
case OMPD_declare_variant:
|
|
case OMPD_declare_target:
|
|
case OMPD_end_declare_target:
|
|
case OMPD_declare_reduction:
|
|
case OMPD_declare_mapper:
|
|
case OMPD_taskloop:
|
|
case OMPD_taskloop_simd:
|
|
case OMPD_master_taskloop:
|
|
case OMPD_master_taskloop_simd:
|
|
case OMPD_parallel_master_taskloop:
|
|
case OMPD_parallel_master_taskloop_simd:
|
|
case OMPD_requires:
|
|
case OMPD_unknown:
|
|
break;
|
|
}
|
|
llvm_unreachable("Unexpected directive kind.");
|
|
}
|
|
|
|
static llvm::Value *getNumThreads(CodeGenFunction &CGF, const CapturedStmt *CS,
|
|
llvm::Value *DefaultThreadLimitVal) {
|
|
const Stmt *Child = CGOpenMPRuntime::getSingleCompoundChild(
|
|
CGF.getContext(), CS->getCapturedStmt());
|
|
if (const auto *Dir = dyn_cast_or_null<OMPExecutableDirective>(Child)) {
|
|
if (isOpenMPParallelDirective(Dir->getDirectiveKind())) {
|
|
llvm::Value *NumThreads = nullptr;
|
|
llvm::Value *CondVal = nullptr;
|
|
// Handle if clause. If if clause present, the number of threads is
|
|
// calculated as <cond> ? (<numthreads> ? <numthreads> : 0 ) : 1.
|
|
if (Dir->hasClausesOfKind<OMPIfClause>()) {
|
|
CGOpenMPInnerExprInfo CGInfo(CGF, *CS);
|
|
CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
|
|
const OMPIfClause *IfClause = nullptr;
|
|
for (const auto *C : Dir->getClausesOfKind<OMPIfClause>()) {
|
|
if (C->getNameModifier() == OMPD_unknown ||
|
|
C->getNameModifier() == OMPD_parallel) {
|
|
IfClause = C;
|
|
break;
|
|
}
|
|
}
|
|
if (IfClause) {
|
|
const Expr *Cond = IfClause->getCondition();
|
|
bool Result;
|
|
if (Cond->EvaluateAsBooleanCondition(Result, CGF.getContext())) {
|
|
if (!Result)
|
|
return CGF.Builder.getInt32(1);
|
|
} else {
|
|
CodeGenFunction::LexicalScope Scope(CGF, Cond->getSourceRange());
|
|
if (const auto *PreInit =
|
|
cast_or_null<DeclStmt>(IfClause->getPreInitStmt())) {
|
|
for (const auto *I : PreInit->decls()) {
|
|
if (!I->hasAttr<OMPCaptureNoInitAttr>()) {
|
|
CGF.EmitVarDecl(cast<VarDecl>(*I));
|
|
} else {
|
|
CodeGenFunction::AutoVarEmission Emission =
|
|
CGF.EmitAutoVarAlloca(cast<VarDecl>(*I));
|
|
CGF.EmitAutoVarCleanups(Emission);
|
|
}
|
|
}
|
|
}
|
|
CondVal = CGF.EvaluateExprAsBool(Cond);
|
|
}
|
|
}
|
|
}
|
|
// Check the value of num_threads clause iff if clause was not specified
|
|
// or is not evaluated to false.
|
|
if (Dir->hasClausesOfKind<OMPNumThreadsClause>()) {
|
|
CGOpenMPInnerExprInfo CGInfo(CGF, *CS);
|
|
CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
|
|
const auto *NumThreadsClause =
|
|
Dir->getSingleClause<OMPNumThreadsClause>();
|
|
CodeGenFunction::LexicalScope Scope(
|
|
CGF, NumThreadsClause->getNumThreads()->getSourceRange());
|
|
if (const auto *PreInit =
|
|
cast_or_null<DeclStmt>(NumThreadsClause->getPreInitStmt())) {
|
|
for (const auto *I : PreInit->decls()) {
|
|
if (!I->hasAttr<OMPCaptureNoInitAttr>()) {
|
|
CGF.EmitVarDecl(cast<VarDecl>(*I));
|
|
} else {
|
|
CodeGenFunction::AutoVarEmission Emission =
|
|
CGF.EmitAutoVarAlloca(cast<VarDecl>(*I));
|
|
CGF.EmitAutoVarCleanups(Emission);
|
|
}
|
|
}
|
|
}
|
|
NumThreads = CGF.EmitScalarExpr(NumThreadsClause->getNumThreads());
|
|
NumThreads = CGF.Builder.CreateIntCast(NumThreads, CGF.Int32Ty,
|
|
/*isSigned=*/false);
|
|
if (DefaultThreadLimitVal)
|
|
NumThreads = CGF.Builder.CreateSelect(
|
|
CGF.Builder.CreateICmpULT(DefaultThreadLimitVal, NumThreads),
|
|
DefaultThreadLimitVal, NumThreads);
|
|
} else {
|
|
NumThreads = DefaultThreadLimitVal ? DefaultThreadLimitVal
|
|
: CGF.Builder.getInt32(0);
|
|
}
|
|
// Process condition of the if clause.
|
|
if (CondVal) {
|
|
NumThreads = CGF.Builder.CreateSelect(CondVal, NumThreads,
|
|
CGF.Builder.getInt32(1));
|
|
}
|
|
return NumThreads;
|
|
}
|
|
if (isOpenMPSimdDirective(Dir->getDirectiveKind()))
|
|
return CGF.Builder.getInt32(1);
|
|
return DefaultThreadLimitVal;
|
|
}
|
|
return DefaultThreadLimitVal ? DefaultThreadLimitVal
|
|
: CGF.Builder.getInt32(0);
|
|
}
|
|
|
|
/// Emit the number of threads for a target directive. Inspect the
|
|
/// thread_limit clause associated with a teams construct combined or closely
|
|
/// nested with the target directive.
|
|
///
|
|
/// Emit the num_threads clause for directives such as 'target parallel' that
|
|
/// have no associated teams construct.
|
|
///
|
|
/// Otherwise, return nullptr.
|
|
static llvm::Value *
|
|
emitNumThreadsForTargetDirective(CodeGenFunction &CGF,
|
|
const OMPExecutableDirective &D) {
|
|
assert(!CGF.getLangOpts().OpenMPIsDevice &&
|
|
"Clauses associated with the teams directive expected to be emitted "
|
|
"only for the host!");
|
|
OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind();
|
|
assert(isOpenMPTargetExecutionDirective(DirectiveKind) &&
|
|
"Expected target-based executable directive.");
|
|
CGBuilderTy &Bld = CGF.Builder;
|
|
llvm::Value *ThreadLimitVal = nullptr;
|
|
llvm::Value *NumThreadsVal = nullptr;
|
|
switch (DirectiveKind) {
|
|
case OMPD_target: {
|
|
const CapturedStmt *CS = D.getInnermostCapturedStmt();
|
|
if (llvm::Value *NumThreads = getNumThreads(CGF, CS, ThreadLimitVal))
|
|
return NumThreads;
|
|
const Stmt *Child = CGOpenMPRuntime::getSingleCompoundChild(
|
|
CGF.getContext(), CS->getCapturedStmt());
|
|
if (const auto *Dir = dyn_cast_or_null<OMPExecutableDirective>(Child)) {
|
|
if (Dir->hasClausesOfKind<OMPThreadLimitClause>()) {
|
|
CGOpenMPInnerExprInfo CGInfo(CGF, *CS);
|
|
CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
|
|
const auto *ThreadLimitClause =
|
|
Dir->getSingleClause<OMPThreadLimitClause>();
|
|
CodeGenFunction::LexicalScope Scope(
|
|
CGF, ThreadLimitClause->getThreadLimit()->getSourceRange());
|
|
if (const auto *PreInit =
|
|
cast_or_null<DeclStmt>(ThreadLimitClause->getPreInitStmt())) {
|
|
for (const auto *I : PreInit->decls()) {
|
|
if (!I->hasAttr<OMPCaptureNoInitAttr>()) {
|
|
CGF.EmitVarDecl(cast<VarDecl>(*I));
|
|
} else {
|
|
CodeGenFunction::AutoVarEmission Emission =
|
|
CGF.EmitAutoVarAlloca(cast<VarDecl>(*I));
|
|
CGF.EmitAutoVarCleanups(Emission);
|
|
}
|
|
}
|
|
}
|
|
llvm::Value *ThreadLimit = CGF.EmitScalarExpr(
|
|
ThreadLimitClause->getThreadLimit(), /*IgnoreResultAssign=*/true);
|
|
ThreadLimitVal =
|
|
Bld.CreateIntCast(ThreadLimit, CGF.Int32Ty, /*isSigned=*/false);
|
|
}
|
|
if (isOpenMPTeamsDirective(Dir->getDirectiveKind()) &&
|
|
!isOpenMPDistributeDirective(Dir->getDirectiveKind())) {
|
|
CS = Dir->getInnermostCapturedStmt();
|
|
const Stmt *Child = CGOpenMPRuntime::getSingleCompoundChild(
|
|
CGF.getContext(), CS->getCapturedStmt());
|
|
Dir = dyn_cast_or_null<OMPExecutableDirective>(Child);
|
|
}
|
|
if (Dir && isOpenMPDistributeDirective(Dir->getDirectiveKind()) &&
|
|
!isOpenMPSimdDirective(Dir->getDirectiveKind())) {
|
|
CS = Dir->getInnermostCapturedStmt();
|
|
if (llvm::Value *NumThreads = getNumThreads(CGF, CS, ThreadLimitVal))
|
|
return NumThreads;
|
|
}
|
|
if (Dir && isOpenMPSimdDirective(Dir->getDirectiveKind()))
|
|
return Bld.getInt32(1);
|
|
}
|
|
return ThreadLimitVal ? ThreadLimitVal : Bld.getInt32(0);
|
|
}
|
|
case OMPD_target_teams: {
|
|
if (D.hasClausesOfKind<OMPThreadLimitClause>()) {
|
|
CodeGenFunction::RunCleanupsScope ThreadLimitScope(CGF);
|
|
const auto *ThreadLimitClause = D.getSingleClause<OMPThreadLimitClause>();
|
|
llvm::Value *ThreadLimit = CGF.EmitScalarExpr(
|
|
ThreadLimitClause->getThreadLimit(), /*IgnoreResultAssign=*/true);
|
|
ThreadLimitVal =
|
|
Bld.CreateIntCast(ThreadLimit, CGF.Int32Ty, /*isSigned=*/false);
|
|
}
|
|
const CapturedStmt *CS = D.getInnermostCapturedStmt();
|
|
if (llvm::Value *NumThreads = getNumThreads(CGF, CS, ThreadLimitVal))
|
|
return NumThreads;
|
|
const Stmt *Child = CGOpenMPRuntime::getSingleCompoundChild(
|
|
CGF.getContext(), CS->getCapturedStmt());
|
|
if (const auto *Dir = dyn_cast_or_null<OMPExecutableDirective>(Child)) {
|
|
if (Dir->getDirectiveKind() == OMPD_distribute) {
|
|
CS = Dir->getInnermostCapturedStmt();
|
|
if (llvm::Value *NumThreads = getNumThreads(CGF, CS, ThreadLimitVal))
|
|
return NumThreads;
|
|
}
|
|
}
|
|
return ThreadLimitVal ? ThreadLimitVal : Bld.getInt32(0);
|
|
}
|
|
case OMPD_target_teams_distribute:
|
|
if (D.hasClausesOfKind<OMPThreadLimitClause>()) {
|
|
CodeGenFunction::RunCleanupsScope ThreadLimitScope(CGF);
|
|
const auto *ThreadLimitClause = D.getSingleClause<OMPThreadLimitClause>();
|
|
llvm::Value *ThreadLimit = CGF.EmitScalarExpr(
|
|
ThreadLimitClause->getThreadLimit(), /*IgnoreResultAssign=*/true);
|
|
ThreadLimitVal =
|
|
Bld.CreateIntCast(ThreadLimit, CGF.Int32Ty, /*isSigned=*/false);
|
|
}
|
|
return getNumThreads(CGF, D.getInnermostCapturedStmt(), ThreadLimitVal);
|
|
case OMPD_target_parallel:
|
|
case OMPD_target_parallel_for:
|
|
case OMPD_target_parallel_for_simd:
|
|
case OMPD_target_teams_distribute_parallel_for:
|
|
case OMPD_target_teams_distribute_parallel_for_simd: {
|
|
llvm::Value *CondVal = nullptr;
|
|
// Handle if clause. If if clause present, the number of threads is
|
|
// calculated as <cond> ? (<numthreads> ? <numthreads> : 0 ) : 1.
|
|
if (D.hasClausesOfKind<OMPIfClause>()) {
|
|
const OMPIfClause *IfClause = nullptr;
|
|
for (const auto *C : D.getClausesOfKind<OMPIfClause>()) {
|
|
if (C->getNameModifier() == OMPD_unknown ||
|
|
C->getNameModifier() == OMPD_parallel) {
|
|
IfClause = C;
|
|
break;
|
|
}
|
|
}
|
|
if (IfClause) {
|
|
const Expr *Cond = IfClause->getCondition();
|
|
bool Result;
|
|
if (Cond->EvaluateAsBooleanCondition(Result, CGF.getContext())) {
|
|
if (!Result)
|
|
return Bld.getInt32(1);
|
|
} else {
|
|
CodeGenFunction::RunCleanupsScope Scope(CGF);
|
|
CondVal = CGF.EvaluateExprAsBool(Cond);
|
|
}
|
|
}
|
|
}
|
|
if (D.hasClausesOfKind<OMPThreadLimitClause>()) {
|
|
CodeGenFunction::RunCleanupsScope ThreadLimitScope(CGF);
|
|
const auto *ThreadLimitClause = D.getSingleClause<OMPThreadLimitClause>();
|
|
llvm::Value *ThreadLimit = CGF.EmitScalarExpr(
|
|
ThreadLimitClause->getThreadLimit(), /*IgnoreResultAssign=*/true);
|
|
ThreadLimitVal =
|
|
Bld.CreateIntCast(ThreadLimit, CGF.Int32Ty, /*isSigned=*/false);
|
|
}
|
|
if (D.hasClausesOfKind<OMPNumThreadsClause>()) {
|
|
CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF);
|
|
const auto *NumThreadsClause = D.getSingleClause<OMPNumThreadsClause>();
|
|
llvm::Value *NumThreads = CGF.EmitScalarExpr(
|
|
NumThreadsClause->getNumThreads(), /*IgnoreResultAssign=*/true);
|
|
NumThreadsVal =
|
|
Bld.CreateIntCast(NumThreads, CGF.Int32Ty, /*isSigned=*/false);
|
|
ThreadLimitVal = ThreadLimitVal
|
|
? Bld.CreateSelect(Bld.CreateICmpULT(NumThreadsVal,
|
|
ThreadLimitVal),
|
|
NumThreadsVal, ThreadLimitVal)
|
|
: NumThreadsVal;
|
|
}
|
|
if (!ThreadLimitVal)
|
|
ThreadLimitVal = Bld.getInt32(0);
|
|
if (CondVal)
|
|
return Bld.CreateSelect(CondVal, ThreadLimitVal, Bld.getInt32(1));
|
|
return ThreadLimitVal;
|
|
}
|
|
case OMPD_target_teams_distribute_simd:
|
|
case OMPD_target_simd:
|
|
return Bld.getInt32(1);
|
|
case OMPD_parallel:
|
|
case OMPD_for:
|
|
case OMPD_parallel_for:
|
|
case OMPD_parallel_master:
|
|
case OMPD_parallel_sections:
|
|
case OMPD_for_simd:
|
|
case OMPD_parallel_for_simd:
|
|
case OMPD_cancel:
|
|
case OMPD_cancellation_point:
|
|
case OMPD_ordered:
|
|
case OMPD_threadprivate:
|
|
case OMPD_allocate:
|
|
case OMPD_task:
|
|
case OMPD_simd:
|
|
case OMPD_sections:
|
|
case OMPD_section:
|
|
case OMPD_single:
|
|
case OMPD_master:
|
|
case OMPD_critical:
|
|
case OMPD_taskyield:
|
|
case OMPD_barrier:
|
|
case OMPD_taskwait:
|
|
case OMPD_taskgroup:
|
|
case OMPD_atomic:
|
|
case OMPD_flush:
|
|
case OMPD_teams:
|
|
case OMPD_target_data:
|
|
case OMPD_target_exit_data:
|
|
case OMPD_target_enter_data:
|
|
case OMPD_distribute:
|
|
case OMPD_distribute_simd:
|
|
case OMPD_distribute_parallel_for:
|
|
case OMPD_distribute_parallel_for_simd:
|
|
case OMPD_teams_distribute:
|
|
case OMPD_teams_distribute_simd:
|
|
case OMPD_teams_distribute_parallel_for:
|
|
case OMPD_teams_distribute_parallel_for_simd:
|
|
case OMPD_target_update:
|
|
case OMPD_declare_simd:
|
|
case OMPD_declare_variant:
|
|
case OMPD_declare_target:
|
|
case OMPD_end_declare_target:
|
|
case OMPD_declare_reduction:
|
|
case OMPD_declare_mapper:
|
|
case OMPD_taskloop:
|
|
case OMPD_taskloop_simd:
|
|
case OMPD_master_taskloop:
|
|
case OMPD_master_taskloop_simd:
|
|
case OMPD_parallel_master_taskloop:
|
|
case OMPD_parallel_master_taskloop_simd:
|
|
case OMPD_requires:
|
|
case OMPD_unknown:
|
|
break;
|
|
}
|
|
llvm_unreachable("Unsupported directive kind.");
|
|
}
|
|
|
|
namespace {
|
|
LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE();
|
|
|
|
// Utility to handle information from clauses associated with a given
|
|
// construct that use mappable expressions (e.g. 'map' clause, 'to' clause).
|
|
// It provides a convenient interface to obtain the information and generate
|
|
// code for that information.
|
|
class MappableExprsHandler {
|
|
public:
|
|
/// Values for bit flags used to specify the mapping type for
|
|
/// offloading.
|
|
enum OpenMPOffloadMappingFlags : uint64_t {
|
|
/// No flags
|
|
OMP_MAP_NONE = 0x0,
|
|
/// Allocate memory on the device and move data from host to device.
|
|
OMP_MAP_TO = 0x01,
|
|
/// Allocate memory on the device and move data from device to host.
|
|
OMP_MAP_FROM = 0x02,
|
|
/// Always perform the requested mapping action on the element, even
|
|
/// if it was already mapped before.
|
|
OMP_MAP_ALWAYS = 0x04,
|
|
/// Delete the element from the device environment, ignoring the
|
|
/// current reference count associated with the element.
|
|
OMP_MAP_DELETE = 0x08,
|
|
/// The element being mapped is a pointer-pointee pair; both the
|
|
/// pointer and the pointee should be mapped.
|
|
OMP_MAP_PTR_AND_OBJ = 0x10,
|
|
/// This flags signals that the base address of an entry should be
|
|
/// passed to the target kernel as an argument.
|
|
OMP_MAP_TARGET_PARAM = 0x20,
|
|
/// Signal that the runtime library has to return the device pointer
|
|
/// in the current position for the data being mapped. Used when we have the
|
|
/// use_device_ptr clause.
|
|
OMP_MAP_RETURN_PARAM = 0x40,
|
|
/// This flag signals that the reference being passed is a pointer to
|
|
/// private data.
|
|
OMP_MAP_PRIVATE = 0x80,
|
|
/// Pass the element to the device by value.
|
|
OMP_MAP_LITERAL = 0x100,
|
|
/// Implicit map
|
|
OMP_MAP_IMPLICIT = 0x200,
|
|
/// Close is a hint to the runtime to allocate memory close to
|
|
/// the target device.
|
|
OMP_MAP_CLOSE = 0x400,
|
|
/// The 16 MSBs of the flags indicate whether the entry is member of some
|
|
/// struct/class.
|
|
OMP_MAP_MEMBER_OF = 0xffff000000000000,
|
|
LLVM_MARK_AS_BITMASK_ENUM(/* LargestFlag = */ OMP_MAP_MEMBER_OF),
|
|
};
|
|
|
|
/// Get the offset of the OMP_MAP_MEMBER_OF field.
|
|
static unsigned getFlagMemberOffset() {
|
|
unsigned Offset = 0;
|
|
for (uint64_t Remain = OMP_MAP_MEMBER_OF; !(Remain & 1);
|
|
Remain = Remain >> 1)
|
|
Offset++;
|
|
return Offset;
|
|
}
|
|
|
|
/// Class that associates information with a base pointer to be passed to the
|
|
/// runtime library.
|
|
class BasePointerInfo {
|
|
/// The base pointer.
|
|
llvm::Value *Ptr = nullptr;
|
|
/// The base declaration that refers to this device pointer, or null if
|
|
/// there is none.
|
|
const ValueDecl *DevPtrDecl = nullptr;
|
|
|
|
public:
|
|
BasePointerInfo(llvm::Value *Ptr, const ValueDecl *DevPtrDecl = nullptr)
|
|
: Ptr(Ptr), DevPtrDecl(DevPtrDecl) {}
|
|
llvm::Value *operator*() const { return Ptr; }
|
|
const ValueDecl *getDevicePtrDecl() const { return DevPtrDecl; }
|
|
void setDevicePtrDecl(const ValueDecl *D) { DevPtrDecl = D; }
|
|
};
|
|
|
|
using MapBaseValuesArrayTy = SmallVector<BasePointerInfo, 4>;
|
|
using MapValuesArrayTy = SmallVector<llvm::Value *, 4>;
|
|
using MapFlagsArrayTy = SmallVector<OpenMPOffloadMappingFlags, 4>;
|
|
|
|
/// Map between a struct and the its lowest & highest elements which have been
|
|
/// mapped.
|
|
/// [ValueDecl *] --> {LE(FieldIndex, Pointer),
|
|
/// HE(FieldIndex, Pointer)}
|
|
struct StructRangeInfoTy {
|
|
std::pair<unsigned /*FieldIndex*/, Address /*Pointer*/> LowestElem = {
|
|
0, Address::invalid()};
|
|
std::pair<unsigned /*FieldIndex*/, Address /*Pointer*/> HighestElem = {
|
|
0, Address::invalid()};
|
|
Address Base = Address::invalid();
|
|
};
|
|
|
|
private:
|
|
/// Kind that defines how a device pointer has to be returned.
|
|
struct MapInfo {
|
|
OMPClauseMappableExprCommon::MappableExprComponentListRef Components;
|
|
OpenMPMapClauseKind MapType = OMPC_MAP_unknown;
|
|
ArrayRef<OpenMPMapModifierKind> MapModifiers;
|
|
bool ReturnDevicePointer = false;
|
|
bool IsImplicit = false;
|
|
|
|
MapInfo() = default;
|
|
MapInfo(
|
|
OMPClauseMappableExprCommon::MappableExprComponentListRef Components,
|
|
OpenMPMapClauseKind MapType,
|
|
ArrayRef<OpenMPMapModifierKind> MapModifiers,
|
|
bool ReturnDevicePointer, bool IsImplicit)
|
|
: Components(Components), MapType(MapType), MapModifiers(MapModifiers),
|
|
ReturnDevicePointer(ReturnDevicePointer), IsImplicit(IsImplicit) {}
|
|
};
|
|
|
|
/// If use_device_ptr is used on a pointer which is a struct member and there
|
|
/// is no map information about it, then emission of that entry is deferred
|
|
/// until the whole struct has been processed.
|
|
struct DeferredDevicePtrEntryTy {
|
|
const Expr *IE = nullptr;
|
|
const ValueDecl *VD = nullptr;
|
|
|
|
DeferredDevicePtrEntryTy(const Expr *IE, const ValueDecl *VD)
|
|
: IE(IE), VD(VD) {}
|
|
};
|
|
|
|
/// The target directive from where the mappable clauses were extracted. It
|
|
/// is either a executable directive or a user-defined mapper directive.
|
|
llvm::PointerUnion<const OMPExecutableDirective *,
|
|
const OMPDeclareMapperDecl *>
|
|
CurDir;
|
|
|
|
/// Function the directive is being generated for.
|
|
CodeGenFunction &CGF;
|
|
|
|
/// Set of all first private variables in the current directive.
|
|
/// bool data is set to true if the variable is implicitly marked as
|
|
/// firstprivate, false otherwise.
|
|
llvm::DenseMap<CanonicalDeclPtr<const VarDecl>, bool> FirstPrivateDecls;
|
|
|
|
/// Map between device pointer declarations and their expression components.
|
|
/// The key value for declarations in 'this' is null.
|
|
llvm::DenseMap<
|
|
const ValueDecl *,
|
|
SmallVector<OMPClauseMappableExprCommon::MappableExprComponentListRef, 4>>
|
|
DevPointersMap;
|
|
|
|
llvm::Value *getExprTypeSize(const Expr *E) const {
|
|
QualType ExprTy = E->getType().getCanonicalType();
|
|
|
|
// Reference types are ignored for mapping purposes.
|
|
if (const auto *RefTy = ExprTy->getAs<ReferenceType>())
|
|
ExprTy = RefTy->getPointeeType().getCanonicalType();
|
|
|
|
// Given that an array section is considered a built-in type, we need to
|
|
// do the calculation based on the length of the section instead of relying
|
|
// on CGF.getTypeSize(E->getType()).
|
|
if (const auto *OAE = dyn_cast<OMPArraySectionExpr>(E)) {
|
|
QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(
|
|
OAE->getBase()->IgnoreParenImpCasts())
|
|
.getCanonicalType();
|
|
|
|
// If there is no length associated with the expression and lower bound is
|
|
// not specified too, that means we are using the whole length of the
|
|
// base.
|
|
if (!OAE->getLength() && OAE->getColonLoc().isValid() &&
|
|
!OAE->getLowerBound())
|
|
return CGF.getTypeSize(BaseTy);
|
|
|
|
llvm::Value *ElemSize;
|
|
if (const auto *PTy = BaseTy->getAs<PointerType>()) {
|
|
ElemSize = CGF.getTypeSize(PTy->getPointeeType().getCanonicalType());
|
|
} else {
|
|
const auto *ATy = cast<ArrayType>(BaseTy.getTypePtr());
|
|
assert(ATy && "Expecting array type if not a pointer type.");
|
|
ElemSize = CGF.getTypeSize(ATy->getElementType().getCanonicalType());
|
|
}
|
|
|
|
// If we don't have a length at this point, that is because we have an
|
|
// array section with a single element.
|
|
if (!OAE->getLength() && OAE->getColonLoc().isInvalid())
|
|
return ElemSize;
|
|
|
|
if (const Expr *LenExpr = OAE->getLength()) {
|
|
llvm::Value *LengthVal = CGF.EmitScalarExpr(LenExpr);
|
|
LengthVal = CGF.EmitScalarConversion(LengthVal, LenExpr->getType(),
|
|
CGF.getContext().getSizeType(),
|
|
LenExpr->getExprLoc());
|
|
return CGF.Builder.CreateNUWMul(LengthVal, ElemSize);
|
|
}
|
|
assert(!OAE->getLength() && OAE->getColonLoc().isValid() &&
|
|
OAE->getLowerBound() && "expected array_section[lb:].");
|
|
// Size = sizetype - lb * elemtype;
|
|
llvm::Value *LengthVal = CGF.getTypeSize(BaseTy);
|
|
llvm::Value *LBVal = CGF.EmitScalarExpr(OAE->getLowerBound());
|
|
LBVal = CGF.EmitScalarConversion(LBVal, OAE->getLowerBound()->getType(),
|
|
CGF.getContext().getSizeType(),
|
|
OAE->getLowerBound()->getExprLoc());
|
|
LBVal = CGF.Builder.CreateNUWMul(LBVal, ElemSize);
|
|
llvm::Value *Cmp = CGF.Builder.CreateICmpUGT(LengthVal, LBVal);
|
|
llvm::Value *TrueVal = CGF.Builder.CreateNUWSub(LengthVal, LBVal);
|
|
LengthVal = CGF.Builder.CreateSelect(
|
|
Cmp, TrueVal, llvm::ConstantInt::get(CGF.SizeTy, 0));
|
|
return LengthVal;
|
|
}
|
|
return CGF.getTypeSize(ExprTy);
|
|
}
|
|
|
|
/// Return the corresponding bits for a given map clause modifier. Add
|
|
/// a flag marking the map as a pointer if requested. Add a flag marking the
|
|
/// map as the first one of a series of maps that relate to the same map
|
|
/// expression.
|
|
OpenMPOffloadMappingFlags getMapTypeBits(
|
|
OpenMPMapClauseKind MapType, ArrayRef<OpenMPMapModifierKind> MapModifiers,
|
|
bool IsImplicit, bool AddPtrFlag, bool AddIsTargetParamFlag) const {
|
|
OpenMPOffloadMappingFlags Bits =
|
|
IsImplicit ? OMP_MAP_IMPLICIT : OMP_MAP_NONE;
|
|
switch (MapType) {
|
|
case OMPC_MAP_alloc:
|
|
case OMPC_MAP_release:
|
|
// alloc and release is the default behavior in the runtime library, i.e.
|
|
// if we don't pass any bits alloc/release that is what the runtime is
|
|
// going to do. Therefore, we don't need to signal anything for these two
|
|
// type modifiers.
|
|
break;
|
|
case OMPC_MAP_to:
|
|
Bits |= OMP_MAP_TO;
|
|
break;
|
|
case OMPC_MAP_from:
|
|
Bits |= OMP_MAP_FROM;
|
|
break;
|
|
case OMPC_MAP_tofrom:
|
|
Bits |= OMP_MAP_TO | OMP_MAP_FROM;
|
|
break;
|
|
case OMPC_MAP_delete:
|
|
Bits |= OMP_MAP_DELETE;
|
|
break;
|
|
case OMPC_MAP_unknown:
|
|
llvm_unreachable("Unexpected map type!");
|
|
}
|
|
if (AddPtrFlag)
|
|
Bits |= OMP_MAP_PTR_AND_OBJ;
|
|
if (AddIsTargetParamFlag)
|
|
Bits |= OMP_MAP_TARGET_PARAM;
|
|
if (llvm::find(MapModifiers, OMPC_MAP_MODIFIER_always)
|
|
!= MapModifiers.end())
|
|
Bits |= OMP_MAP_ALWAYS;
|
|
if (llvm::find(MapModifiers, OMPC_MAP_MODIFIER_close)
|
|
!= MapModifiers.end())
|
|
Bits |= OMP_MAP_CLOSE;
|
|
return Bits;
|
|
}
|
|
|
|
/// Return true if the provided expression is a final array section. A
|
|
/// final array section, is one whose length can't be proved to be one.
|
|
bool isFinalArraySectionExpression(const Expr *E) const {
|
|
const auto *OASE = dyn_cast<OMPArraySectionExpr>(E);
|
|
|
|
// It is not an array section and therefore not a unity-size one.
|
|
if (!OASE)
|
|
return false;
|
|
|
|
// An array section with no colon always refer to a single element.
|
|
if (OASE->getColonLoc().isInvalid())
|
|
return false;
|
|
|
|
const Expr *Length = OASE->getLength();
|
|
|
|
// If we don't have a length we have to check if the array has size 1
|
|
// for this dimension. Also, we should always expect a length if the
|
|
// base type is pointer.
|
|
if (!Length) {
|
|
QualType BaseQTy = OMPArraySectionExpr::getBaseOriginalType(
|
|
OASE->getBase()->IgnoreParenImpCasts())
|
|
.getCanonicalType();
|
|
if (const auto *ATy = dyn_cast<ConstantArrayType>(BaseQTy.getTypePtr()))
|
|
return ATy->getSize().getSExtValue() != 1;
|
|
// If we don't have a constant dimension length, we have to consider
|
|
// the current section as having any size, so it is not necessarily
|
|
// unitary. If it happen to be unity size, that's user fault.
|
|
return true;
|
|
}
|
|
|
|
// Check if the length evaluates to 1.
|
|
Expr::EvalResult Result;
|
|
if (!Length->EvaluateAsInt(Result, CGF.getContext()))
|
|
return true; // Can have more that size 1.
|
|
|
|
llvm::APSInt ConstLength = Result.Val.getInt();
|
|
return ConstLength.getSExtValue() != 1;
|
|
}
|
|
|
|
/// Generate the base pointers, section pointers, sizes and map type
|
|
/// bits for the provided map type, map modifier, and expression components.
|
|
/// \a IsFirstComponent should be set to true if the provided set of
|
|
/// components is the first associated with a capture.
|
|
void generateInfoForComponentList(
|
|
OpenMPMapClauseKind MapType,
|
|
ArrayRef<OpenMPMapModifierKind> MapModifiers,
|
|
OMPClauseMappableExprCommon::MappableExprComponentListRef Components,
|
|
MapBaseValuesArrayTy &BasePointers, MapValuesArrayTy &Pointers,
|
|
MapValuesArrayTy &Sizes, MapFlagsArrayTy &Types,
|
|
StructRangeInfoTy &PartialStruct, bool IsFirstComponentList,
|
|
bool IsImplicit,
|
|
ArrayRef<OMPClauseMappableExprCommon::MappableExprComponentListRef>
|
|
OverlappedElements = llvm::None) const {
|
|
// The following summarizes what has to be generated for each map and the
|
|
// types below. The generated information is expressed in this order:
|
|
// base pointer, section pointer, size, flags
|
|
// (to add to the ones that come from the map type and modifier).
|
|
//
|
|
// double d;
|
|
// int i[100];
|
|
// float *p;
|
|
//
|
|
// struct S1 {
|
|
// int i;
|
|
// float f[50];
|
|
// }
|
|
// struct S2 {
|
|
// int i;
|
|
// float f[50];
|
|
// S1 s;
|
|
// double *p;
|
|
// struct S2 *ps;
|
|
// }
|
|
// S2 s;
|
|
// S2 *ps;
|
|
//
|
|
// map(d)
|
|
// &d, &d, sizeof(double), TARGET_PARAM | TO | FROM
|
|
//
|
|
// map(i)
|
|
// &i, &i, 100*sizeof(int), TARGET_PARAM | TO | FROM
|
|
//
|
|
// map(i[1:23])
|
|
// &i(=&i[0]), &i[1], 23*sizeof(int), TARGET_PARAM | TO | FROM
|
|
//
|
|
// map(p)
|
|
// &p, &p, sizeof(float*), TARGET_PARAM | TO | FROM
|
|
//
|
|
// map(p[1:24])
|
|
// p, &p[1], 24*sizeof(float), TARGET_PARAM | TO | FROM
|
|
//
|
|
// map(s)
|
|
// &s, &s, sizeof(S2), TARGET_PARAM | TO | FROM
|
|
//
|
|
// map(s.i)
|
|
// &s, &(s.i), sizeof(int), TARGET_PARAM | TO | FROM
|
|
//
|
|
// map(s.s.f)
|
|
// &s, &(s.s.f[0]), 50*sizeof(float), TARGET_PARAM | TO | FROM
|
|
//
|
|
// map(s.p)
|
|
// &s, &(s.p), sizeof(double*), TARGET_PARAM | TO | FROM
|
|
//
|
|
// map(to: s.p[:22])
|
|
// &s, &(s.p), sizeof(double*), TARGET_PARAM (*)
|
|
// &s, &(s.p), sizeof(double*), MEMBER_OF(1) (**)
|
|
// &(s.p), &(s.p[0]), 22*sizeof(double),
|
|
// MEMBER_OF(1) | PTR_AND_OBJ | TO (***)
|
|
// (*) alloc space for struct members, only this is a target parameter
|
|
// (**) map the pointer (nothing to be mapped in this example) (the compiler
|
|
// optimizes this entry out, same in the examples below)
|
|
// (***) map the pointee (map: to)
|
|
//
|
|
// map(s.ps)
|
|
// &s, &(s.ps), sizeof(S2*), TARGET_PARAM | TO | FROM
|
|
//
|
|
// map(from: s.ps->s.i)
|
|
// &s, &(s.ps), sizeof(S2*), TARGET_PARAM
|
|
// &s, &(s.ps), sizeof(S2*), MEMBER_OF(1)
|
|
// &(s.ps), &(s.ps->s.i), sizeof(int), MEMBER_OF(1) | PTR_AND_OBJ | FROM
|
|
//
|
|
// map(to: s.ps->ps)
|
|
// &s, &(s.ps), sizeof(S2*), TARGET_PARAM
|
|
// &s, &(s.ps), sizeof(S2*), MEMBER_OF(1)
|
|
// &(s.ps), &(s.ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ | TO
|
|
//
|
|
// map(s.ps->ps->ps)
|
|
// &s, &(s.ps), sizeof(S2*), TARGET_PARAM
|
|
// &s, &(s.ps), sizeof(S2*), MEMBER_OF(1)
|
|
// &(s.ps), &(s.ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ
|
|
// &(s.ps->ps), &(s.ps->ps->ps), sizeof(S2*), PTR_AND_OBJ | TO | FROM
|
|
//
|
|
// map(to: s.ps->ps->s.f[:22])
|
|
// &s, &(s.ps), sizeof(S2*), TARGET_PARAM
|
|
// &s, &(s.ps), sizeof(S2*), MEMBER_OF(1)
|
|
// &(s.ps), &(s.ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ
|
|
// &(s.ps->ps), &(s.ps->ps->s.f[0]), 22*sizeof(float), PTR_AND_OBJ | TO
|
|
//
|
|
// map(ps)
|
|
// &ps, &ps, sizeof(S2*), TARGET_PARAM | TO | FROM
|
|
//
|
|
// map(ps->i)
|
|
// ps, &(ps->i), sizeof(int), TARGET_PARAM | TO | FROM
|
|
//
|
|
// map(ps->s.f)
|
|
// ps, &(ps->s.f[0]), 50*sizeof(float), TARGET_PARAM | TO | FROM
|
|
//
|
|
// map(from: ps->p)
|
|
// ps, &(ps->p), sizeof(double*), TARGET_PARAM | FROM
|
|
//
|
|
// map(to: ps->p[:22])
|
|
// ps, &(ps->p), sizeof(double*), TARGET_PARAM
|
|
// ps, &(ps->p), sizeof(double*), MEMBER_OF(1)
|
|
// &(ps->p), &(ps->p[0]), 22*sizeof(double), MEMBER_OF(1) | PTR_AND_OBJ | TO
|
|
//
|
|
// map(ps->ps)
|
|
// ps, &(ps->ps), sizeof(S2*), TARGET_PARAM | TO | FROM
|
|
//
|
|
// map(from: ps->ps->s.i)
|
|
// ps, &(ps->ps), sizeof(S2*), TARGET_PARAM
|
|
// ps, &(ps->ps), sizeof(S2*), MEMBER_OF(1)
|
|
// &(ps->ps), &(ps->ps->s.i), sizeof(int), MEMBER_OF(1) | PTR_AND_OBJ | FROM
|
|
//
|
|
// map(from: ps->ps->ps)
|
|
// ps, &(ps->ps), sizeof(S2*), TARGET_PARAM
|
|
// ps, &(ps->ps), sizeof(S2*), MEMBER_OF(1)
|
|
// &(ps->ps), &(ps->ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ | FROM
|
|
//
|
|
// map(ps->ps->ps->ps)
|
|
// ps, &(ps->ps), sizeof(S2*), TARGET_PARAM
|
|
// ps, &(ps->ps), sizeof(S2*), MEMBER_OF(1)
|
|
// &(ps->ps), &(ps->ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ
|
|
// &(ps->ps->ps), &(ps->ps->ps->ps), sizeof(S2*), PTR_AND_OBJ | TO | FROM
|
|
//
|
|
// map(to: ps->ps->ps->s.f[:22])
|
|
// ps, &(ps->ps), sizeof(S2*), TARGET_PARAM
|
|
// ps, &(ps->ps), sizeof(S2*), MEMBER_OF(1)
|
|
// &(ps->ps), &(ps->ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ
|
|
// &(ps->ps->ps), &(ps->ps->ps->s.f[0]), 22*sizeof(float), PTR_AND_OBJ | TO
|
|
//
|
|
// map(to: s.f[:22]) map(from: s.p[:33])
|
|
// &s, &(s.f[0]), 50*sizeof(float) + sizeof(struct S1) +
|
|
// sizeof(double*) (**), TARGET_PARAM
|
|
// &s, &(s.f[0]), 22*sizeof(float), MEMBER_OF(1) | TO
|
|
// &s, &(s.p), sizeof(double*), MEMBER_OF(1)
|
|
// &(s.p), &(s.p[0]), 33*sizeof(double), MEMBER_OF(1) | PTR_AND_OBJ | FROM
|
|
// (*) allocate contiguous space needed to fit all mapped members even if
|
|
// we allocate space for members not mapped (in this example,
|
|
// s.f[22..49] and s.s are not mapped, yet we must allocate space for
|
|
// them as well because they fall between &s.f[0] and &s.p)
|
|
//
|
|
// map(from: s.f[:22]) map(to: ps->p[:33])
|
|
// &s, &(s.f[0]), 22*sizeof(float), TARGET_PARAM | FROM
|
|
// ps, &(ps->p), sizeof(S2*), TARGET_PARAM
|
|
// ps, &(ps->p), sizeof(double*), MEMBER_OF(2) (*)
|
|
// &(ps->p), &(ps->p[0]), 33*sizeof(double), MEMBER_OF(2) | PTR_AND_OBJ | TO
|
|
// (*) the struct this entry pertains to is the 2nd element in the list of
|
|
// arguments, hence MEMBER_OF(2)
|
|
//
|
|
// map(from: s.f[:22], s.s) map(to: ps->p[:33])
|
|
// &s, &(s.f[0]), 50*sizeof(float) + sizeof(struct S1), TARGET_PARAM
|
|
// &s, &(s.f[0]), 22*sizeof(float), MEMBER_OF(1) | FROM
|
|
// &s, &(s.s), sizeof(struct S1), MEMBER_OF(1) | FROM
|
|
// ps, &(ps->p), sizeof(S2*), TARGET_PARAM
|
|
// ps, &(ps->p), sizeof(double*), MEMBER_OF(4) (*)
|
|
// &(ps->p), &(ps->p[0]), 33*sizeof(double), MEMBER_OF(4) | PTR_AND_OBJ | TO
|
|
// (*) the struct this entry pertains to is the 4th element in the list
|
|
// of arguments, hence MEMBER_OF(4)
|
|
|
|
// Track if the map information being generated is the first for a capture.
|
|
bool IsCaptureFirstInfo = IsFirstComponentList;
|
|
// When the variable is on a declare target link or in a to clause with
|
|
// unified memory, a reference is needed to hold the host/device address
|
|
// of the variable.
|
|
bool RequiresReference = false;
|
|
|
|
// Scan the components from the base to the complete expression.
|
|
auto CI = Components.rbegin();
|
|
auto CE = Components.rend();
|
|
auto I = CI;
|
|
|
|
// Track if the map information being generated is the first for a list of
|
|
// components.
|
|
bool IsExpressionFirstInfo = true;
|
|
Address BP = Address::invalid();
|
|
const Expr *AssocExpr = I->getAssociatedExpression();
|
|
const auto *AE = dyn_cast<ArraySubscriptExpr>(AssocExpr);
|
|
const auto *OASE = dyn_cast<OMPArraySectionExpr>(AssocExpr);
|
|
|
|
if (isa<MemberExpr>(AssocExpr)) {
|
|
// The base is the 'this' pointer. The content of the pointer is going
|
|
// to be the base of the field being mapped.
|
|
BP = CGF.LoadCXXThisAddress();
|
|
} else if ((AE && isa<CXXThisExpr>(AE->getBase()->IgnoreParenImpCasts())) ||
|
|
(OASE &&
|
|
isa<CXXThisExpr>(OASE->getBase()->IgnoreParenImpCasts()))) {
|
|
BP = CGF.EmitOMPSharedLValue(AssocExpr).getAddress(CGF);
|
|
} else {
|
|
// The base is the reference to the variable.
|
|
// BP = &Var.
|
|
BP = CGF.EmitOMPSharedLValue(AssocExpr).getAddress(CGF);
|
|
if (const auto *VD =
|
|
dyn_cast_or_null<VarDecl>(I->getAssociatedDeclaration())) {
|
|
if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
|
|
OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
|
|
if ((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
|
|
(*Res == OMPDeclareTargetDeclAttr::MT_To &&
|
|
CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) {
|
|
RequiresReference = true;
|
|
BP = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
|
|
}
|
|
}
|
|
}
|
|
|
|
// If the variable is a pointer and is being dereferenced (i.e. is not
|
|
// the last component), the base has to be the pointer itself, not its
|
|
// reference. References are ignored for mapping purposes.
|
|
QualType Ty =
|
|
I->getAssociatedDeclaration()->getType().getNonReferenceType();
|
|
if (Ty->isAnyPointerType() && std::next(I) != CE) {
|
|
BP = CGF.EmitLoadOfPointer(BP, Ty->castAs<PointerType>());
|
|
|
|
// We do not need to generate individual map information for the
|
|
// pointer, it can be associated with the combined storage.
|
|
++I;
|
|
}
|
|
}
|
|
|
|
// Track whether a component of the list should be marked as MEMBER_OF some
|
|
// combined entry (for partial structs). Only the first PTR_AND_OBJ entry
|
|
// in a component list should be marked as MEMBER_OF, all subsequent entries
|
|
// do not belong to the base struct. E.g.
|
|
// struct S2 s;
|
|
// s.ps->ps->ps->f[:]
|
|
// (1) (2) (3) (4)
|
|
// ps(1) is a member pointer, ps(2) is a pointee of ps(1), so it is a
|
|
// PTR_AND_OBJ entry; the PTR is ps(1), so MEMBER_OF the base struct. ps(3)
|
|
// is the pointee of ps(2) which is not member of struct s, so it should not
|
|
// be marked as such (it is still PTR_AND_OBJ).
|
|
// The variable is initialized to false so that PTR_AND_OBJ entries which
|
|
// are not struct members are not considered (e.g. array of pointers to
|
|
// data).
|
|
bool ShouldBeMemberOf = false;
|
|
|
|
// Variable keeping track of whether or not we have encountered a component
|
|
// in the component list which is a member expression. Useful when we have a
|
|
// pointer or a final array section, in which case it is the previous
|
|
// component in the list which tells us whether we have a member expression.
|
|
// E.g. X.f[:]
|
|
// While processing the final array section "[:]" it is "f" which tells us
|
|
// whether we are dealing with a member of a declared struct.
|
|
const MemberExpr *EncounteredME = nullptr;
|
|
|
|
for (; I != CE; ++I) {
|
|
// If the current component is member of a struct (parent struct) mark it.
|
|
if (!EncounteredME) {
|
|
EncounteredME = dyn_cast<MemberExpr>(I->getAssociatedExpression());
|
|
// If we encounter a PTR_AND_OBJ entry from now on it should be marked
|
|
// as MEMBER_OF the parent struct.
|
|
if (EncounteredME)
|
|
ShouldBeMemberOf = true;
|
|
}
|
|
|
|
auto Next = std::next(I);
|
|
|
|
// We need to generate the addresses and sizes if this is the last
|
|
// component, if the component is a pointer or if it is an array section
|
|
// whose length can't be proved to be one. If this is a pointer, it
|
|
// becomes the base address for the following components.
|
|
|
|
// A final array section, is one whose length can't be proved to be one.
|
|
bool IsFinalArraySection =
|
|
isFinalArraySectionExpression(I->getAssociatedExpression());
|
|
|
|
// Get information on whether the element is a pointer. Have to do a
|
|
// special treatment for array sections given that they are built-in
|
|
// types.
|
|
const auto *OASE =
|
|
dyn_cast<OMPArraySectionExpr>(I->getAssociatedExpression());
|
|
bool IsPointer =
|
|
(OASE && OMPArraySectionExpr::getBaseOriginalType(OASE)
|
|
.getCanonicalType()
|
|
->isAnyPointerType()) ||
|
|
I->getAssociatedExpression()->getType()->isAnyPointerType();
|
|
|
|
if (Next == CE || IsPointer || IsFinalArraySection) {
|
|
// If this is not the last component, we expect the pointer to be
|
|
// associated with an array expression or member expression.
|
|
assert((Next == CE ||
|
|
isa<MemberExpr>(Next->getAssociatedExpression()) ||
|
|
isa<ArraySubscriptExpr>(Next->getAssociatedExpression()) ||
|
|
isa<OMPArraySectionExpr>(Next->getAssociatedExpression())) &&
|
|
"Unexpected expression");
|
|
|
|
Address LB = CGF.EmitOMPSharedLValue(I->getAssociatedExpression())
|
|
.getAddress(CGF);
|
|
|
|
// If this component is a pointer inside the base struct then we don't
|
|
// need to create any entry for it - it will be combined with the object
|
|
// it is pointing to into a single PTR_AND_OBJ entry.
|
|
bool IsMemberPointer =
|
|
IsPointer && EncounteredME &&
|
|
(dyn_cast<MemberExpr>(I->getAssociatedExpression()) ==
|
|
EncounteredME);
|
|
if (!OverlappedElements.empty()) {
|
|
// Handle base element with the info for overlapped elements.
|
|
assert(!PartialStruct.Base.isValid() && "The base element is set.");
|
|
assert(Next == CE &&
|
|
"Expected last element for the overlapped elements.");
|
|
assert(!IsPointer &&
|
|
"Unexpected base element with the pointer type.");
|
|
// Mark the whole struct as the struct that requires allocation on the
|
|
// device.
|
|
PartialStruct.LowestElem = {0, LB};
|
|
CharUnits TypeSize = CGF.getContext().getTypeSizeInChars(
|
|
I->getAssociatedExpression()->getType());
|
|
Address HB = CGF.Builder.CreateConstGEP(
|
|
CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(LB,
|
|
CGF.VoidPtrTy),
|
|
TypeSize.getQuantity() - 1);
|
|
PartialStruct.HighestElem = {
|
|
std::numeric_limits<decltype(
|
|
PartialStruct.HighestElem.first)>::max(),
|
|
HB};
|
|
PartialStruct.Base = BP;
|
|
// Emit data for non-overlapped data.
|
|
OpenMPOffloadMappingFlags Flags =
|
|
OMP_MAP_MEMBER_OF |
|
|
getMapTypeBits(MapType, MapModifiers, IsImplicit,
|
|
/*AddPtrFlag=*/false,
|
|
/*AddIsTargetParamFlag=*/false);
|
|
LB = BP;
|
|
llvm::Value *Size = nullptr;
|
|
// Do bitcopy of all non-overlapped structure elements.
|
|
for (OMPClauseMappableExprCommon::MappableExprComponentListRef
|
|
Component : OverlappedElements) {
|
|
Address ComponentLB = Address::invalid();
|
|
for (const OMPClauseMappableExprCommon::MappableComponent &MC :
|
|
Component) {
|
|
if (MC.getAssociatedDeclaration()) {
|
|
ComponentLB =
|
|
CGF.EmitOMPSharedLValue(MC.getAssociatedExpression())
|
|
.getAddress(CGF);
|
|
Size = CGF.Builder.CreatePtrDiff(
|
|
CGF.EmitCastToVoidPtr(ComponentLB.getPointer()),
|
|
CGF.EmitCastToVoidPtr(LB.getPointer()));
|
|
break;
|
|
}
|
|
}
|
|
BasePointers.push_back(BP.getPointer());
|
|
Pointers.push_back(LB.getPointer());
|
|
Sizes.push_back(CGF.Builder.CreateIntCast(Size, CGF.Int64Ty,
|
|
/*isSigned=*/true));
|
|
Types.push_back(Flags);
|
|
LB = CGF.Builder.CreateConstGEP(ComponentLB, 1);
|
|
}
|
|
BasePointers.push_back(BP.getPointer());
|
|
Pointers.push_back(LB.getPointer());
|
|
Size = CGF.Builder.CreatePtrDiff(
|
|
CGF.EmitCastToVoidPtr(
|
|
CGF.Builder.CreateConstGEP(HB, 1).getPointer()),
|
|
CGF.EmitCastToVoidPtr(LB.getPointer()));
|
|
Sizes.push_back(
|
|
CGF.Builder.CreateIntCast(Size, CGF.Int64Ty, /*isSigned=*/true));
|
|
Types.push_back(Flags);
|
|
break;
|
|
}
|
|
llvm::Value *Size = getExprTypeSize(I->getAssociatedExpression());
|
|
if (!IsMemberPointer) {
|
|
BasePointers.push_back(BP.getPointer());
|
|
Pointers.push_back(LB.getPointer());
|
|
Sizes.push_back(
|
|
CGF.Builder.CreateIntCast(Size, CGF.Int64Ty, /*isSigned=*/true));
|
|
|
|
// We need to add a pointer flag for each map that comes from the
|
|
// same expression except for the first one. We also need to signal
|
|
// this map is the first one that relates with the current capture
|
|
// (there is a set of entries for each capture).
|
|
OpenMPOffloadMappingFlags Flags = getMapTypeBits(
|
|
MapType, MapModifiers, IsImplicit,
|
|
!IsExpressionFirstInfo || RequiresReference,
|
|
IsCaptureFirstInfo && !RequiresReference);
|
|
|
|
if (!IsExpressionFirstInfo) {
|
|
// If we have a PTR_AND_OBJ pair where the OBJ is a pointer as well,
|
|
// then we reset the TO/FROM/ALWAYS/DELETE/CLOSE flags.
|
|
if (IsPointer)
|
|
Flags &= ~(OMP_MAP_TO | OMP_MAP_FROM | OMP_MAP_ALWAYS |
|
|
OMP_MAP_DELETE | OMP_MAP_CLOSE);
|
|
|
|
if (ShouldBeMemberOf) {
|
|
// Set placeholder value MEMBER_OF=FFFF to indicate that the flag
|
|
// should be later updated with the correct value of MEMBER_OF.
|
|
Flags |= OMP_MAP_MEMBER_OF;
|
|
// From now on, all subsequent PTR_AND_OBJ entries should not be
|
|
// marked as MEMBER_OF.
|
|
ShouldBeMemberOf = false;
|
|
}
|
|
}
|
|
|
|
Types.push_back(Flags);
|
|
}
|
|
|
|
// If we have encountered a member expression so far, keep track of the
|
|
// mapped member. If the parent is "*this", then the value declaration
|
|
// is nullptr.
|
|
if (EncounteredME) {
|
|
const auto *FD = dyn_cast<FieldDecl>(EncounteredME->getMemberDecl());
|
|
unsigned FieldIndex = FD->getFieldIndex();
|
|
|
|
// Update info about the lowest and highest elements for this struct
|
|
if (!PartialStruct.Base.isValid()) {
|
|
PartialStruct.LowestElem = {FieldIndex, LB};
|
|
PartialStruct.HighestElem = {FieldIndex, LB};
|
|
PartialStruct.Base = BP;
|
|
} else if (FieldIndex < PartialStruct.LowestElem.first) {
|
|
PartialStruct.LowestElem = {FieldIndex, LB};
|
|
} else if (FieldIndex > PartialStruct.HighestElem.first) {
|
|
PartialStruct.HighestElem = {FieldIndex, LB};
|
|
}
|
|
}
|
|
|
|
// If we have a final array section, we are done with this expression.
|
|
if (IsFinalArraySection)
|
|
break;
|
|
|
|
// The pointer becomes the base for the next element.
|
|
if (Next != CE)
|
|
BP = LB;
|
|
|
|
IsExpressionFirstInfo = false;
|
|
IsCaptureFirstInfo = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Return the adjusted map modifiers if the declaration a capture refers to
|
|
/// appears in a first-private clause. This is expected to be used only with
|
|
/// directives that start with 'target'.
|
|
MappableExprsHandler::OpenMPOffloadMappingFlags
|
|
getMapModifiersForPrivateClauses(const CapturedStmt::Capture &Cap) const {
|
|
assert(Cap.capturesVariable() && "Expected capture by reference only!");
|
|
|
|
// A first private variable captured by reference will use only the
|
|
// 'private ptr' and 'map to' flag. Return the right flags if the captured
|
|
// declaration is known as first-private in this handler.
|
|
if (FirstPrivateDecls.count(Cap.getCapturedVar())) {
|
|
if (Cap.getCapturedVar()->getType().isConstant(CGF.getContext()) &&
|
|
Cap.getCaptureKind() == CapturedStmt::VCK_ByRef)
|
|
return MappableExprsHandler::OMP_MAP_ALWAYS |
|
|
MappableExprsHandler::OMP_MAP_TO;
|
|
if (Cap.getCapturedVar()->getType()->isAnyPointerType())
|
|
return MappableExprsHandler::OMP_MAP_TO |
|
|
MappableExprsHandler::OMP_MAP_PTR_AND_OBJ;
|
|
return MappableExprsHandler::OMP_MAP_PRIVATE |
|
|
MappableExprsHandler::OMP_MAP_TO;
|
|
}
|
|
return MappableExprsHandler::OMP_MAP_TO |
|
|
MappableExprsHandler::OMP_MAP_FROM;
|
|
}
|
|
|
|
static OpenMPOffloadMappingFlags getMemberOfFlag(unsigned Position) {
|
|
// Rotate by getFlagMemberOffset() bits.
|
|
return static_cast<OpenMPOffloadMappingFlags>(((uint64_t)Position + 1)
|
|
<< getFlagMemberOffset());
|
|
}
|
|
|
|
static void setCorrectMemberOfFlag(OpenMPOffloadMappingFlags &Flags,
|
|
OpenMPOffloadMappingFlags MemberOfFlag) {
|
|
// If the entry is PTR_AND_OBJ but has not been marked with the special
|
|
// placeholder value 0xFFFF in the MEMBER_OF field, then it should not be
|
|
// marked as MEMBER_OF.
|
|
if ((Flags & OMP_MAP_PTR_AND_OBJ) &&
|
|
((Flags & OMP_MAP_MEMBER_OF) != OMP_MAP_MEMBER_OF))
|
|
return;
|
|
|
|
// Reset the placeholder value to prepare the flag for the assignment of the
|
|
// proper MEMBER_OF value.
|
|
Flags &= ~OMP_MAP_MEMBER_OF;
|
|
Flags |= MemberOfFlag;
|
|
}
|
|
|
|
void getPlainLayout(const CXXRecordDecl *RD,
|
|
llvm::SmallVectorImpl<const FieldDecl *> &Layout,
|
|
bool AsBase) const {
|
|
const CGRecordLayout &RL = CGF.getTypes().getCGRecordLayout(RD);
|
|
|
|
llvm::StructType *St =
|
|
AsBase ? RL.getBaseSubobjectLLVMType() : RL.getLLVMType();
|
|
|
|
unsigned NumElements = St->getNumElements();
|
|
llvm::SmallVector<
|
|
llvm::PointerUnion<const CXXRecordDecl *, const FieldDecl *>, 4>
|
|
RecordLayout(NumElements);
|
|
|
|
// Fill bases.
|
|
for (const auto &I : RD->bases()) {
|
|
if (I.isVirtual())
|
|
continue;
|
|
const auto *Base = I.getType()->getAsCXXRecordDecl();
|
|
// Ignore empty bases.
|
|
if (Base->isEmpty() || CGF.getContext()
|
|
.getASTRecordLayout(Base)
|
|
.getNonVirtualSize()
|
|
.isZero())
|
|
continue;
|
|
|
|
unsigned FieldIndex = RL.getNonVirtualBaseLLVMFieldNo(Base);
|
|
RecordLayout[FieldIndex] = Base;
|
|
}
|
|
// Fill in virtual bases.
|
|
for (const auto &I : RD->vbases()) {
|
|
const auto *Base = I.getType()->getAsCXXRecordDecl();
|
|
// Ignore empty bases.
|
|
if (Base->isEmpty())
|
|
continue;
|
|
unsigned FieldIndex = RL.getVirtualBaseIndex(Base);
|
|
if (RecordLayout[FieldIndex])
|
|
continue;
|
|
RecordLayout[FieldIndex] = Base;
|
|
}
|
|
// Fill in all the fields.
|
|
assert(!RD->isUnion() && "Unexpected union.");
|
|
for (const auto *Field : RD->fields()) {
|
|
// Fill in non-bitfields. (Bitfields always use a zero pattern, which we
|
|
// will fill in later.)
|
|
if (!Field->isBitField() && !Field->isZeroSize(CGF.getContext())) {
|
|
unsigned FieldIndex = RL.getLLVMFieldNo(Field);
|
|
RecordLayout[FieldIndex] = Field;
|
|
}
|
|
}
|
|
for (const llvm::PointerUnion<const CXXRecordDecl *, const FieldDecl *>
|
|
&Data : RecordLayout) {
|
|
if (Data.isNull())
|
|
continue;
|
|
if (const auto *Base = Data.dyn_cast<const CXXRecordDecl *>())
|
|
getPlainLayout(Base, Layout, /*AsBase=*/true);
|
|
else
|
|
Layout.push_back(Data.get<const FieldDecl *>());
|
|
}
|
|
}
|
|
|
|
public:
|
|
MappableExprsHandler(const OMPExecutableDirective &Dir, CodeGenFunction &CGF)
|
|
: CurDir(&Dir), CGF(CGF) {
|
|
// Extract firstprivate clause information.
|
|
for (const auto *C : Dir.getClausesOfKind<OMPFirstprivateClause>())
|
|
for (const auto *D : C->varlists())
|
|
FirstPrivateDecls.try_emplace(
|
|
cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl()), C->isImplicit());
|
|
// Extract device pointer clause information.
|
|
for (const auto *C : Dir.getClausesOfKind<OMPIsDevicePtrClause>())
|
|
for (auto L : C->component_lists())
|
|
DevPointersMap[L.first].push_back(L.second);
|
|
}
|
|
|
|
/// Constructor for the declare mapper directive.
|
|
MappableExprsHandler(const OMPDeclareMapperDecl &Dir, CodeGenFunction &CGF)
|
|
: CurDir(&Dir), CGF(CGF) {}
|
|
|
|
/// Generate code for the combined entry if we have a partially mapped struct
|
|
/// and take care of the mapping flags of the arguments corresponding to
|
|
/// individual struct members.
|
|
void emitCombinedEntry(MapBaseValuesArrayTy &BasePointers,
|
|
MapValuesArrayTy &Pointers, MapValuesArrayTy &Sizes,
|
|
MapFlagsArrayTy &Types, MapFlagsArrayTy &CurTypes,
|
|
const StructRangeInfoTy &PartialStruct) const {
|
|
// Base is the base of the struct
|
|
BasePointers.push_back(PartialStruct.Base.getPointer());
|
|
// Pointer is the address of the lowest element
|
|
llvm::Value *LB = PartialStruct.LowestElem.second.getPointer();
|
|
Pointers.push_back(LB);
|
|
// Size is (addr of {highest+1} element) - (addr of lowest element)
|
|
llvm::Value *HB = PartialStruct.HighestElem.second.getPointer();
|
|
llvm::Value *HAddr = CGF.Builder.CreateConstGEP1_32(HB, /*Idx0=*/1);
|
|
llvm::Value *CLAddr = CGF.Builder.CreatePointerCast(LB, CGF.VoidPtrTy);
|
|
llvm::Value *CHAddr = CGF.Builder.CreatePointerCast(HAddr, CGF.VoidPtrTy);
|
|
llvm::Value *Diff = CGF.Builder.CreatePtrDiff(CHAddr, CLAddr);
|
|
llvm::Value *Size = CGF.Builder.CreateIntCast(Diff, CGF.Int64Ty,
|
|
/*isSigned=*/false);
|
|
Sizes.push_back(Size);
|
|
// Map type is always TARGET_PARAM
|
|
Types.push_back(OMP_MAP_TARGET_PARAM);
|
|
// Remove TARGET_PARAM flag from the first element
|
|
(*CurTypes.begin()) &= ~OMP_MAP_TARGET_PARAM;
|
|
|
|
// All other current entries will be MEMBER_OF the combined entry
|
|
// (except for PTR_AND_OBJ entries which do not have a placeholder value
|
|
// 0xFFFF in the MEMBER_OF field).
|
|
OpenMPOffloadMappingFlags MemberOfFlag =
|
|
getMemberOfFlag(BasePointers.size() - 1);
|
|
for (auto &M : CurTypes)
|
|
setCorrectMemberOfFlag(M, MemberOfFlag);
|
|
}
|
|
|
|
/// Generate all the base pointers, section pointers, sizes and map
|
|
/// types for the extracted mappable expressions. Also, for each item that
|
|
/// relates with a device pointer, a pair of the relevant declaration and
|
|
/// index where it occurs is appended to the device pointers info array.
|
|
void generateAllInfo(MapBaseValuesArrayTy &BasePointers,
|
|
MapValuesArrayTy &Pointers, MapValuesArrayTy &Sizes,
|
|
MapFlagsArrayTy &Types) const {
|
|
// We have to process the component lists that relate with the same
|
|
// declaration in a single chunk so that we can generate the map flags
|
|
// correctly. Therefore, we organize all lists in a map.
|
|
llvm::MapVector<const ValueDecl *, SmallVector<MapInfo, 8>> Info;
|
|
|
|
// Helper function to fill the information map for the different supported
|
|
// clauses.
|
|
auto &&InfoGen = [&Info](
|
|
const ValueDecl *D,
|
|
OMPClauseMappableExprCommon::MappableExprComponentListRef L,
|
|
OpenMPMapClauseKind MapType,
|
|
ArrayRef<OpenMPMapModifierKind> MapModifiers,
|
|
bool ReturnDevicePointer, bool IsImplicit) {
|
|
const ValueDecl *VD =
|
|
D ? cast<ValueDecl>(D->getCanonicalDecl()) : nullptr;
|
|
Info[VD].emplace_back(L, MapType, MapModifiers, ReturnDevicePointer,
|
|
IsImplicit);
|
|
};
|
|
|
|
assert(CurDir.is<const OMPExecutableDirective *>() &&
|
|
"Expect a executable directive");
|
|
const auto *CurExecDir = CurDir.get<const OMPExecutableDirective *>();
|
|
for (const auto *C : CurExecDir->getClausesOfKind<OMPMapClause>())
|
|
for (const auto L : C->component_lists()) {
|
|
InfoGen(L.first, L.second, C->getMapType(), C->getMapTypeModifiers(),
|
|
/*ReturnDevicePointer=*/false, C->isImplicit());
|
|
}
|
|
for (const auto *C : CurExecDir->getClausesOfKind<OMPToClause>())
|
|
for (const auto L : C->component_lists()) {
|
|
InfoGen(L.first, L.second, OMPC_MAP_to, llvm::None,
|
|
/*ReturnDevicePointer=*/false, C->isImplicit());
|
|
}
|
|
for (const auto *C : CurExecDir->getClausesOfKind<OMPFromClause>())
|
|
for (const auto L : C->component_lists()) {
|
|
InfoGen(L.first, L.second, OMPC_MAP_from, llvm::None,
|
|
/*ReturnDevicePointer=*/false, C->isImplicit());
|
|
}
|
|
|
|
// Look at the use_device_ptr clause information and mark the existing map
|
|
// entries as such. If there is no map information for an entry in the
|
|
// use_device_ptr list, we create one with map type 'alloc' and zero size
|
|
// section. It is the user fault if that was not mapped before. If there is
|
|
// no map information and the pointer is a struct member, then we defer the
|
|
// emission of that entry until the whole struct has been processed.
|
|
llvm::MapVector<const ValueDecl *, SmallVector<DeferredDevicePtrEntryTy, 4>>
|
|
DeferredInfo;
|
|
|
|
for (const auto *C :
|
|
CurExecDir->getClausesOfKind<OMPUseDevicePtrClause>()) {
|
|
for (const auto L : C->component_lists()) {
|
|
assert(!L.second.empty() && "Not expecting empty list of components!");
|
|
const ValueDecl *VD = L.second.back().getAssociatedDeclaration();
|
|
VD = cast<ValueDecl>(VD->getCanonicalDecl());
|
|
const Expr *IE = L.second.back().getAssociatedExpression();
|
|
// If the first component is a member expression, we have to look into
|
|
// 'this', which maps to null in the map of map information. Otherwise
|
|
// look directly for the information.
|
|
auto It = Info.find(isa<MemberExpr>(IE) ? nullptr : VD);
|
|
|
|
// We potentially have map information for this declaration already.
|
|
// Look for the first set of components that refer to it.
|
|
if (It != Info.end()) {
|
|
auto CI = std::find_if(
|
|
It->second.begin(), It->second.end(), [VD](const MapInfo &MI) {
|
|
return MI.Components.back().getAssociatedDeclaration() == VD;
|
|
});
|
|
// If we found a map entry, signal that the pointer has to be returned
|
|
// and move on to the next declaration.
|
|
if (CI != It->second.end()) {
|
|
CI->ReturnDevicePointer = true;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// We didn't find any match in our map information - generate a zero
|
|
// size array section - if the pointer is a struct member we defer this
|
|
// action until the whole struct has been processed.
|
|
if (isa<MemberExpr>(IE)) {
|
|
// Insert the pointer into Info to be processed by
|
|
// generateInfoForComponentList. Because it is a member pointer
|
|
// without a pointee, no entry will be generated for it, therefore
|
|
// we need to generate one after the whole struct has been processed.
|
|
// Nonetheless, generateInfoForComponentList must be called to take
|
|
// the pointer into account for the calculation of the range of the
|
|
// partial struct.
|
|
InfoGen(nullptr, L.second, OMPC_MAP_unknown, llvm::None,
|
|
/*ReturnDevicePointer=*/false, C->isImplicit());
|
|
DeferredInfo[nullptr].emplace_back(IE, VD);
|
|
} else {
|
|
llvm::Value *Ptr =
|
|
CGF.EmitLoadOfScalar(CGF.EmitLValue(IE), IE->getExprLoc());
|
|
BasePointers.emplace_back(Ptr, VD);
|
|
Pointers.push_back(Ptr);
|
|
Sizes.push_back(llvm::Constant::getNullValue(CGF.Int64Ty));
|
|
Types.push_back(OMP_MAP_RETURN_PARAM | OMP_MAP_TARGET_PARAM);
|
|
}
|
|
}
|
|
}
|
|
|
|
for (const auto &M : Info) {
|
|
// We need to know when we generate information for the first component
|
|
// associated with a capture, because the mapping flags depend on it.
|
|
bool IsFirstComponentList = true;
|
|
|
|
// Temporary versions of arrays
|
|
MapBaseValuesArrayTy CurBasePointers;
|
|
MapValuesArrayTy CurPointers;
|
|
MapValuesArrayTy CurSizes;
|
|
MapFlagsArrayTy CurTypes;
|
|
StructRangeInfoTy PartialStruct;
|
|
|
|
for (const MapInfo &L : M.second) {
|
|
assert(!L.Components.empty() &&
|
|
"Not expecting declaration with no component lists.");
|
|
|
|
// Remember the current base pointer index.
|
|
unsigned CurrentBasePointersIdx = CurBasePointers.size();
|
|
generateInfoForComponentList(L.MapType, L.MapModifiers, L.Components,
|
|
CurBasePointers, CurPointers, CurSizes,
|
|
CurTypes, PartialStruct,
|
|
IsFirstComponentList, L.IsImplicit);
|
|
|
|
// If this entry relates with a device pointer, set the relevant
|
|
// declaration and add the 'return pointer' flag.
|
|
if (L.ReturnDevicePointer) {
|
|
assert(CurBasePointers.size() > CurrentBasePointersIdx &&
|
|
"Unexpected number of mapped base pointers.");
|
|
|
|
const ValueDecl *RelevantVD =
|
|
L.Components.back().getAssociatedDeclaration();
|
|
assert(RelevantVD &&
|
|
"No relevant declaration related with device pointer??");
|
|
|
|
CurBasePointers[CurrentBasePointersIdx].setDevicePtrDecl(RelevantVD);
|
|
CurTypes[CurrentBasePointersIdx] |= OMP_MAP_RETURN_PARAM;
|
|
}
|
|
IsFirstComponentList = false;
|
|
}
|
|
|
|
// Append any pending zero-length pointers which are struct members and
|
|
// used with use_device_ptr.
|
|
auto CI = DeferredInfo.find(M.first);
|
|
if (CI != DeferredInfo.end()) {
|
|
for (const DeferredDevicePtrEntryTy &L : CI->second) {
|
|
llvm::Value *BasePtr = this->CGF.EmitLValue(L.IE).getPointer(CGF);
|
|
llvm::Value *Ptr = this->CGF.EmitLoadOfScalar(
|
|
this->CGF.EmitLValue(L.IE), L.IE->getExprLoc());
|
|
CurBasePointers.emplace_back(BasePtr, L.VD);
|
|
CurPointers.push_back(Ptr);
|
|
CurSizes.push_back(llvm::Constant::getNullValue(this->CGF.Int64Ty));
|
|
// Entry is PTR_AND_OBJ and RETURN_PARAM. Also, set the placeholder
|
|
// value MEMBER_OF=FFFF so that the entry is later updated with the
|
|
// correct value of MEMBER_OF.
|
|
CurTypes.push_back(OMP_MAP_PTR_AND_OBJ | OMP_MAP_RETURN_PARAM |
|
|
OMP_MAP_MEMBER_OF);
|
|
}
|
|
}
|
|
|
|
// If there is an entry in PartialStruct it means we have a struct with
|
|
// individual members mapped. Emit an extra combined entry.
|
|
if (PartialStruct.Base.isValid())
|
|
emitCombinedEntry(BasePointers, Pointers, Sizes, Types, CurTypes,
|
|
PartialStruct);
|
|
|
|
// We need to append the results of this capture to what we already have.
|
|
BasePointers.append(CurBasePointers.begin(), CurBasePointers.end());
|
|
Pointers.append(CurPointers.begin(), CurPointers.end());
|
|
Sizes.append(CurSizes.begin(), CurSizes.end());
|
|
Types.append(CurTypes.begin(), CurTypes.end());
|
|
}
|
|
}
|
|
|
|
/// Generate all the base pointers, section pointers, sizes and map types for
|
|
/// the extracted map clauses of user-defined mapper.
|
|
void generateAllInfoForMapper(MapBaseValuesArrayTy &BasePointers,
|
|
MapValuesArrayTy &Pointers,
|
|
MapValuesArrayTy &Sizes,
|
|
MapFlagsArrayTy &Types) const {
|
|
assert(CurDir.is<const OMPDeclareMapperDecl *>() &&
|
|
"Expect a declare mapper directive");
|
|
const auto *CurMapperDir = CurDir.get<const OMPDeclareMapperDecl *>();
|
|
// We have to process the component lists that relate with the same
|
|
// declaration in a single chunk so that we can generate the map flags
|
|
// correctly. Therefore, we organize all lists in a map.
|
|
llvm::MapVector<const ValueDecl *, SmallVector<MapInfo, 8>> Info;
|
|
|
|
// Helper function to fill the information map for the different supported
|
|
// clauses.
|
|
auto &&InfoGen = [&Info](
|
|
const ValueDecl *D,
|
|
OMPClauseMappableExprCommon::MappableExprComponentListRef L,
|
|
OpenMPMapClauseKind MapType,
|
|
ArrayRef<OpenMPMapModifierKind> MapModifiers,
|
|
bool ReturnDevicePointer, bool IsImplicit) {
|
|
const ValueDecl *VD =
|
|
D ? cast<ValueDecl>(D->getCanonicalDecl()) : nullptr;
|
|
Info[VD].emplace_back(L, MapType, MapModifiers, ReturnDevicePointer,
|
|
IsImplicit);
|
|
};
|
|
|
|
for (const auto *C : CurMapperDir->clauselists()) {
|
|
const auto *MC = cast<OMPMapClause>(C);
|
|
for (const auto L : MC->component_lists()) {
|
|
InfoGen(L.first, L.second, MC->getMapType(), MC->getMapTypeModifiers(),
|
|
/*ReturnDevicePointer=*/false, MC->isImplicit());
|
|
}
|
|
}
|
|
|
|
for (const auto &M : Info) {
|
|
// We need to know when we generate information for the first component
|
|
// associated with a capture, because the mapping flags depend on it.
|
|
bool IsFirstComponentList = true;
|
|
|
|
// Temporary versions of arrays
|
|
MapBaseValuesArrayTy CurBasePointers;
|
|
MapValuesArrayTy CurPointers;
|
|
MapValuesArrayTy CurSizes;
|
|
MapFlagsArrayTy CurTypes;
|
|
StructRangeInfoTy PartialStruct;
|
|
|
|
for (const MapInfo &L : M.second) {
|
|
assert(!L.Components.empty() &&
|
|
"Not expecting declaration with no component lists.");
|
|
generateInfoForComponentList(L.MapType, L.MapModifiers, L.Components,
|
|
CurBasePointers, CurPointers, CurSizes,
|
|
CurTypes, PartialStruct,
|
|
IsFirstComponentList, L.IsImplicit);
|
|
IsFirstComponentList = false;
|
|
}
|
|
|
|
// If there is an entry in PartialStruct it means we have a struct with
|
|
// individual members mapped. Emit an extra combined entry.
|
|
if (PartialStruct.Base.isValid())
|
|
emitCombinedEntry(BasePointers, Pointers, Sizes, Types, CurTypes,
|
|
PartialStruct);
|
|
|
|
// We need to append the results of this capture to what we already have.
|
|
BasePointers.append(CurBasePointers.begin(), CurBasePointers.end());
|
|
Pointers.append(CurPointers.begin(), CurPointers.end());
|
|
Sizes.append(CurSizes.begin(), CurSizes.end());
|
|
Types.append(CurTypes.begin(), CurTypes.end());
|
|
}
|
|
}
|
|
|
|
/// Emit capture info for lambdas for variables captured by reference.
|
|
void generateInfoForLambdaCaptures(
|
|
const ValueDecl *VD, llvm::Value *Arg, MapBaseValuesArrayTy &BasePointers,
|
|
MapValuesArrayTy &Pointers, MapValuesArrayTy &Sizes,
|
|
MapFlagsArrayTy &Types,
|
|
llvm::DenseMap<llvm::Value *, llvm::Value *> &LambdaPointers) const {
|
|
const auto *RD = VD->getType()
|
|
.getCanonicalType()
|
|
.getNonReferenceType()
|
|
->getAsCXXRecordDecl();
|
|
if (!RD || !RD->isLambda())
|
|
return;
|
|
Address VDAddr = Address(Arg, CGF.getContext().getDeclAlign(VD));
|
|
LValue VDLVal = CGF.MakeAddrLValue(
|
|
VDAddr, VD->getType().getCanonicalType().getNonReferenceType());
|
|
llvm::DenseMap<const VarDecl *, FieldDecl *> Captures;
|
|
FieldDecl *ThisCapture = nullptr;
|
|
RD->getCaptureFields(Captures, ThisCapture);
|
|
if (ThisCapture) {
|
|
LValue ThisLVal =
|
|
CGF.EmitLValueForFieldInitialization(VDLVal, ThisCapture);
|
|
LValue ThisLValVal = CGF.EmitLValueForField(VDLVal, ThisCapture);
|
|
LambdaPointers.try_emplace(ThisLVal.getPointer(CGF),
|
|
VDLVal.getPointer(CGF));
|
|
BasePointers.push_back(ThisLVal.getPointer(CGF));
|
|
Pointers.push_back(ThisLValVal.getPointer(CGF));
|
|
Sizes.push_back(
|
|
CGF.Builder.CreateIntCast(CGF.getTypeSize(CGF.getContext().VoidPtrTy),
|
|
CGF.Int64Ty, /*isSigned=*/true));
|
|
Types.push_back(OMP_MAP_PTR_AND_OBJ | OMP_MAP_LITERAL |
|
|
OMP_MAP_MEMBER_OF | OMP_MAP_IMPLICIT);
|
|
}
|
|
for (const LambdaCapture &LC : RD->captures()) {
|
|
if (!LC.capturesVariable())
|
|
continue;
|
|
const VarDecl *VD = LC.getCapturedVar();
|
|
if (LC.getCaptureKind() != LCK_ByRef && !VD->getType()->isPointerType())
|
|
continue;
|
|
auto It = Captures.find(VD);
|
|
assert(It != Captures.end() && "Found lambda capture without field.");
|
|
LValue VarLVal = CGF.EmitLValueForFieldInitialization(VDLVal, It->second);
|
|
if (LC.getCaptureKind() == LCK_ByRef) {
|
|
LValue VarLValVal = CGF.EmitLValueForField(VDLVal, It->second);
|
|
LambdaPointers.try_emplace(VarLVal.getPointer(CGF),
|
|
VDLVal.getPointer(CGF));
|
|
BasePointers.push_back(VarLVal.getPointer(CGF));
|
|
Pointers.push_back(VarLValVal.getPointer(CGF));
|
|
Sizes.push_back(CGF.Builder.CreateIntCast(
|
|
CGF.getTypeSize(
|
|
VD->getType().getCanonicalType().getNonReferenceType()),
|
|
CGF.Int64Ty, /*isSigned=*/true));
|
|
} else {
|
|
RValue VarRVal = CGF.EmitLoadOfLValue(VarLVal, RD->getLocation());
|
|
LambdaPointers.try_emplace(VarLVal.getPointer(CGF),
|
|
VDLVal.getPointer(CGF));
|
|
BasePointers.push_back(VarLVal.getPointer(CGF));
|
|
Pointers.push_back(VarRVal.getScalarVal());
|
|
Sizes.push_back(llvm::ConstantInt::get(CGF.Int64Ty, 0));
|
|
}
|
|
Types.push_back(OMP_MAP_PTR_AND_OBJ | OMP_MAP_LITERAL |
|
|
OMP_MAP_MEMBER_OF | OMP_MAP_IMPLICIT);
|
|
}
|
|
}
|
|
|
|
/// Set correct indices for lambdas captures.
|
|
void adjustMemberOfForLambdaCaptures(
|
|
const llvm::DenseMap<llvm::Value *, llvm::Value *> &LambdaPointers,
|
|
MapBaseValuesArrayTy &BasePointers, MapValuesArrayTy &Pointers,
|
|
MapFlagsArrayTy &Types) const {
|
|
for (unsigned I = 0, E = Types.size(); I < E; ++I) {
|
|
// Set correct member_of idx for all implicit lambda captures.
|
|
if (Types[I] != (OMP_MAP_PTR_AND_OBJ | OMP_MAP_LITERAL |
|
|
OMP_MAP_MEMBER_OF | OMP_MAP_IMPLICIT))
|
|
continue;
|
|
llvm::Value *BasePtr = LambdaPointers.lookup(*BasePointers[I]);
|
|
assert(BasePtr && "Unable to find base lambda address.");
|
|
int TgtIdx = -1;
|
|
for (unsigned J = I; J > 0; --J) {
|
|
unsigned Idx = J - 1;
|
|
if (Pointers[Idx] != BasePtr)
|
|
continue;
|
|
TgtIdx = Idx;
|
|
break;
|
|
}
|
|
assert(TgtIdx != -1 && "Unable to find parent lambda.");
|
|
// All other current entries will be MEMBER_OF the combined entry
|
|
// (except for PTR_AND_OBJ entries which do not have a placeholder value
|
|
// 0xFFFF in the MEMBER_OF field).
|
|
OpenMPOffloadMappingFlags MemberOfFlag = getMemberOfFlag(TgtIdx);
|
|
setCorrectMemberOfFlag(Types[I], MemberOfFlag);
|
|
}
|
|
}
|
|
|
|
/// Generate the base pointers, section pointers, sizes and map types
|
|
/// associated to a given capture.
|
|
void generateInfoForCapture(const CapturedStmt::Capture *Cap,
|
|
llvm::Value *Arg,
|
|
MapBaseValuesArrayTy &BasePointers,
|
|
MapValuesArrayTy &Pointers,
|
|
MapValuesArrayTy &Sizes, MapFlagsArrayTy &Types,
|
|
StructRangeInfoTy &PartialStruct) const {
|
|
assert(!Cap->capturesVariableArrayType() &&
|
|
"Not expecting to generate map info for a variable array type!");
|
|
|
|
// We need to know when we generating information for the first component
|
|
const ValueDecl *VD = Cap->capturesThis()
|
|
? nullptr
|
|
: Cap->getCapturedVar()->getCanonicalDecl();
|
|
|
|
// If this declaration appears in a is_device_ptr clause we just have to
|
|
// pass the pointer by value. If it is a reference to a declaration, we just
|
|
// pass its value.
|
|
if (DevPointersMap.count(VD)) {
|
|
BasePointers.emplace_back(Arg, VD);
|
|
Pointers.push_back(Arg);
|
|
Sizes.push_back(
|
|
CGF.Builder.CreateIntCast(CGF.getTypeSize(CGF.getContext().VoidPtrTy),
|
|
CGF.Int64Ty, /*isSigned=*/true));
|
|
Types.push_back(OMP_MAP_LITERAL | OMP_MAP_TARGET_PARAM);
|
|
return;
|
|
}
|
|
|
|
using MapData =
|
|
std::tuple<OMPClauseMappableExprCommon::MappableExprComponentListRef,
|
|
OpenMPMapClauseKind, ArrayRef<OpenMPMapModifierKind>, bool>;
|
|
SmallVector<MapData, 4> DeclComponentLists;
|
|
assert(CurDir.is<const OMPExecutableDirective *>() &&
|
|
"Expect a executable directive");
|
|
const auto *CurExecDir = CurDir.get<const OMPExecutableDirective *>();
|
|
for (const auto *C : CurExecDir->getClausesOfKind<OMPMapClause>()) {
|
|
for (const auto L : C->decl_component_lists(VD)) {
|
|
assert(L.first == VD &&
|
|
"We got information for the wrong declaration??");
|
|
assert(!L.second.empty() &&
|
|
"Not expecting declaration with no component lists.");
|
|
DeclComponentLists.emplace_back(L.second, C->getMapType(),
|
|
C->getMapTypeModifiers(),
|
|
C->isImplicit());
|
|
}
|
|
}
|
|
|
|
// Find overlapping elements (including the offset from the base element).
|
|
llvm::SmallDenseMap<
|
|
const MapData *,
|
|
llvm::SmallVector<
|
|
OMPClauseMappableExprCommon::MappableExprComponentListRef, 4>,
|
|
4>
|
|
OverlappedData;
|
|
size_t Count = 0;
|
|
for (const MapData &L : DeclComponentLists) {
|
|
OMPClauseMappableExprCommon::MappableExprComponentListRef Components;
|
|
OpenMPMapClauseKind MapType;
|
|
ArrayRef<OpenMPMapModifierKind> MapModifiers;
|
|
bool IsImplicit;
|
|
std::tie(Components, MapType, MapModifiers, IsImplicit) = L;
|
|
++Count;
|
|
for (const MapData &L1 : makeArrayRef(DeclComponentLists).slice(Count)) {
|
|
OMPClauseMappableExprCommon::MappableExprComponentListRef Components1;
|
|
std::tie(Components1, MapType, MapModifiers, IsImplicit) = L1;
|
|
auto CI = Components.rbegin();
|
|
auto CE = Components.rend();
|
|
auto SI = Components1.rbegin();
|
|
auto SE = Components1.rend();
|
|
for (; CI != CE && SI != SE; ++CI, ++SI) {
|
|
if (CI->getAssociatedExpression()->getStmtClass() !=
|
|
SI->getAssociatedExpression()->getStmtClass())
|
|
break;
|
|
// Are we dealing with different variables/fields?
|
|
if (CI->getAssociatedDeclaration() != SI->getAssociatedDeclaration())
|
|
break;
|
|
}
|
|
// Found overlapping if, at least for one component, reached the head of
|
|
// the components list.
|
|
if (CI == CE || SI == SE) {
|
|
assert((CI != CE || SI != SE) &&
|
|
"Unexpected full match of the mapping components.");
|
|
const MapData &BaseData = CI == CE ? L : L1;
|
|
OMPClauseMappableExprCommon::MappableExprComponentListRef SubData =
|
|
SI == SE ? Components : Components1;
|
|
auto &OverlappedElements = OverlappedData.FindAndConstruct(&BaseData);
|
|
OverlappedElements.getSecond().push_back(SubData);
|
|
}
|
|
}
|
|
}
|
|
// Sort the overlapped elements for each item.
|
|
llvm::SmallVector<const FieldDecl *, 4> Layout;
|
|
if (!OverlappedData.empty()) {
|
|
if (const auto *CRD =
|
|
VD->getType().getCanonicalType()->getAsCXXRecordDecl())
|
|
getPlainLayout(CRD, Layout, /*AsBase=*/false);
|
|
else {
|
|
const auto *RD = VD->getType().getCanonicalType()->getAsRecordDecl();
|
|
Layout.append(RD->field_begin(), RD->field_end());
|
|
}
|
|
}
|
|
for (auto &Pair : OverlappedData) {
|
|
llvm::sort(
|
|
Pair.getSecond(),
|
|
[&Layout](
|
|
OMPClauseMappableExprCommon::MappableExprComponentListRef First,
|
|
OMPClauseMappableExprCommon::MappableExprComponentListRef
|
|
Second) {
|
|
auto CI = First.rbegin();
|
|
auto CE = First.rend();
|
|
auto SI = Second.rbegin();
|
|
auto SE = Second.rend();
|
|
for (; CI != CE && SI != SE; ++CI, ++SI) {
|
|
if (CI->getAssociatedExpression()->getStmtClass() !=
|
|
SI->getAssociatedExpression()->getStmtClass())
|
|
break;
|
|
// Are we dealing with different variables/fields?
|
|
if (CI->getAssociatedDeclaration() !=
|
|
SI->getAssociatedDeclaration())
|
|
break;
|
|
}
|
|
|
|
// Lists contain the same elements.
|
|
if (CI == CE && SI == SE)
|
|
return false;
|
|
|
|
// List with less elements is less than list with more elements.
|
|
if (CI == CE || SI == SE)
|
|
return CI == CE;
|
|
|
|
const auto *FD1 = cast<FieldDecl>(CI->getAssociatedDeclaration());
|
|
const auto *FD2 = cast<FieldDecl>(SI->getAssociatedDeclaration());
|
|
if (FD1->getParent() == FD2->getParent())
|
|
return FD1->getFieldIndex() < FD2->getFieldIndex();
|
|
const auto It =
|
|
llvm::find_if(Layout, [FD1, FD2](const FieldDecl *FD) {
|
|
return FD == FD1 || FD == FD2;
|
|
});
|
|
return *It == FD1;
|
|
});
|
|
}
|
|
|
|
// Associated with a capture, because the mapping flags depend on it.
|
|
// Go through all of the elements with the overlapped elements.
|
|
for (const auto &Pair : OverlappedData) {
|
|
const MapData &L = *Pair.getFirst();
|
|
OMPClauseMappableExprCommon::MappableExprComponentListRef Components;
|
|
OpenMPMapClauseKind MapType;
|
|
ArrayRef<OpenMPMapModifierKind> MapModifiers;
|
|
bool IsImplicit;
|
|
std::tie(Components, MapType, MapModifiers, IsImplicit) = L;
|
|
ArrayRef<OMPClauseMappableExprCommon::MappableExprComponentListRef>
|
|
OverlappedComponents = Pair.getSecond();
|
|
bool IsFirstComponentList = true;
|
|
generateInfoForComponentList(MapType, MapModifiers, Components,
|
|
BasePointers, Pointers, Sizes, Types,
|
|
PartialStruct, IsFirstComponentList,
|
|
IsImplicit, OverlappedComponents);
|
|
}
|
|
// Go through other elements without overlapped elements.
|
|
bool IsFirstComponentList = OverlappedData.empty();
|
|
for (const MapData &L : DeclComponentLists) {
|
|
OMPClauseMappableExprCommon::MappableExprComponentListRef Components;
|
|
OpenMPMapClauseKind MapType;
|
|
ArrayRef<OpenMPMapModifierKind> MapModifiers;
|
|
bool IsImplicit;
|
|
std::tie(Components, MapType, MapModifiers, IsImplicit) = L;
|
|
auto It = OverlappedData.find(&L);
|
|
if (It == OverlappedData.end())
|
|
generateInfoForComponentList(MapType, MapModifiers, Components,
|
|
BasePointers, Pointers, Sizes, Types,
|
|
PartialStruct, IsFirstComponentList,
|
|
IsImplicit);
|
|
IsFirstComponentList = false;
|
|
}
|
|
}
|
|
|
|
/// Generate the base pointers, section pointers, sizes and map types
|
|
/// associated with the declare target link variables.
|
|
void generateInfoForDeclareTargetLink(MapBaseValuesArrayTy &BasePointers,
|
|
MapValuesArrayTy &Pointers,
|
|
MapValuesArrayTy &Sizes,
|
|
MapFlagsArrayTy &Types) const {
|
|
assert(CurDir.is<const OMPExecutableDirective *>() &&
|
|
"Expect a executable directive");
|
|
const auto *CurExecDir = CurDir.get<const OMPExecutableDirective *>();
|
|
// Map other list items in the map clause which are not captured variables
|
|
// but "declare target link" global variables.
|
|
for (const auto *C : CurExecDir->getClausesOfKind<OMPMapClause>()) {
|
|
for (const auto L : C->component_lists()) {
|
|
if (!L.first)
|
|
continue;
|
|
const auto *VD = dyn_cast<VarDecl>(L.first);
|
|
if (!VD)
|
|
continue;
|
|
llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
|
|
OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
|
|
if (CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory() ||
|
|
!Res || *Res != OMPDeclareTargetDeclAttr::MT_Link)
|
|
continue;
|
|
StructRangeInfoTy PartialStruct;
|
|
generateInfoForComponentList(
|
|
C->getMapType(), C->getMapTypeModifiers(), L.second, BasePointers,
|
|
Pointers, Sizes, Types, PartialStruct,
|
|
/*IsFirstComponentList=*/true, C->isImplicit());
|
|
assert(!PartialStruct.Base.isValid() &&
|
|
"No partial structs for declare target link expected.");
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Generate the default map information for a given capture \a CI,
|
|
/// record field declaration \a RI and captured value \a CV.
|
|
void generateDefaultMapInfo(const CapturedStmt::Capture &CI,
|
|
const FieldDecl &RI, llvm::Value *CV,
|
|
MapBaseValuesArrayTy &CurBasePointers,
|
|
MapValuesArrayTy &CurPointers,
|
|
MapValuesArrayTy &CurSizes,
|
|
MapFlagsArrayTy &CurMapTypes) const {
|
|
bool IsImplicit = true;
|
|
// Do the default mapping.
|
|
if (CI.capturesThis()) {
|
|
CurBasePointers.push_back(CV);
|
|
CurPointers.push_back(CV);
|
|
const auto *PtrTy = cast<PointerType>(RI.getType().getTypePtr());
|
|
CurSizes.push_back(
|
|
CGF.Builder.CreateIntCast(CGF.getTypeSize(PtrTy->getPointeeType()),
|
|
CGF.Int64Ty, /*isSigned=*/true));
|
|
// Default map type.
|
|
CurMapTypes.push_back(OMP_MAP_TO | OMP_MAP_FROM);
|
|
} else if (CI.capturesVariableByCopy()) {
|
|
CurBasePointers.push_back(CV);
|
|
CurPointers.push_back(CV);
|
|
if (!RI.getType()->isAnyPointerType()) {
|
|
// We have to signal to the runtime captures passed by value that are
|
|
// not pointers.
|
|
CurMapTypes.push_back(OMP_MAP_LITERAL);
|
|
CurSizes.push_back(CGF.Builder.CreateIntCast(
|
|
CGF.getTypeSize(RI.getType()), CGF.Int64Ty, /*isSigned=*/true));
|
|
} else {
|
|
// Pointers are implicitly mapped with a zero size and no flags
|
|
// (other than first map that is added for all implicit maps).
|
|
CurMapTypes.push_back(OMP_MAP_NONE);
|
|
CurSizes.push_back(llvm::Constant::getNullValue(CGF.Int64Ty));
|
|
}
|
|
const VarDecl *VD = CI.getCapturedVar();
|
|
auto I = FirstPrivateDecls.find(VD);
|
|
if (I != FirstPrivateDecls.end())
|
|
IsImplicit = I->getSecond();
|
|
} else {
|
|
assert(CI.capturesVariable() && "Expected captured reference.");
|
|
const auto *PtrTy = cast<ReferenceType>(RI.getType().getTypePtr());
|
|
QualType ElementType = PtrTy->getPointeeType();
|
|
CurSizes.push_back(CGF.Builder.CreateIntCast(
|
|
CGF.getTypeSize(ElementType), CGF.Int64Ty, /*isSigned=*/true));
|
|
// The default map type for a scalar/complex type is 'to' because by
|
|
// default the value doesn't have to be retrieved. For an aggregate
|
|
// type, the default is 'tofrom'.
|
|
CurMapTypes.push_back(getMapModifiersForPrivateClauses(CI));
|
|
const VarDecl *VD = CI.getCapturedVar();
|
|
auto I = FirstPrivateDecls.find(VD);
|
|
if (I != FirstPrivateDecls.end() &&
|
|
VD->getType().isConstant(CGF.getContext())) {
|
|
llvm::Constant *Addr =
|
|
CGF.CGM.getOpenMPRuntime().registerTargetFirstprivateCopy(CGF, VD);
|
|
// Copy the value of the original variable to the new global copy.
|
|
CGF.Builder.CreateMemCpy(
|
|
CGF.MakeNaturalAlignAddrLValue(Addr, ElementType).getAddress(CGF),
|
|
Address(CV, CGF.getContext().getTypeAlignInChars(ElementType)),
|
|
CurSizes.back(), /*IsVolatile=*/false);
|
|
// Use new global variable as the base pointers.
|
|
CurBasePointers.push_back(Addr);
|
|
CurPointers.push_back(Addr);
|
|
} else {
|
|
CurBasePointers.push_back(CV);
|
|
if (I != FirstPrivateDecls.end() && ElementType->isAnyPointerType()) {
|
|
Address PtrAddr = CGF.EmitLoadOfReference(CGF.MakeAddrLValue(
|
|
CV, ElementType, CGF.getContext().getDeclAlign(VD),
|
|
AlignmentSource::Decl));
|
|
CurPointers.push_back(PtrAddr.getPointer());
|
|
} else {
|
|
CurPointers.push_back(CV);
|
|
}
|
|
}
|
|
if (I != FirstPrivateDecls.end())
|
|
IsImplicit = I->getSecond();
|
|
}
|
|
// Every default map produces a single argument which is a target parameter.
|
|
CurMapTypes.back() |= OMP_MAP_TARGET_PARAM;
|
|
|
|
// Add flag stating this is an implicit map.
|
|
if (IsImplicit)
|
|
CurMapTypes.back() |= OMP_MAP_IMPLICIT;
|
|
}
|
|
};
|
|
} // anonymous namespace
|
|
|
|
/// Emit the arrays used to pass the captures and map information to the
|
|
/// offloading runtime library. If there is no map or capture information,
|
|
/// return nullptr by reference.
|
|
static void
|
|
emitOffloadingArrays(CodeGenFunction &CGF,
|
|
MappableExprsHandler::MapBaseValuesArrayTy &BasePointers,
|
|
MappableExprsHandler::MapValuesArrayTy &Pointers,
|
|
MappableExprsHandler::MapValuesArrayTy &Sizes,
|
|
MappableExprsHandler::MapFlagsArrayTy &MapTypes,
|
|
CGOpenMPRuntime::TargetDataInfo &Info) {
|
|
CodeGenModule &CGM = CGF.CGM;
|
|
ASTContext &Ctx = CGF.getContext();
|
|
|
|
// Reset the array information.
|
|
Info.clearArrayInfo();
|
|
Info.NumberOfPtrs = BasePointers.size();
|
|
|
|
if (Info.NumberOfPtrs) {
|
|
// Detect if we have any capture size requiring runtime evaluation of the
|
|
// size so that a constant array could be eventually used.
|
|
bool hasRuntimeEvaluationCaptureSize = false;
|
|
for (llvm::Value *S : Sizes)
|
|
if (!isa<llvm::Constant>(S)) {
|
|
hasRuntimeEvaluationCaptureSize = true;
|
|
break;
|
|
}
|
|
|
|
llvm::APInt PointerNumAP(32, Info.NumberOfPtrs, /*isSigned=*/true);
|
|
QualType PointerArrayType = Ctx.getConstantArrayType(
|
|
Ctx.VoidPtrTy, PointerNumAP, nullptr, ArrayType::Normal,
|
|
/*IndexTypeQuals=*/0);
|
|
|
|
Info.BasePointersArray =
|
|
CGF.CreateMemTemp(PointerArrayType, ".offload_baseptrs").getPointer();
|
|
Info.PointersArray =
|
|
CGF.CreateMemTemp(PointerArrayType, ".offload_ptrs").getPointer();
|
|
|
|
// If we don't have any VLA types or other types that require runtime
|
|
// evaluation, we can use a constant array for the map sizes, otherwise we
|
|
// need to fill up the arrays as we do for the pointers.
|
|
QualType Int64Ty =
|
|
Ctx.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1);
|
|
if (hasRuntimeEvaluationCaptureSize) {
|
|
QualType SizeArrayType = Ctx.getConstantArrayType(
|
|
Int64Ty, PointerNumAP, nullptr, ArrayType::Normal,
|
|
/*IndexTypeQuals=*/0);
|
|
Info.SizesArray =
|
|
CGF.CreateMemTemp(SizeArrayType, ".offload_sizes").getPointer();
|
|
} else {
|
|
// We expect all the sizes to be constant, so we collect them to create
|
|
// a constant array.
|
|
SmallVector<llvm::Constant *, 16> ConstSizes;
|
|
for (llvm::Value *S : Sizes)
|
|
ConstSizes.push_back(cast<llvm::Constant>(S));
|
|
|
|
auto *SizesArrayInit = llvm::ConstantArray::get(
|
|
llvm::ArrayType::get(CGM.Int64Ty, ConstSizes.size()), ConstSizes);
|
|
std::string Name = CGM.getOpenMPRuntime().getName({"offload_sizes"});
|
|
auto *SizesArrayGbl = new llvm::GlobalVariable(
|
|
CGM.getModule(), SizesArrayInit->getType(),
|
|
/*isConstant=*/true, llvm::GlobalValue::PrivateLinkage,
|
|
SizesArrayInit, Name);
|
|
SizesArrayGbl->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
|
|
Info.SizesArray = SizesArrayGbl;
|
|
}
|
|
|
|
// The map types are always constant so we don't need to generate code to
|
|
// fill arrays. Instead, we create an array constant.
|
|
SmallVector<uint64_t, 4> Mapping(MapTypes.size(), 0);
|
|
llvm::copy(MapTypes, Mapping.begin());
|
|
llvm::Constant *MapTypesArrayInit =
|
|
llvm::ConstantDataArray::get(CGF.Builder.getContext(), Mapping);
|
|
std::string MaptypesName =
|
|
CGM.getOpenMPRuntime().getName({"offload_maptypes"});
|
|
auto *MapTypesArrayGbl = new llvm::GlobalVariable(
|
|
CGM.getModule(), MapTypesArrayInit->getType(),
|
|
/*isConstant=*/true, llvm::GlobalValue::PrivateLinkage,
|
|
MapTypesArrayInit, MaptypesName);
|
|
MapTypesArrayGbl->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
|
|
Info.MapTypesArray = MapTypesArrayGbl;
|
|
|
|
for (unsigned I = 0; I < Info.NumberOfPtrs; ++I) {
|
|
llvm::Value *BPVal = *BasePointers[I];
|
|
llvm::Value *BP = CGF.Builder.CreateConstInBoundsGEP2_32(
|
|
llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs),
|
|
Info.BasePointersArray, 0, I);
|
|
BP = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
|
|
BP, BPVal->getType()->getPointerTo(/*AddrSpace=*/0));
|
|
Address BPAddr(BP, Ctx.getTypeAlignInChars(Ctx.VoidPtrTy));
|
|
CGF.Builder.CreateStore(BPVal, BPAddr);
|
|
|
|
if (Info.requiresDevicePointerInfo())
|
|
if (const ValueDecl *DevVD = BasePointers[I].getDevicePtrDecl())
|
|
Info.CaptureDeviceAddrMap.try_emplace(DevVD, BPAddr);
|
|
|
|
llvm::Value *PVal = Pointers[I];
|
|
llvm::Value *P = CGF.Builder.CreateConstInBoundsGEP2_32(
|
|
llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs),
|
|
Info.PointersArray, 0, I);
|
|
P = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
|
|
P, PVal->getType()->getPointerTo(/*AddrSpace=*/0));
|
|
Address PAddr(P, Ctx.getTypeAlignInChars(Ctx.VoidPtrTy));
|
|
CGF.Builder.CreateStore(PVal, PAddr);
|
|
|
|
if (hasRuntimeEvaluationCaptureSize) {
|
|
llvm::Value *S = CGF.Builder.CreateConstInBoundsGEP2_32(
|
|
llvm::ArrayType::get(CGM.Int64Ty, Info.NumberOfPtrs),
|
|
Info.SizesArray,
|
|
/*Idx0=*/0,
|
|
/*Idx1=*/I);
|
|
Address SAddr(S, Ctx.getTypeAlignInChars(Int64Ty));
|
|
CGF.Builder.CreateStore(
|
|
CGF.Builder.CreateIntCast(Sizes[I], CGM.Int64Ty, /*isSigned=*/true),
|
|
SAddr);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Emit the arguments to be passed to the runtime library based on the
|
|
/// arrays of pointers, sizes and map types.
|
|
static void emitOffloadingArraysArgument(
|
|
CodeGenFunction &CGF, llvm::Value *&BasePointersArrayArg,
|
|
llvm::Value *&PointersArrayArg, llvm::Value *&SizesArrayArg,
|
|
llvm::Value *&MapTypesArrayArg, CGOpenMPRuntime::TargetDataInfo &Info) {
|
|
CodeGenModule &CGM = CGF.CGM;
|
|
if (Info.NumberOfPtrs) {
|
|
BasePointersArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32(
|
|
llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs),
|
|
Info.BasePointersArray,
|
|
/*Idx0=*/0, /*Idx1=*/0);
|
|
PointersArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32(
|
|
llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs),
|
|
Info.PointersArray,
|
|
/*Idx0=*/0,
|
|
/*Idx1=*/0);
|
|
SizesArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32(
|
|
llvm::ArrayType::get(CGM.Int64Ty, Info.NumberOfPtrs), Info.SizesArray,
|
|
/*Idx0=*/0, /*Idx1=*/0);
|
|
MapTypesArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32(
|
|
llvm::ArrayType::get(CGM.Int64Ty, Info.NumberOfPtrs),
|
|
Info.MapTypesArray,
|
|
/*Idx0=*/0,
|
|
/*Idx1=*/0);
|
|
} else {
|
|
BasePointersArrayArg = llvm::ConstantPointerNull::get(CGM.VoidPtrPtrTy);
|
|
PointersArrayArg = llvm::ConstantPointerNull::get(CGM.VoidPtrPtrTy);
|
|
SizesArrayArg = llvm::ConstantPointerNull::get(CGM.Int64Ty->getPointerTo());
|
|
MapTypesArrayArg =
|
|
llvm::ConstantPointerNull::get(CGM.Int64Ty->getPointerTo());
|
|
}
|
|
}
|
|
|
|
/// Check for inner distribute directive.
|
|
static const OMPExecutableDirective *
|
|
getNestedDistributeDirective(ASTContext &Ctx, const OMPExecutableDirective &D) {
|
|
const auto *CS = D.getInnermostCapturedStmt();
|
|
const auto *Body =
|
|
CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
|
|
const Stmt *ChildStmt =
|
|
CGOpenMPSIMDRuntime::getSingleCompoundChild(Ctx, Body);
|
|
|
|
if (const auto *NestedDir =
|
|
dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
|
|
OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind();
|
|
switch (D.getDirectiveKind()) {
|
|
case OMPD_target:
|
|
if (isOpenMPDistributeDirective(DKind))
|
|
return NestedDir;
|
|
if (DKind == OMPD_teams) {
|
|
Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
|
|
/*IgnoreCaptured=*/true);
|
|
if (!Body)
|
|
return nullptr;
|
|
ChildStmt = CGOpenMPSIMDRuntime::getSingleCompoundChild(Ctx, Body);
|
|
if (const auto *NND =
|
|
dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
|
|
DKind = NND->getDirectiveKind();
|
|
if (isOpenMPDistributeDirective(DKind))
|
|
return NND;
|
|
}
|
|
}
|
|
return nullptr;
|
|
case OMPD_target_teams:
|
|
if (isOpenMPDistributeDirective(DKind))
|
|
return NestedDir;
|
|
return nullptr;
|
|
case OMPD_target_parallel:
|
|
case OMPD_target_simd:
|
|
case OMPD_target_parallel_for:
|
|
case OMPD_target_parallel_for_simd:
|
|
return nullptr;
|
|
case OMPD_target_teams_distribute:
|
|
case OMPD_target_teams_distribute_simd:
|
|
case OMPD_target_teams_distribute_parallel_for:
|
|
case OMPD_target_teams_distribute_parallel_for_simd:
|
|
case OMPD_parallel:
|
|
case OMPD_for:
|
|
case OMPD_parallel_for:
|
|
case OMPD_parallel_master:
|
|
case OMPD_parallel_sections:
|
|
case OMPD_for_simd:
|
|
case OMPD_parallel_for_simd:
|
|
case OMPD_cancel:
|
|
case OMPD_cancellation_point:
|
|
case OMPD_ordered:
|
|
case OMPD_threadprivate:
|
|
case OMPD_allocate:
|
|
case OMPD_task:
|
|
case OMPD_simd:
|
|
case OMPD_sections:
|
|
case OMPD_section:
|
|
case OMPD_single:
|
|
case OMPD_master:
|
|
case OMPD_critical:
|
|
case OMPD_taskyield:
|
|
case OMPD_barrier:
|
|
case OMPD_taskwait:
|
|
case OMPD_taskgroup:
|
|
case OMPD_atomic:
|
|
case OMPD_flush:
|
|
case OMPD_teams:
|
|
case OMPD_target_data:
|
|
case OMPD_target_exit_data:
|
|
case OMPD_target_enter_data:
|
|
case OMPD_distribute:
|
|
case OMPD_distribute_simd:
|
|
case OMPD_distribute_parallel_for:
|
|
case OMPD_distribute_parallel_for_simd:
|
|
case OMPD_teams_distribute:
|
|
case OMPD_teams_distribute_simd:
|
|
case OMPD_teams_distribute_parallel_for:
|
|
case OMPD_teams_distribute_parallel_for_simd:
|
|
case OMPD_target_update:
|
|
case OMPD_declare_simd:
|
|
case OMPD_declare_variant:
|
|
case OMPD_declare_target:
|
|
case OMPD_end_declare_target:
|
|
case OMPD_declare_reduction:
|
|
case OMPD_declare_mapper:
|
|
case OMPD_taskloop:
|
|
case OMPD_taskloop_simd:
|
|
case OMPD_master_taskloop:
|
|
case OMPD_master_taskloop_simd:
|
|
case OMPD_parallel_master_taskloop:
|
|
case OMPD_parallel_master_taskloop_simd:
|
|
case OMPD_requires:
|
|
case OMPD_unknown:
|
|
llvm_unreachable("Unexpected directive.");
|
|
}
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// Emit the user-defined mapper function. The code generation follows the
|
|
/// pattern in the example below.
|
|
/// \code
|
|
/// void .omp_mapper.<type_name>.<mapper_id>.(void *rt_mapper_handle,
|
|
/// void *base, void *begin,
|
|
/// int64_t size, int64_t type) {
|
|
/// // Allocate space for an array section first.
|
|
/// if (size > 1 && !maptype.IsDelete)
|
|
/// __tgt_push_mapper_component(rt_mapper_handle, base, begin,
|
|
/// size*sizeof(Ty), clearToFrom(type));
|
|
/// // Map members.
|
|
/// for (unsigned i = 0; i < size; i++) {
|
|
/// // For each component specified by this mapper:
|
|
/// for (auto c : all_components) {
|
|
/// if (c.hasMapper())
|
|
/// (*c.Mapper())(rt_mapper_handle, c.arg_base, c.arg_begin, c.arg_size,
|
|
/// c.arg_type);
|
|
/// else
|
|
/// __tgt_push_mapper_component(rt_mapper_handle, c.arg_base,
|
|
/// c.arg_begin, c.arg_size, c.arg_type);
|
|
/// }
|
|
/// }
|
|
/// // Delete the array section.
|
|
/// if (size > 1 && maptype.IsDelete)
|
|
/// __tgt_push_mapper_component(rt_mapper_handle, base, begin,
|
|
/// size*sizeof(Ty), clearToFrom(type));
|
|
/// }
|
|
/// \endcode
|
|
void CGOpenMPRuntime::emitUserDefinedMapper(const OMPDeclareMapperDecl *D,
|
|
CodeGenFunction *CGF) {
|
|
if (UDMMap.count(D) > 0)
|
|
return;
|
|
ASTContext &C = CGM.getContext();
|
|
QualType Ty = D->getType();
|
|
QualType PtrTy = C.getPointerType(Ty).withRestrict();
|
|
QualType Int64Ty = C.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/true);
|
|
auto *MapperVarDecl =
|
|
cast<VarDecl>(cast<DeclRefExpr>(D->getMapperVarRef())->getDecl());
|
|
SourceLocation Loc = D->getLocation();
|
|
CharUnits ElementSize = C.getTypeSizeInChars(Ty);
|
|
|
|
// Prepare mapper function arguments and attributes.
|
|
ImplicitParamDecl HandleArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
|
|
C.VoidPtrTy, ImplicitParamDecl::Other);
|
|
ImplicitParamDecl BaseArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
|
|
ImplicitParamDecl::Other);
|
|
ImplicitParamDecl BeginArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
|
|
C.VoidPtrTy, ImplicitParamDecl::Other);
|
|
ImplicitParamDecl SizeArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, Int64Ty,
|
|
ImplicitParamDecl::Other);
|
|
ImplicitParamDecl TypeArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, Int64Ty,
|
|
ImplicitParamDecl::Other);
|
|
FunctionArgList Args;
|
|
Args.push_back(&HandleArg);
|
|
Args.push_back(&BaseArg);
|
|
Args.push_back(&BeginArg);
|
|
Args.push_back(&SizeArg);
|
|
Args.push_back(&TypeArg);
|
|
const CGFunctionInfo &FnInfo =
|
|
CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
|
|
llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo);
|
|
SmallString<64> TyStr;
|
|
llvm::raw_svector_ostream Out(TyStr);
|
|
CGM.getCXXABI().getMangleContext().mangleTypeName(Ty, Out);
|
|
std::string Name = getName({"omp_mapper", TyStr, D->getName()});
|
|
auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage,
|
|
Name, &CGM.getModule());
|
|
CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo);
|
|
Fn->removeFnAttr(llvm::Attribute::OptimizeNone);
|
|
// Start the mapper function code generation.
|
|
CodeGenFunction MapperCGF(CGM);
|
|
MapperCGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, Loc, Loc);
|
|
// Compute the starting and end addreses of array elements.
|
|
llvm::Value *Size = MapperCGF.EmitLoadOfScalar(
|
|
MapperCGF.GetAddrOfLocalVar(&SizeArg), /*Volatile=*/false,
|
|
C.getPointerType(Int64Ty), Loc);
|
|
llvm::Value *PtrBegin = MapperCGF.Builder.CreateBitCast(
|
|
MapperCGF.GetAddrOfLocalVar(&BeginArg).getPointer(),
|
|
CGM.getTypes().ConvertTypeForMem(C.getPointerType(PtrTy)));
|
|
llvm::Value *PtrEnd = MapperCGF.Builder.CreateGEP(PtrBegin, Size);
|
|
llvm::Value *MapType = MapperCGF.EmitLoadOfScalar(
|
|
MapperCGF.GetAddrOfLocalVar(&TypeArg), /*Volatile=*/false,
|
|
C.getPointerType(Int64Ty), Loc);
|
|
// Prepare common arguments for array initiation and deletion.
|
|
llvm::Value *Handle = MapperCGF.EmitLoadOfScalar(
|
|
MapperCGF.GetAddrOfLocalVar(&HandleArg),
|
|
/*Volatile=*/false, C.getPointerType(C.VoidPtrTy), Loc);
|
|
llvm::Value *BaseIn = MapperCGF.EmitLoadOfScalar(
|
|
MapperCGF.GetAddrOfLocalVar(&BaseArg),
|
|
/*Volatile=*/false, C.getPointerType(C.VoidPtrTy), Loc);
|
|
llvm::Value *BeginIn = MapperCGF.EmitLoadOfScalar(
|
|
MapperCGF.GetAddrOfLocalVar(&BeginArg),
|
|
/*Volatile=*/false, C.getPointerType(C.VoidPtrTy), Loc);
|
|
|
|
// Emit array initiation if this is an array section and \p MapType indicates
|
|
// that memory allocation is required.
|
|
llvm::BasicBlock *HeadBB = MapperCGF.createBasicBlock("omp.arraymap.head");
|
|
emitUDMapperArrayInitOrDel(MapperCGF, Handle, BaseIn, BeginIn, Size, MapType,
|
|
ElementSize, HeadBB, /*IsInit=*/true);
|
|
|
|
// Emit a for loop to iterate through SizeArg of elements and map all of them.
|
|
|
|
// Emit the loop header block.
|
|
MapperCGF.EmitBlock(HeadBB);
|
|
llvm::BasicBlock *BodyBB = MapperCGF.createBasicBlock("omp.arraymap.body");
|
|
llvm::BasicBlock *DoneBB = MapperCGF.createBasicBlock("omp.done");
|
|
// Evaluate whether the initial condition is satisfied.
|
|
llvm::Value *IsEmpty =
|
|
MapperCGF.Builder.CreateICmpEQ(PtrBegin, PtrEnd, "omp.arraymap.isempty");
|
|
MapperCGF.Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
|
|
llvm::BasicBlock *EntryBB = MapperCGF.Builder.GetInsertBlock();
|
|
|
|
// Emit the loop body block.
|
|
MapperCGF.EmitBlock(BodyBB);
|
|
llvm::PHINode *PtrPHI = MapperCGF.Builder.CreatePHI(
|
|
PtrBegin->getType(), 2, "omp.arraymap.ptrcurrent");
|
|
PtrPHI->addIncoming(PtrBegin, EntryBB);
|
|
Address PtrCurrent =
|
|
Address(PtrPHI, MapperCGF.GetAddrOfLocalVar(&BeginArg)
|
|
.getAlignment()
|
|
.alignmentOfArrayElement(ElementSize));
|
|
// Privatize the declared variable of mapper to be the current array element.
|
|
CodeGenFunction::OMPPrivateScope Scope(MapperCGF);
|
|
Scope.addPrivate(MapperVarDecl, [&MapperCGF, PtrCurrent, PtrTy]() {
|
|
return MapperCGF
|
|
.EmitLoadOfPointerLValue(PtrCurrent, PtrTy->castAs<PointerType>())
|
|
.getAddress(MapperCGF);
|
|
});
|
|
(void)Scope.Privatize();
|
|
|
|
// Get map clause information. Fill up the arrays with all mapped variables.
|
|
MappableExprsHandler::MapBaseValuesArrayTy BasePointers;
|
|
MappableExprsHandler::MapValuesArrayTy Pointers;
|
|
MappableExprsHandler::MapValuesArrayTy Sizes;
|
|
MappableExprsHandler::MapFlagsArrayTy MapTypes;
|
|
MappableExprsHandler MEHandler(*D, MapperCGF);
|
|
MEHandler.generateAllInfoForMapper(BasePointers, Pointers, Sizes, MapTypes);
|
|
|
|
// Call the runtime API __tgt_mapper_num_components to get the number of
|
|
// pre-existing components.
|
|
llvm::Value *OffloadingArgs[] = {Handle};
|
|
llvm::Value *PreviousSize = MapperCGF.EmitRuntimeCall(
|
|
createRuntimeFunction(OMPRTL__tgt_mapper_num_components), OffloadingArgs);
|
|
llvm::Value *ShiftedPreviousSize = MapperCGF.Builder.CreateShl(
|
|
PreviousSize,
|
|
MapperCGF.Builder.getInt64(MappableExprsHandler::getFlagMemberOffset()));
|
|
|
|
// Fill up the runtime mapper handle for all components.
|
|
for (unsigned I = 0; I < BasePointers.size(); ++I) {
|
|
llvm::Value *CurBaseArg = MapperCGF.Builder.CreateBitCast(
|
|
*BasePointers[I], CGM.getTypes().ConvertTypeForMem(C.VoidPtrTy));
|
|
llvm::Value *CurBeginArg = MapperCGF.Builder.CreateBitCast(
|
|
Pointers[I], CGM.getTypes().ConvertTypeForMem(C.VoidPtrTy));
|
|
llvm::Value *CurSizeArg = Sizes[I];
|
|
|
|
// Extract the MEMBER_OF field from the map type.
|
|
llvm::BasicBlock *MemberBB = MapperCGF.createBasicBlock("omp.member");
|
|
MapperCGF.EmitBlock(MemberBB);
|
|
llvm::Value *OriMapType = MapperCGF.Builder.getInt64(MapTypes[I]);
|
|
llvm::Value *Member = MapperCGF.Builder.CreateAnd(
|
|
OriMapType,
|
|
MapperCGF.Builder.getInt64(MappableExprsHandler::OMP_MAP_MEMBER_OF));
|
|
llvm::BasicBlock *MemberCombineBB =
|
|
MapperCGF.createBasicBlock("omp.member.combine");
|
|
llvm::BasicBlock *TypeBB = MapperCGF.createBasicBlock("omp.type");
|
|
llvm::Value *IsMember = MapperCGF.Builder.CreateIsNull(Member);
|
|
MapperCGF.Builder.CreateCondBr(IsMember, TypeBB, MemberCombineBB);
|
|
// Add the number of pre-existing components to the MEMBER_OF field if it
|
|
// is valid.
|
|
MapperCGF.EmitBlock(MemberCombineBB);
|
|
llvm::Value *CombinedMember =
|
|
MapperCGF.Builder.CreateNUWAdd(OriMapType, ShiftedPreviousSize);
|
|
// Do nothing if it is not a member of previous components.
|
|
MapperCGF.EmitBlock(TypeBB);
|
|
llvm::PHINode *MemberMapType =
|
|
MapperCGF.Builder.CreatePHI(CGM.Int64Ty, 4, "omp.membermaptype");
|
|
MemberMapType->addIncoming(OriMapType, MemberBB);
|
|
MemberMapType->addIncoming(CombinedMember, MemberCombineBB);
|
|
|
|
// Combine the map type inherited from user-defined mapper with that
|
|
// specified in the program. According to the OMP_MAP_TO and OMP_MAP_FROM
|
|
// bits of the \a MapType, which is the input argument of the mapper
|
|
// function, the following code will set the OMP_MAP_TO and OMP_MAP_FROM
|
|
// bits of MemberMapType.
|
|
// [OpenMP 5.0], 1.2.6. map-type decay.
|
|
// | alloc | to | from | tofrom | release | delete
|
|
// ----------------------------------------------------------
|
|
// alloc | alloc | alloc | alloc | alloc | release | delete
|
|
// to | alloc | to | alloc | to | release | delete
|
|
// from | alloc | alloc | from | from | release | delete
|
|
// tofrom | alloc | to | from | tofrom | release | delete
|
|
llvm::Value *LeftToFrom = MapperCGF.Builder.CreateAnd(
|
|
MapType,
|
|
MapperCGF.Builder.getInt64(MappableExprsHandler::OMP_MAP_TO |
|
|
MappableExprsHandler::OMP_MAP_FROM));
|
|
llvm::BasicBlock *AllocBB = MapperCGF.createBasicBlock("omp.type.alloc");
|
|
llvm::BasicBlock *AllocElseBB =
|
|
MapperCGF.createBasicBlock("omp.type.alloc.else");
|
|
llvm::BasicBlock *ToBB = MapperCGF.createBasicBlock("omp.type.to");
|
|
llvm::BasicBlock *ToElseBB = MapperCGF.createBasicBlock("omp.type.to.else");
|
|
llvm::BasicBlock *FromBB = MapperCGF.createBasicBlock("omp.type.from");
|
|
llvm::BasicBlock *EndBB = MapperCGF.createBasicBlock("omp.type.end");
|
|
llvm::Value *IsAlloc = MapperCGF.Builder.CreateIsNull(LeftToFrom);
|
|
MapperCGF.Builder.CreateCondBr(IsAlloc, AllocBB, AllocElseBB);
|
|
// In case of alloc, clear OMP_MAP_TO and OMP_MAP_FROM.
|
|
MapperCGF.EmitBlock(AllocBB);
|
|
llvm::Value *AllocMapType = MapperCGF.Builder.CreateAnd(
|
|
MemberMapType,
|
|
MapperCGF.Builder.getInt64(~(MappableExprsHandler::OMP_MAP_TO |
|
|
MappableExprsHandler::OMP_MAP_FROM)));
|
|
MapperCGF.Builder.CreateBr(EndBB);
|
|
MapperCGF.EmitBlock(AllocElseBB);
|
|
llvm::Value *IsTo = MapperCGF.Builder.CreateICmpEQ(
|
|
LeftToFrom,
|
|
MapperCGF.Builder.getInt64(MappableExprsHandler::OMP_MAP_TO));
|
|
MapperCGF.Builder.CreateCondBr(IsTo, ToBB, ToElseBB);
|
|
// In case of to, clear OMP_MAP_FROM.
|
|
MapperCGF.EmitBlock(ToBB);
|
|
llvm::Value *ToMapType = MapperCGF.Builder.CreateAnd(
|
|
MemberMapType,
|
|
MapperCGF.Builder.getInt64(~MappableExprsHandler::OMP_MAP_FROM));
|
|
MapperCGF.Builder.CreateBr(EndBB);
|
|
MapperCGF.EmitBlock(ToElseBB);
|
|
llvm::Value *IsFrom = MapperCGF.Builder.CreateICmpEQ(
|
|
LeftToFrom,
|
|
MapperCGF.Builder.getInt64(MappableExprsHandler::OMP_MAP_FROM));
|
|
MapperCGF.Builder.CreateCondBr(IsFrom, FromBB, EndBB);
|
|
// In case of from, clear OMP_MAP_TO.
|
|
MapperCGF.EmitBlock(FromBB);
|
|
llvm::Value *FromMapType = MapperCGF.Builder.CreateAnd(
|
|
MemberMapType,
|
|
MapperCGF.Builder.getInt64(~MappableExprsHandler::OMP_MAP_TO));
|
|
// In case of tofrom, do nothing.
|
|
MapperCGF.EmitBlock(EndBB);
|
|
llvm::PHINode *CurMapType =
|
|
MapperCGF.Builder.CreatePHI(CGM.Int64Ty, 4, "omp.maptype");
|
|
CurMapType->addIncoming(AllocMapType, AllocBB);
|
|
CurMapType->addIncoming(ToMapType, ToBB);
|
|
CurMapType->addIncoming(FromMapType, FromBB);
|
|
CurMapType->addIncoming(MemberMapType, ToElseBB);
|
|
|
|
// TODO: call the corresponding mapper function if a user-defined mapper is
|
|
// associated with this map clause.
|
|
// Call the runtime API __tgt_push_mapper_component to fill up the runtime
|
|
// data structure.
|
|
llvm::Value *OffloadingArgs[] = {Handle, CurBaseArg, CurBeginArg,
|
|
CurSizeArg, CurMapType};
|
|
MapperCGF.EmitRuntimeCall(
|
|
createRuntimeFunction(OMPRTL__tgt_push_mapper_component),
|
|
OffloadingArgs);
|
|
}
|
|
|
|
// Update the pointer to point to the next element that needs to be mapped,
|
|
// and check whether we have mapped all elements.
|
|
llvm::Value *PtrNext = MapperCGF.Builder.CreateConstGEP1_32(
|
|
PtrPHI, /*Idx0=*/1, "omp.arraymap.next");
|
|
PtrPHI->addIncoming(PtrNext, BodyBB);
|
|
llvm::Value *IsDone =
|
|
MapperCGF.Builder.CreateICmpEQ(PtrNext, PtrEnd, "omp.arraymap.isdone");
|
|
llvm::BasicBlock *ExitBB = MapperCGF.createBasicBlock("omp.arraymap.exit");
|
|
MapperCGF.Builder.CreateCondBr(IsDone, ExitBB, BodyBB);
|
|
|
|
MapperCGF.EmitBlock(ExitBB);
|
|
// Emit array deletion if this is an array section and \p MapType indicates
|
|
// that deletion is required.
|
|
emitUDMapperArrayInitOrDel(MapperCGF, Handle, BaseIn, BeginIn, Size, MapType,
|
|
ElementSize, DoneBB, /*IsInit=*/false);
|
|
|
|
// Emit the function exit block.
|
|
MapperCGF.EmitBlock(DoneBB, /*IsFinished=*/true);
|
|
MapperCGF.FinishFunction();
|
|
UDMMap.try_emplace(D, Fn);
|
|
if (CGF) {
|
|
auto &Decls = FunctionUDMMap.FindAndConstruct(CGF->CurFn);
|
|
Decls.second.push_back(D);
|
|
}
|
|
}
|
|
|
|
/// Emit the array initialization or deletion portion for user-defined mapper
|
|
/// code generation. First, it evaluates whether an array section is mapped and
|
|
/// whether the \a MapType instructs to delete this section. If \a IsInit is
|
|
/// true, and \a MapType indicates to not delete this array, array
|
|
/// initialization code is generated. If \a IsInit is false, and \a MapType
|
|
/// indicates to not this array, array deletion code is generated.
|
|
void CGOpenMPRuntime::emitUDMapperArrayInitOrDel(
|
|
CodeGenFunction &MapperCGF, llvm::Value *Handle, llvm::Value *Base,
|
|
llvm::Value *Begin, llvm::Value *Size, llvm::Value *MapType,
|
|
CharUnits ElementSize, llvm::BasicBlock *ExitBB, bool IsInit) {
|
|
StringRef Prefix = IsInit ? ".init" : ".del";
|
|
|
|
// Evaluate if this is an array section.
|
|
llvm::BasicBlock *IsDeleteBB =
|
|
MapperCGF.createBasicBlock("omp.array" + Prefix + ".evaldelete");
|
|
llvm::BasicBlock *BodyBB = MapperCGF.createBasicBlock("omp.array" + Prefix);
|
|
llvm::Value *IsArray = MapperCGF.Builder.CreateICmpSGE(
|
|
Size, MapperCGF.Builder.getInt64(1), "omp.arrayinit.isarray");
|
|
MapperCGF.Builder.CreateCondBr(IsArray, IsDeleteBB, ExitBB);
|
|
|
|
// Evaluate if we are going to delete this section.
|
|
MapperCGF.EmitBlock(IsDeleteBB);
|
|
llvm::Value *DeleteBit = MapperCGF.Builder.CreateAnd(
|
|
MapType,
|
|
MapperCGF.Builder.getInt64(MappableExprsHandler::OMP_MAP_DELETE));
|
|
llvm::Value *DeleteCond;
|
|
if (IsInit) {
|
|
DeleteCond = MapperCGF.Builder.CreateIsNull(
|
|
DeleteBit, "omp.array" + Prefix + ".delete");
|
|
} else {
|
|
DeleteCond = MapperCGF.Builder.CreateIsNotNull(
|
|
DeleteBit, "omp.array" + Prefix + ".delete");
|
|
}
|
|
MapperCGF.Builder.CreateCondBr(DeleteCond, BodyBB, ExitBB);
|
|
|
|
MapperCGF.EmitBlock(BodyBB);
|
|
// Get the array size by multiplying element size and element number (i.e., \p
|
|
// Size).
|
|
llvm::Value *ArraySize = MapperCGF.Builder.CreateNUWMul(
|
|
Size, MapperCGF.Builder.getInt64(ElementSize.getQuantity()));
|
|
// Remove OMP_MAP_TO and OMP_MAP_FROM from the map type, so that it achieves
|
|
// memory allocation/deletion purpose only.
|
|
llvm::Value *MapTypeArg = MapperCGF.Builder.CreateAnd(
|
|
MapType,
|
|
MapperCGF.Builder.getInt64(~(MappableExprsHandler::OMP_MAP_TO |
|
|
MappableExprsHandler::OMP_MAP_FROM)));
|
|
// Call the runtime API __tgt_push_mapper_component to fill up the runtime
|
|
// data structure.
|
|
llvm::Value *OffloadingArgs[] = {Handle, Base, Begin, ArraySize, MapTypeArg};
|
|
MapperCGF.EmitRuntimeCall(
|
|
createRuntimeFunction(OMPRTL__tgt_push_mapper_component), OffloadingArgs);
|
|
}
|
|
|
|
void CGOpenMPRuntime::emitTargetNumIterationsCall(
|
|
CodeGenFunction &CGF, const OMPExecutableDirective &D,
|
|
llvm::Value *DeviceID,
|
|
llvm::function_ref<llvm::Value *(CodeGenFunction &CGF,
|
|
const OMPLoopDirective &D)>
|
|
SizeEmitter) {
|
|
OpenMPDirectiveKind Kind = D.getDirectiveKind();
|
|
const OMPExecutableDirective *TD = &D;
|
|
// Get nested teams distribute kind directive, if any.
|
|
if (!isOpenMPDistributeDirective(Kind) || !isOpenMPTeamsDirective(Kind))
|
|
TD = getNestedDistributeDirective(CGM.getContext(), D);
|
|
if (!TD)
|
|
return;
|
|
const auto *LD = cast<OMPLoopDirective>(TD);
|
|
auto &&CodeGen = [LD, DeviceID, SizeEmitter, this](CodeGenFunction &CGF,
|
|
PrePostActionTy &) {
|
|
if (llvm::Value *NumIterations = SizeEmitter(CGF, *LD)) {
|
|
llvm::Value *Args[] = {DeviceID, NumIterations};
|
|
CGF.EmitRuntimeCall(
|
|
createRuntimeFunction(OMPRTL__kmpc_push_target_tripcount), Args);
|
|
}
|
|
};
|
|
emitInlinedDirective(CGF, OMPD_unknown, CodeGen);
|
|
}
|
|
|
|
void CGOpenMPRuntime::emitTargetCall(
|
|
CodeGenFunction &CGF, const OMPExecutableDirective &D,
|
|
llvm::Function *OutlinedFn, llvm::Value *OutlinedFnID, const Expr *IfCond,
|
|
const Expr *Device,
|
|
llvm::function_ref<llvm::Value *(CodeGenFunction &CGF,
|
|
const OMPLoopDirective &D)>
|
|
SizeEmitter) {
|
|
if (!CGF.HaveInsertPoint())
|
|
return;
|
|
|
|
assert(OutlinedFn && "Invalid outlined function!");
|
|
|
|
const bool RequiresOuterTask = D.hasClausesOfKind<OMPDependClause>();
|
|
llvm::SmallVector<llvm::Value *, 16> CapturedVars;
|
|
const CapturedStmt &CS = *D.getCapturedStmt(OMPD_target);
|
|
auto &&ArgsCodegen = [&CS, &CapturedVars](CodeGenFunction &CGF,
|
|
PrePostActionTy &) {
|
|
CGF.GenerateOpenMPCapturedVars(CS, CapturedVars);
|
|
};
|
|
emitInlinedDirective(CGF, OMPD_unknown, ArgsCodegen);
|
|
|
|
CodeGenFunction::OMPTargetDataInfo InputInfo;
|
|
llvm::Value *MapTypesArray = nullptr;
|
|
// Fill up the pointer arrays and transfer execution to the device.
|
|
auto &&ThenGen = [this, Device, OutlinedFn, OutlinedFnID, &D, &InputInfo,
|
|
&MapTypesArray, &CS, RequiresOuterTask, &CapturedVars,
|
|
SizeEmitter](CodeGenFunction &CGF, PrePostActionTy &) {
|
|
// On top of the arrays that were filled up, the target offloading call
|
|
// takes as arguments the device id as well as the host pointer. The host
|
|
// pointer is used by the runtime library to identify the current target
|
|
// region, so it only has to be unique and not necessarily point to
|
|
// anything. It could be the pointer to the outlined function that
|
|
// implements the target region, but we aren't using that so that the
|
|
// compiler doesn't need to keep that, and could therefore inline the host
|
|
// function if proven worthwhile during optimization.
|
|
|
|
// From this point on, we need to have an ID of the target region defined.
|
|
assert(OutlinedFnID && "Invalid outlined function ID!");
|
|
|
|
// Emit device ID if any.
|
|
llvm::Value *DeviceID;
|
|
if (Device) {
|
|
DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
|
|
CGF.Int64Ty, /*isSigned=*/true);
|
|
} else {
|
|
DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF);
|
|
}
|
|
|
|
// Emit the number of elements in the offloading arrays.
|
|
llvm::Value *PointerNum =
|
|
CGF.Builder.getInt32(InputInfo.NumberOfTargetItems);
|
|
|
|
// Return value of the runtime offloading call.
|
|
llvm::Value *Return;
|
|
|
|
llvm::Value *NumTeams = emitNumTeamsForTargetDirective(CGF, D);
|
|
llvm::Value *NumThreads = emitNumThreadsForTargetDirective(CGF, D);
|
|
|
|
// Emit tripcount for the target loop-based directive.
|
|
emitTargetNumIterationsCall(CGF, D, DeviceID, SizeEmitter);
|
|
|
|
bool HasNowait = D.hasClausesOfKind<OMPNowaitClause>();
|
|
// The target region is an outlined function launched by the runtime
|
|
// via calls __tgt_target() or __tgt_target_teams().
|
|
//
|
|
// __tgt_target() launches a target region with one team and one thread,
|
|
// executing a serial region. This master thread may in turn launch
|
|
// more threads within its team upon encountering a parallel region,
|
|
// however, no additional teams can be launched on the device.
|
|
//
|
|
// __tgt_target_teams() launches a target region with one or more teams,
|
|
// each with one or more threads. This call is required for target
|
|
// constructs such as:
|
|
// 'target teams'
|
|
// 'target' / 'teams'
|
|
// 'target teams distribute parallel for'
|
|
// 'target parallel'
|
|
// and so on.
|
|
//
|
|
// Note that on the host and CPU targets, the runtime implementation of
|
|
// these calls simply call the outlined function without forking threads.
|
|
// The outlined functions themselves have runtime calls to
|
|
// __kmpc_fork_teams() and __kmpc_fork() for this purpose, codegen'd by
|
|
// the compiler in emitTeamsCall() and emitParallelCall().
|
|
//
|
|
// In contrast, on the NVPTX target, the implementation of
|
|
// __tgt_target_teams() launches a GPU kernel with the requested number
|
|
// of teams and threads so no additional calls to the runtime are required.
|
|
if (NumTeams) {
|
|
// If we have NumTeams defined this means that we have an enclosed teams
|
|
// region. Therefore we also expect to have NumThreads defined. These two
|
|
// values should be defined in the presence of a teams directive,
|
|
// regardless of having any clauses associated. If the user is using teams
|
|
// but no clauses, these two values will be the default that should be
|
|
// passed to the runtime library - a 32-bit integer with the value zero.
|
|
assert(NumThreads && "Thread limit expression should be available along "
|
|
"with number of teams.");
|
|
llvm::Value *OffloadingArgs[] = {DeviceID,
|
|
OutlinedFnID,
|
|
PointerNum,
|
|
InputInfo.BasePointersArray.getPointer(),
|
|
InputInfo.PointersArray.getPointer(),
|
|
InputInfo.SizesArray.getPointer(),
|
|
MapTypesArray,
|
|
NumTeams,
|
|
NumThreads};
|
|
Return = CGF.EmitRuntimeCall(
|
|
createRuntimeFunction(HasNowait ? OMPRTL__tgt_target_teams_nowait
|
|
: OMPRTL__tgt_target_teams),
|
|
OffloadingArgs);
|
|
} else {
|
|
llvm::Value *OffloadingArgs[] = {DeviceID,
|
|
OutlinedFnID,
|
|
PointerNum,
|
|
InputInfo.BasePointersArray.getPointer(),
|
|
InputInfo.PointersArray.getPointer(),
|
|
InputInfo.SizesArray.getPointer(),
|
|
MapTypesArray};
|
|
Return = CGF.EmitRuntimeCall(
|
|
createRuntimeFunction(HasNowait ? OMPRTL__tgt_target_nowait
|
|
: OMPRTL__tgt_target),
|
|
OffloadingArgs);
|
|
}
|
|
|
|
// Check the error code and execute the host version if required.
|
|
llvm::BasicBlock *OffloadFailedBlock =
|
|
CGF.createBasicBlock("omp_offload.failed");
|
|
llvm::BasicBlock *OffloadContBlock =
|
|
CGF.createBasicBlock("omp_offload.cont");
|
|
llvm::Value *Failed = CGF.Builder.CreateIsNotNull(Return);
|
|
CGF.Builder.CreateCondBr(Failed, OffloadFailedBlock, OffloadContBlock);
|
|
|
|
CGF.EmitBlock(OffloadFailedBlock);
|
|
if (RequiresOuterTask) {
|
|
CapturedVars.clear();
|
|
CGF.GenerateOpenMPCapturedVars(CS, CapturedVars);
|
|
}
|
|
emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedFn, CapturedVars);
|
|
CGF.EmitBranch(OffloadContBlock);
|
|
|
|
CGF.EmitBlock(OffloadContBlock, /*IsFinished=*/true);
|
|
};
|
|
|
|
// Notify that the host version must be executed.
|
|
auto &&ElseGen = [this, &D, OutlinedFn, &CS, &CapturedVars,
|
|
RequiresOuterTask](CodeGenFunction &CGF,
|
|
PrePostActionTy &) {
|
|
if (RequiresOuterTask) {
|
|
CapturedVars.clear();
|
|
CGF.GenerateOpenMPCapturedVars(CS, CapturedVars);
|
|
}
|
|
emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedFn, CapturedVars);
|
|
};
|
|
|
|
auto &&TargetThenGen = [this, &ThenGen, &D, &InputInfo, &MapTypesArray,
|
|
&CapturedVars, RequiresOuterTask,
|
|
&CS](CodeGenFunction &CGF, PrePostActionTy &) {
|
|
// Fill up the arrays with all the captured variables.
|
|
MappableExprsHandler::MapBaseValuesArrayTy BasePointers;
|
|
MappableExprsHandler::MapValuesArrayTy Pointers;
|
|
MappableExprsHandler::MapValuesArrayTy Sizes;
|
|
MappableExprsHandler::MapFlagsArrayTy MapTypes;
|
|
|
|
// Get mappable expression information.
|
|
MappableExprsHandler MEHandler(D, CGF);
|
|
llvm::DenseMap<llvm::Value *, llvm::Value *> LambdaPointers;
|
|
|
|
auto RI = CS.getCapturedRecordDecl()->field_begin();
|
|
auto CV = CapturedVars.begin();
|
|
for (CapturedStmt::const_capture_iterator CI = CS.capture_begin(),
|
|
CE = CS.capture_end();
|
|
CI != CE; ++CI, ++RI, ++CV) {
|
|
MappableExprsHandler::MapBaseValuesArrayTy CurBasePointers;
|
|
MappableExprsHandler::MapValuesArrayTy CurPointers;
|
|
MappableExprsHandler::MapValuesArrayTy CurSizes;
|
|
MappableExprsHandler::MapFlagsArrayTy CurMapTypes;
|
|
MappableExprsHandler::StructRangeInfoTy PartialStruct;
|
|
|
|
// VLA sizes are passed to the outlined region by copy and do not have map
|
|
// information associated.
|
|
if (CI->capturesVariableArrayType()) {
|
|
CurBasePointers.push_back(*CV);
|
|
CurPointers.push_back(*CV);
|
|
CurSizes.push_back(CGF.Builder.CreateIntCast(
|
|
CGF.getTypeSize(RI->getType()), CGF.Int64Ty, /*isSigned=*/true));
|
|
// Copy to the device as an argument. No need to retrieve it.
|
|
CurMapTypes.push_back(MappableExprsHandler::OMP_MAP_LITERAL |
|
|
MappableExprsHandler::OMP_MAP_TARGET_PARAM |
|
|
MappableExprsHandler::OMP_MAP_IMPLICIT);
|
|
} else {
|
|
// If we have any information in the map clause, we use it, otherwise we
|
|
// just do a default mapping.
|
|
MEHandler.generateInfoForCapture(CI, *CV, CurBasePointers, CurPointers,
|
|
CurSizes, CurMapTypes, PartialStruct);
|
|
if (CurBasePointers.empty())
|
|
MEHandler.generateDefaultMapInfo(*CI, **RI, *CV, CurBasePointers,
|
|
CurPointers, CurSizes, CurMapTypes);
|
|
// Generate correct mapping for variables captured by reference in
|
|
// lambdas.
|
|
if (CI->capturesVariable())
|
|
MEHandler.generateInfoForLambdaCaptures(
|
|
CI->getCapturedVar(), *CV, CurBasePointers, CurPointers, CurSizes,
|
|
CurMapTypes, LambdaPointers);
|
|
}
|
|
// We expect to have at least an element of information for this capture.
|
|
assert(!CurBasePointers.empty() &&
|
|
"Non-existing map pointer for capture!");
|
|
assert(CurBasePointers.size() == CurPointers.size() &&
|
|
CurBasePointers.size() == CurSizes.size() &&
|
|
CurBasePointers.size() == CurMapTypes.size() &&
|
|
"Inconsistent map information sizes!");
|
|
|
|
// If there is an entry in PartialStruct it means we have a struct with
|
|
// individual members mapped. Emit an extra combined entry.
|
|
if (PartialStruct.Base.isValid())
|
|
MEHandler.emitCombinedEntry(BasePointers, Pointers, Sizes, MapTypes,
|
|
CurMapTypes, PartialStruct);
|
|
|
|
// We need to append the results of this capture to what we already have.
|
|
BasePointers.append(CurBasePointers.begin(), CurBasePointers.end());
|
|
Pointers.append(CurPointers.begin(), CurPointers.end());
|
|
Sizes.append(CurSizes.begin(), CurSizes.end());
|
|
MapTypes.append(CurMapTypes.begin(), CurMapTypes.end());
|
|
}
|
|
// Adjust MEMBER_OF flags for the lambdas captures.
|
|
MEHandler.adjustMemberOfForLambdaCaptures(LambdaPointers, BasePointers,
|
|
Pointers, MapTypes);
|
|
// Map other list items in the map clause which are not captured variables
|
|
// but "declare target link" global variables.
|
|
MEHandler.generateInfoForDeclareTargetLink(BasePointers, Pointers, Sizes,
|
|
MapTypes);
|
|
|
|
TargetDataInfo Info;
|
|
// Fill up the arrays and create the arguments.
|
|
emitOffloadingArrays(CGF, BasePointers, Pointers, Sizes, MapTypes, Info);
|
|
emitOffloadingArraysArgument(CGF, Info.BasePointersArray,
|
|
Info.PointersArray, Info.SizesArray,
|
|
Info.MapTypesArray, Info);
|
|
InputInfo.NumberOfTargetItems = Info.NumberOfPtrs;
|
|
InputInfo.BasePointersArray =
|
|
Address(Info.BasePointersArray, CGM.getPointerAlign());
|
|
InputInfo.PointersArray =
|
|
Address(Info.PointersArray, CGM.getPointerAlign());
|
|
InputInfo.SizesArray = Address(Info.SizesArray, CGM.getPointerAlign());
|
|
MapTypesArray = Info.MapTypesArray;
|
|
if (RequiresOuterTask)
|
|
CGF.EmitOMPTargetTaskBasedDirective(D, ThenGen, InputInfo);
|
|
else
|
|
emitInlinedDirective(CGF, D.getDirectiveKind(), ThenGen);
|
|
};
|
|
|
|
auto &&TargetElseGen = [this, &ElseGen, &D, RequiresOuterTask](
|
|
CodeGenFunction &CGF, PrePostActionTy &) {
|
|
if (RequiresOuterTask) {
|
|
CodeGenFunction::OMPTargetDataInfo InputInfo;
|
|
CGF.EmitOMPTargetTaskBasedDirective(D, ElseGen, InputInfo);
|
|
} else {
|
|
emitInlinedDirective(CGF, D.getDirectiveKind(), ElseGen);
|
|
}
|
|
};
|
|
|
|
// If we have a target function ID it means that we need to support
|
|
// offloading, otherwise, just execute on the host. We need to execute on host
|
|
// regardless of the conditional in the if clause if, e.g., the user do not
|
|
// specify target triples.
|
|
if (OutlinedFnID) {
|
|
if (IfCond) {
|
|
emitIfClause(CGF, IfCond, TargetThenGen, TargetElseGen);
|
|
} else {
|
|
RegionCodeGenTy ThenRCG(TargetThenGen);
|
|
ThenRCG(CGF);
|
|
}
|
|
} else {
|
|
RegionCodeGenTy ElseRCG(TargetElseGen);
|
|
ElseRCG(CGF);
|
|
}
|
|
}
|
|
|
|
void CGOpenMPRuntime::scanForTargetRegionsFunctions(const Stmt *S,
|
|
StringRef ParentName) {
|
|
if (!S)
|
|
return;
|
|
|
|
// Codegen OMP target directives that offload compute to the device.
|
|
bool RequiresDeviceCodegen =
|
|
isa<OMPExecutableDirective>(S) &&
|
|
isOpenMPTargetExecutionDirective(
|
|
cast<OMPExecutableDirective>(S)->getDirectiveKind());
|
|
|
|
if (RequiresDeviceCodegen) {
|
|
const auto &E = *cast<OMPExecutableDirective>(S);
|
|
unsigned DeviceID;
|
|
unsigned FileID;
|
|
unsigned Line;
|
|
getTargetEntryUniqueInfo(CGM.getContext(), E.getBeginLoc(), DeviceID,
|
|
FileID, Line);
|
|
|
|
// Is this a target region that should not be emitted as an entry point? If
|
|
// so just signal we are done with this target region.
|
|
if (!OffloadEntriesInfoManager.hasTargetRegionEntryInfo(DeviceID, FileID,
|
|
ParentName, Line))
|
|
return;
|
|
|
|
switch (E.getDirectiveKind()) {
|
|
case OMPD_target:
|
|
CodeGenFunction::EmitOMPTargetDeviceFunction(CGM, ParentName,
|
|
cast<OMPTargetDirective>(E));
|
|
break;
|
|
case OMPD_target_parallel:
|
|
CodeGenFunction::EmitOMPTargetParallelDeviceFunction(
|
|
CGM, ParentName, cast<OMPTargetParallelDirective>(E));
|
|
break;
|
|
case OMPD_target_teams:
|
|
CodeGenFunction::EmitOMPTargetTeamsDeviceFunction(
|
|
CGM, ParentName, cast<OMPTargetTeamsDirective>(E));
|
|
break;
|
|
case OMPD_target_teams_distribute:
|
|
CodeGenFunction::EmitOMPTargetTeamsDistributeDeviceFunction(
|
|
CGM, ParentName, cast<OMPTargetTeamsDistributeDirective>(E));
|
|
break;
|
|
case OMPD_target_teams_distribute_simd:
|
|
CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDeviceFunction(
|
|
CGM, ParentName, cast<OMPTargetTeamsDistributeSimdDirective>(E));
|
|
break;
|
|
case OMPD_target_parallel_for:
|
|
CodeGenFunction::EmitOMPTargetParallelForDeviceFunction(
|
|
CGM, ParentName, cast<OMPTargetParallelForDirective>(E));
|
|
break;
|
|
case OMPD_target_parallel_for_simd:
|
|
CodeGenFunction::EmitOMPTargetParallelForSimdDeviceFunction(
|
|
CGM, ParentName, cast<OMPTargetParallelForSimdDirective>(E));
|
|
break;
|
|
case OMPD_target_simd:
|
|
CodeGenFunction::EmitOMPTargetSimdDeviceFunction(
|
|
CGM, ParentName, cast<OMPTargetSimdDirective>(E));
|
|
break;
|
|
case OMPD_target_teams_distribute_parallel_for:
|
|
CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDeviceFunction(
|
|
CGM, ParentName,
|
|
cast<OMPTargetTeamsDistributeParallelForDirective>(E));
|
|
break;
|
|
case OMPD_target_teams_distribute_parallel_for_simd:
|
|
CodeGenFunction::
|
|
EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction(
|
|
CGM, ParentName,
|
|
cast<OMPTargetTeamsDistributeParallelForSimdDirective>(E));
|
|
break;
|
|
case OMPD_parallel:
|
|
case OMPD_for:
|
|
case OMPD_parallel_for:
|
|
case OMPD_parallel_master:
|
|
case OMPD_parallel_sections:
|
|
case OMPD_for_simd:
|
|
case OMPD_parallel_for_simd:
|
|
case OMPD_cancel:
|
|
case OMPD_cancellation_point:
|
|
case OMPD_ordered:
|
|
case OMPD_threadprivate:
|
|
case OMPD_allocate:
|
|
case OMPD_task:
|
|
case OMPD_simd:
|
|
case OMPD_sections:
|
|
case OMPD_section:
|
|
case OMPD_single:
|
|
case OMPD_master:
|
|
case OMPD_critical:
|
|
case OMPD_taskyield:
|
|
case OMPD_barrier:
|
|
case OMPD_taskwait:
|
|
case OMPD_taskgroup:
|
|
case OMPD_atomic:
|
|
case OMPD_flush:
|
|
case OMPD_teams:
|
|
case OMPD_target_data:
|
|
case OMPD_target_exit_data:
|
|
case OMPD_target_enter_data:
|
|
case OMPD_distribute:
|
|
case OMPD_distribute_simd:
|
|
case OMPD_distribute_parallel_for:
|
|
case OMPD_distribute_parallel_for_simd:
|
|
case OMPD_teams_distribute:
|
|
case OMPD_teams_distribute_simd:
|
|
case OMPD_teams_distribute_parallel_for:
|
|
case OMPD_teams_distribute_parallel_for_simd:
|
|
case OMPD_target_update:
|
|
case OMPD_declare_simd:
|
|
case OMPD_declare_variant:
|
|
case OMPD_declare_target:
|
|
case OMPD_end_declare_target:
|
|
case OMPD_declare_reduction:
|
|
case OMPD_declare_mapper:
|
|
case OMPD_taskloop:
|
|
case OMPD_taskloop_simd:
|
|
case OMPD_master_taskloop:
|
|
case OMPD_master_taskloop_simd:
|
|
case OMPD_parallel_master_taskloop:
|
|
case OMPD_parallel_master_taskloop_simd:
|
|
case OMPD_requires:
|
|
case OMPD_unknown:
|
|
llvm_unreachable("Unknown target directive for OpenMP device codegen.");
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (const auto *E = dyn_cast<OMPExecutableDirective>(S)) {
|
|
if (!E->hasAssociatedStmt() || !E->getAssociatedStmt())
|
|
return;
|
|
|
|
scanForTargetRegionsFunctions(
|
|
E->getInnermostCapturedStmt()->getCapturedStmt(), ParentName);
|
|
return;
|
|
}
|
|
|
|
// If this is a lambda function, look into its body.
|
|
if (const auto *L = dyn_cast<LambdaExpr>(S))
|
|
S = L->getBody();
|
|
|
|
// Keep looking for target regions recursively.
|
|
for (const Stmt *II : S->children())
|
|
scanForTargetRegionsFunctions(II, ParentName);
|
|
}
|
|
|
|
bool CGOpenMPRuntime::emitTargetFunctions(GlobalDecl GD) {
|
|
// If emitting code for the host, we do not process FD here. Instead we do
|
|
// the normal code generation.
|
|
if (!CGM.getLangOpts().OpenMPIsDevice) {
|
|
if (const auto *FD = dyn_cast<FunctionDecl>(GD.getDecl())) {
|
|
Optional<OMPDeclareTargetDeclAttr::DevTypeTy> DevTy =
|
|
OMPDeclareTargetDeclAttr::getDeviceType(FD);
|
|
// Do not emit device_type(nohost) functions for the host.
|
|
if (DevTy && *DevTy == OMPDeclareTargetDeclAttr::DT_NoHost)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
const ValueDecl *VD = cast<ValueDecl>(GD.getDecl());
|
|
StringRef Name = CGM.getMangledName(GD);
|
|
// Try to detect target regions in the function.
|
|
if (const auto *FD = dyn_cast<FunctionDecl>(VD)) {
|
|
scanForTargetRegionsFunctions(FD->getBody(), Name);
|
|
Optional<OMPDeclareTargetDeclAttr::DevTypeTy> DevTy =
|
|
OMPDeclareTargetDeclAttr::getDeviceType(FD);
|
|
// Do not emit device_type(nohost) functions for the host.
|
|
if (DevTy && *DevTy == OMPDeclareTargetDeclAttr::DT_Host)
|
|
return true;
|
|
}
|
|
|
|
// Do not to emit function if it is not marked as declare target.
|
|
return !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD) &&
|
|
AlreadyEmittedTargetFunctions.count(Name) == 0;
|
|
}
|
|
|
|
bool CGOpenMPRuntime::emitTargetGlobalVariable(GlobalDecl GD) {
|
|
if (!CGM.getLangOpts().OpenMPIsDevice)
|
|
return false;
|
|
|
|
// Check if there are Ctors/Dtors in this declaration and look for target
|
|
// regions in it. We use the complete variant to produce the kernel name
|
|
// mangling.
|
|
QualType RDTy = cast<VarDecl>(GD.getDecl())->getType();
|
|
if (const auto *RD = RDTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) {
|
|
for (const CXXConstructorDecl *Ctor : RD->ctors()) {
|
|
StringRef ParentName =
|
|
CGM.getMangledName(GlobalDecl(Ctor, Ctor_Complete));
|
|
scanForTargetRegionsFunctions(Ctor->getBody(), ParentName);
|
|
}
|
|
if (const CXXDestructorDecl *Dtor = RD->getDestructor()) {
|
|
StringRef ParentName =
|
|
CGM.getMangledName(GlobalDecl(Dtor, Dtor_Complete));
|
|
scanForTargetRegionsFunctions(Dtor->getBody(), ParentName);
|
|
}
|
|
}
|
|
|
|
// Do not to emit variable if it is not marked as declare target.
|
|
llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
|
|
OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(
|
|
cast<VarDecl>(GD.getDecl()));
|
|
if (!Res || *Res == OMPDeclareTargetDeclAttr::MT_Link ||
|
|
(*Res == OMPDeclareTargetDeclAttr::MT_To &&
|
|
HasRequiresUnifiedSharedMemory)) {
|
|
DeferredGlobalVariables.insert(cast<VarDecl>(GD.getDecl()));
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
llvm::Constant *
|
|
CGOpenMPRuntime::registerTargetFirstprivateCopy(CodeGenFunction &CGF,
|
|
const VarDecl *VD) {
|
|
assert(VD->getType().isConstant(CGM.getContext()) &&
|
|
"Expected constant variable.");
|
|
StringRef VarName;
|
|
llvm::Constant *Addr;
|
|
llvm::GlobalValue::LinkageTypes Linkage;
|
|
QualType Ty = VD->getType();
|
|
SmallString<128> Buffer;
|
|
{
|
|
unsigned DeviceID;
|
|
unsigned FileID;
|
|
unsigned Line;
|
|
getTargetEntryUniqueInfo(CGM.getContext(), VD->getLocation(), DeviceID,
|
|
FileID, Line);
|
|
llvm::raw_svector_ostream OS(Buffer);
|
|
OS << "__omp_offloading_firstprivate_" << llvm::format("_%x", DeviceID)
|
|
<< llvm::format("_%x_", FileID) << VD->getName() << "_l" << Line;
|
|
VarName = OS.str();
|
|
}
|
|
Linkage = llvm::GlobalValue::InternalLinkage;
|
|
Addr =
|
|
getOrCreateInternalVariable(CGM.getTypes().ConvertTypeForMem(Ty), VarName,
|
|
getDefaultFirstprivateAddressSpace());
|
|
cast<llvm::GlobalValue>(Addr)->setLinkage(Linkage);
|
|
CharUnits VarSize = CGM.getContext().getTypeSizeInChars(Ty);
|
|
CGM.addCompilerUsedGlobal(cast<llvm::GlobalValue>(Addr));
|
|
OffloadEntriesInfoManager.registerDeviceGlobalVarEntryInfo(
|
|
VarName, Addr, VarSize,
|
|
OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryTo, Linkage);
|
|
return Addr;
|
|
}
|
|
|
|
void CGOpenMPRuntime::registerTargetGlobalVariable(const VarDecl *VD,
|
|
llvm::Constant *Addr) {
|
|
if (CGM.getLangOpts().OMPTargetTriples.empty() &&
|
|
!CGM.getLangOpts().OpenMPIsDevice)
|
|
return;
|
|
llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
|
|
OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
|
|
if (!Res) {
|
|
if (CGM.getLangOpts().OpenMPIsDevice) {
|
|
// Register non-target variables being emitted in device code (debug info
|
|
// may cause this).
|
|
StringRef VarName = CGM.getMangledName(VD);
|
|
EmittedNonTargetVariables.try_emplace(VarName, Addr);
|
|
}
|
|
return;
|
|
}
|
|
// Register declare target variables.
|
|
OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryKind Flags;
|
|
StringRef VarName;
|
|
CharUnits VarSize;
|
|
llvm::GlobalValue::LinkageTypes Linkage;
|
|
|
|
if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
|
|
!HasRequiresUnifiedSharedMemory) {
|
|
Flags = OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryTo;
|
|
VarName = CGM.getMangledName(VD);
|
|
if (VD->hasDefinition(CGM.getContext()) != VarDecl::DeclarationOnly) {
|
|
VarSize = CGM.getContext().getTypeSizeInChars(VD->getType());
|
|
assert(!VarSize.isZero() && "Expected non-zero size of the variable");
|
|
} else {
|
|
VarSize = CharUnits::Zero();
|
|
}
|
|
Linkage = CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false);
|
|
// Temp solution to prevent optimizations of the internal variables.
|
|
if (CGM.getLangOpts().OpenMPIsDevice && !VD->isExternallyVisible()) {
|
|
std::string RefName = getName({VarName, "ref"});
|
|
if (!CGM.GetGlobalValue(RefName)) {
|
|
llvm::Constant *AddrRef =
|
|
getOrCreateInternalVariable(Addr->getType(), RefName);
|
|
auto *GVAddrRef = cast<llvm::GlobalVariable>(AddrRef);
|
|
GVAddrRef->setConstant(/*Val=*/true);
|
|
GVAddrRef->setLinkage(llvm::GlobalValue::InternalLinkage);
|
|
GVAddrRef->setInitializer(Addr);
|
|
CGM.addCompilerUsedGlobal(GVAddrRef);
|
|
}
|
|
}
|
|
} else {
|
|
assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
|
|
(*Res == OMPDeclareTargetDeclAttr::MT_To &&
|
|
HasRequiresUnifiedSharedMemory)) &&
|
|
"Declare target attribute must link or to with unified memory.");
|
|
if (*Res == OMPDeclareTargetDeclAttr::MT_Link)
|
|
Flags = OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryLink;
|
|
else
|
|
Flags = OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryTo;
|
|
|
|
if (CGM.getLangOpts().OpenMPIsDevice) {
|
|
VarName = Addr->getName();
|
|
Addr = nullptr;
|
|
} else {
|
|
VarName = getAddrOfDeclareTargetVar(VD).getName();
|
|
Addr = cast<llvm::Constant>(getAddrOfDeclareTargetVar(VD).getPointer());
|
|
}
|
|
VarSize = CGM.getPointerSize();
|
|
Linkage = llvm::GlobalValue::WeakAnyLinkage;
|
|
}
|
|
|
|
OffloadEntriesInfoManager.registerDeviceGlobalVarEntryInfo(
|
|
VarName, Addr, VarSize, Flags, Linkage);
|
|
}
|
|
|
|
bool CGOpenMPRuntime::emitTargetGlobal(GlobalDecl GD) {
|
|
if (isa<FunctionDecl>(GD.getDecl()) ||
|
|
isa<OMPDeclareReductionDecl>(GD.getDecl()))
|
|
return emitTargetFunctions(GD);
|
|
|
|
return emitTargetGlobalVariable(GD);
|
|
}
|
|
|
|
void CGOpenMPRuntime::emitDeferredTargetDecls() const {
|
|
for (const VarDecl *VD : DeferredGlobalVariables) {
|
|
llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
|
|
OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
|
|
if (!Res)
|
|
continue;
|
|
if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
|
|
!HasRequiresUnifiedSharedMemory) {
|
|
CGM.EmitGlobal(VD);
|
|
} else {
|
|
assert((*Res == OMPDeclareTargetDeclAttr::MT_Link ||
|
|
(*Res == OMPDeclareTargetDeclAttr::MT_To &&
|
|
HasRequiresUnifiedSharedMemory)) &&
|
|
"Expected link clause or to clause with unified memory.");
|
|
(void)CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
|
|
}
|
|
}
|
|
}
|
|
|
|
void CGOpenMPRuntime::adjustTargetSpecificDataForLambdas(
|
|
CodeGenFunction &CGF, const OMPExecutableDirective &D) const {
|
|
assert(isOpenMPTargetExecutionDirective(D.getDirectiveKind()) &&
|
|
" Expected target-based directive.");
|
|
}
|
|
|
|
void CGOpenMPRuntime::checkArchForUnifiedAddressing(
|
|
const OMPRequiresDecl *D) {
|
|
for (const OMPClause *Clause : D->clauselists()) {
|
|
if (Clause->getClauseKind() == OMPC_unified_shared_memory) {
|
|
HasRequiresUnifiedSharedMemory = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool CGOpenMPRuntime::hasAllocateAttributeForGlobalVar(const VarDecl *VD,
|
|
LangAS &AS) {
|
|
if (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())
|
|
return false;
|
|
const auto *A = VD->getAttr<OMPAllocateDeclAttr>();
|
|
switch(A->getAllocatorType()) {
|
|
case OMPAllocateDeclAttr::OMPDefaultMemAlloc:
|
|
// Not supported, fallback to the default mem space.
|
|
case OMPAllocateDeclAttr::OMPLargeCapMemAlloc:
|
|
case OMPAllocateDeclAttr::OMPCGroupMemAlloc:
|
|
case OMPAllocateDeclAttr::OMPHighBWMemAlloc:
|
|
case OMPAllocateDeclAttr::OMPLowLatMemAlloc:
|
|
case OMPAllocateDeclAttr::OMPThreadMemAlloc:
|
|
case OMPAllocateDeclAttr::OMPConstMemAlloc:
|
|
case OMPAllocateDeclAttr::OMPPTeamMemAlloc:
|
|
AS = LangAS::Default;
|
|
return true;
|
|
case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc:
|
|
llvm_unreachable("Expected predefined allocator for the variables with the "
|
|
"static storage.");
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool CGOpenMPRuntime::hasRequiresUnifiedSharedMemory() const {
|
|
return HasRequiresUnifiedSharedMemory;
|
|
}
|
|
|
|
CGOpenMPRuntime::DisableAutoDeclareTargetRAII::DisableAutoDeclareTargetRAII(
|
|
CodeGenModule &CGM)
|
|
: CGM(CGM) {
|
|
if (CGM.getLangOpts().OpenMPIsDevice) {
|
|
SavedShouldMarkAsGlobal = CGM.getOpenMPRuntime().ShouldMarkAsGlobal;
|
|
CGM.getOpenMPRuntime().ShouldMarkAsGlobal = false;
|
|
}
|
|
}
|
|
|
|
CGOpenMPRuntime::DisableAutoDeclareTargetRAII::~DisableAutoDeclareTargetRAII() {
|
|
if (CGM.getLangOpts().OpenMPIsDevice)
|
|
CGM.getOpenMPRuntime().ShouldMarkAsGlobal = SavedShouldMarkAsGlobal;
|
|
}
|
|
|
|
bool CGOpenMPRuntime::markAsGlobalTarget(GlobalDecl GD) {
|
|
if (!CGM.getLangOpts().OpenMPIsDevice || !ShouldMarkAsGlobal)
|
|
return true;
|
|
|
|
StringRef Name = CGM.getMangledName(GD);
|
|
const auto *D = cast<FunctionDecl>(GD.getDecl());
|
|
// Do not to emit function if it is marked as declare target as it was already
|
|
// emitted.
|
|
if (OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(D)) {
|
|
if (D->hasBody() && AlreadyEmittedTargetFunctions.count(Name) == 0) {
|
|
if (auto *F = dyn_cast_or_null<llvm::Function>(CGM.GetGlobalValue(Name)))
|
|
return !F->isDeclaration();
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
return !AlreadyEmittedTargetFunctions.insert(Name).second;
|
|
}
|
|
|
|
llvm::Function *CGOpenMPRuntime::emitRequiresDirectiveRegFun() {
|
|
// If we don't have entries or if we are emitting code for the device, we
|
|
// don't need to do anything.
|
|
if (CGM.getLangOpts().OMPTargetTriples.empty() ||
|
|
CGM.getLangOpts().OpenMPSimd || CGM.getLangOpts().OpenMPIsDevice ||
|
|
(OffloadEntriesInfoManager.empty() &&
|
|
!HasEmittedDeclareTargetRegion &&
|
|
!HasEmittedTargetRegion))
|
|
return nullptr;
|
|
|
|
// Create and register the function that handles the requires directives.
|
|
ASTContext &C = CGM.getContext();
|
|
|
|
llvm::Function *RequiresRegFn;
|
|
{
|
|
CodeGenFunction CGF(CGM);
|
|
const auto &FI = CGM.getTypes().arrangeNullaryFunction();
|
|
llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI);
|
|
std::string ReqName = getName({"omp_offloading", "requires_reg"});
|
|
RequiresRegFn = CGM.CreateGlobalInitOrDestructFunction(FTy, ReqName, FI);
|
|
CGF.StartFunction(GlobalDecl(), C.VoidTy, RequiresRegFn, FI, {});
|
|
OpenMPOffloadingRequiresDirFlags Flags = OMP_REQ_NONE;
|
|
// TODO: check for other requires clauses.
|
|
// The requires directive takes effect only when a target region is
|
|
// present in the compilation unit. Otherwise it is ignored and not
|
|
// passed to the runtime. This avoids the runtime from throwing an error
|
|
// for mismatching requires clauses across compilation units that don't
|
|
// contain at least 1 target region.
|
|
assert((HasEmittedTargetRegion ||
|
|
HasEmittedDeclareTargetRegion ||
|
|
!OffloadEntriesInfoManager.empty()) &&
|
|
"Target or declare target region expected.");
|
|
if (HasRequiresUnifiedSharedMemory)
|
|
Flags = OMP_REQ_UNIFIED_SHARED_MEMORY;
|
|
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__tgt_register_requires),
|
|
llvm::ConstantInt::get(CGM.Int64Ty, Flags));
|
|
CGF.FinishFunction();
|
|
}
|
|
return RequiresRegFn;
|
|
}
|
|
|
|
void CGOpenMPRuntime::emitTeamsCall(CodeGenFunction &CGF,
|
|
const OMPExecutableDirective &D,
|
|
SourceLocation Loc,
|
|
llvm::Function *OutlinedFn,
|
|
ArrayRef<llvm::Value *> CapturedVars) {
|
|
if (!CGF.HaveInsertPoint())
|
|
return;
|
|
|
|
llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
|
|
CodeGenFunction::RunCleanupsScope Scope(CGF);
|
|
|
|
// Build call __kmpc_fork_teams(loc, n, microtask, var1, .., varn);
|
|
llvm::Value *Args[] = {
|
|
RTLoc,
|
|
CGF.Builder.getInt32(CapturedVars.size()), // Number of captured vars
|
|
CGF.Builder.CreateBitCast(OutlinedFn, getKmpc_MicroPointerTy())};
|
|
llvm::SmallVector<llvm::Value *, 16> RealArgs;
|
|
RealArgs.append(std::begin(Args), std::end(Args));
|
|
RealArgs.append(CapturedVars.begin(), CapturedVars.end());
|
|
|
|
llvm::FunctionCallee RTLFn = createRuntimeFunction(OMPRTL__kmpc_fork_teams);
|
|
CGF.EmitRuntimeCall(RTLFn, RealArgs);
|
|
}
|
|
|
|
void CGOpenMPRuntime::emitNumTeamsClause(CodeGenFunction &CGF,
|
|
const Expr *NumTeams,
|
|
const Expr *ThreadLimit,
|
|
SourceLocation Loc) {
|
|
if (!CGF.HaveInsertPoint())
|
|
return;
|
|
|
|
llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
|
|
|
|
llvm::Value *NumTeamsVal =
|
|
NumTeams
|
|
? CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(NumTeams),
|
|
CGF.CGM.Int32Ty, /* isSigned = */ true)
|
|
: CGF.Builder.getInt32(0);
|
|
|
|
llvm::Value *ThreadLimitVal =
|
|
ThreadLimit
|
|
? CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(ThreadLimit),
|
|
CGF.CGM.Int32Ty, /* isSigned = */ true)
|
|
: CGF.Builder.getInt32(0);
|
|
|
|
// Build call __kmpc_push_num_teamss(&loc, global_tid, num_teams, thread_limit)
|
|
llvm::Value *PushNumTeamsArgs[] = {RTLoc, getThreadID(CGF, Loc), NumTeamsVal,
|
|
ThreadLimitVal};
|
|
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_push_num_teams),
|
|
PushNumTeamsArgs);
|
|
}
|
|
|
|
void CGOpenMPRuntime::emitTargetDataCalls(
|
|
CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond,
|
|
const Expr *Device, const RegionCodeGenTy &CodeGen, TargetDataInfo &Info) {
|
|
if (!CGF.HaveInsertPoint())
|
|
return;
|
|
|
|
// Action used to replace the default codegen action and turn privatization
|
|
// off.
|
|
PrePostActionTy NoPrivAction;
|
|
|
|
// Generate the code for the opening of the data environment. Capture all the
|
|
// arguments of the runtime call by reference because they are used in the
|
|
// closing of the region.
|
|
auto &&BeginThenGen = [this, &D, Device, &Info,
|
|
&CodeGen](CodeGenFunction &CGF, PrePostActionTy &) {
|
|
// Fill up the arrays with all the mapped variables.
|
|
MappableExprsHandler::MapBaseValuesArrayTy BasePointers;
|
|
MappableExprsHandler::MapValuesArrayTy Pointers;
|
|
MappableExprsHandler::MapValuesArrayTy Sizes;
|
|
MappableExprsHandler::MapFlagsArrayTy MapTypes;
|
|
|
|
// Get map clause information.
|
|
MappableExprsHandler MCHandler(D, CGF);
|
|
MCHandler.generateAllInfo(BasePointers, Pointers, Sizes, MapTypes);
|
|
|
|
// Fill up the arrays and create the arguments.
|
|
emitOffloadingArrays(CGF, BasePointers, Pointers, Sizes, MapTypes, Info);
|
|
|
|
llvm::Value *BasePointersArrayArg = nullptr;
|
|
llvm::Value *PointersArrayArg = nullptr;
|
|
llvm::Value *SizesArrayArg = nullptr;
|
|
llvm::Value *MapTypesArrayArg = nullptr;
|
|
emitOffloadingArraysArgument(CGF, BasePointersArrayArg, PointersArrayArg,
|
|
SizesArrayArg, MapTypesArrayArg, Info);
|
|
|
|
// Emit device ID if any.
|
|
llvm::Value *DeviceID = nullptr;
|
|
if (Device) {
|
|
DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
|
|
CGF.Int64Ty, /*isSigned=*/true);
|
|
} else {
|
|
DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF);
|
|
}
|
|
|
|
// Emit the number of elements in the offloading arrays.
|
|
llvm::Value *PointerNum = CGF.Builder.getInt32(Info.NumberOfPtrs);
|
|
|
|
llvm::Value *OffloadingArgs[] = {
|
|
DeviceID, PointerNum, BasePointersArrayArg,
|
|
PointersArrayArg, SizesArrayArg, MapTypesArrayArg};
|
|
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__tgt_target_data_begin),
|
|
OffloadingArgs);
|
|
|
|
// If device pointer privatization is required, emit the body of the region
|
|
// here. It will have to be duplicated: with and without privatization.
|
|
if (!Info.CaptureDeviceAddrMap.empty())
|
|
CodeGen(CGF);
|
|
};
|
|
|
|
// Generate code for the closing of the data region.
|
|
auto &&EndThenGen = [this, Device, &Info](CodeGenFunction &CGF,
|
|
PrePostActionTy &) {
|
|
assert(Info.isValid() && "Invalid data environment closing arguments.");
|
|
|
|
llvm::Value *BasePointersArrayArg = nullptr;
|
|
llvm::Value *PointersArrayArg = nullptr;
|
|
llvm::Value *SizesArrayArg = nullptr;
|
|
llvm::Value *MapTypesArrayArg = nullptr;
|
|
emitOffloadingArraysArgument(CGF, BasePointersArrayArg, PointersArrayArg,
|
|
SizesArrayArg, MapTypesArrayArg, Info);
|
|
|
|
// Emit device ID if any.
|
|
llvm::Value *DeviceID = nullptr;
|
|
if (Device) {
|
|
DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
|
|
CGF.Int64Ty, /*isSigned=*/true);
|
|
} else {
|
|
DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF);
|
|
}
|
|
|
|
// Emit the number of elements in the offloading arrays.
|
|
llvm::Value *PointerNum = CGF.Builder.getInt32(Info.NumberOfPtrs);
|
|
|
|
llvm::Value *OffloadingArgs[] = {
|
|
DeviceID, PointerNum, BasePointersArrayArg,
|
|
PointersArrayArg, SizesArrayArg, MapTypesArrayArg};
|
|
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__tgt_target_data_end),
|
|
OffloadingArgs);
|
|
};
|
|
|
|
// If we need device pointer privatization, we need to emit the body of the
|
|
// region with no privatization in the 'else' branch of the conditional.
|
|
// Otherwise, we don't have to do anything.
|
|
auto &&BeginElseGen = [&Info, &CodeGen, &NoPrivAction](CodeGenFunction &CGF,
|
|
PrePostActionTy &) {
|
|
if (!Info.CaptureDeviceAddrMap.empty()) {
|
|
CodeGen.setAction(NoPrivAction);
|
|
CodeGen(CGF);
|
|
}
|
|
};
|
|
|
|
// We don't have to do anything to close the region if the if clause evaluates
|
|
// to false.
|
|
auto &&EndElseGen = [](CodeGenFunction &CGF, PrePostActionTy &) {};
|
|
|
|
if (IfCond) {
|
|
emitIfClause(CGF, IfCond, BeginThenGen, BeginElseGen);
|
|
} else {
|
|
RegionCodeGenTy RCG(BeginThenGen);
|
|
RCG(CGF);
|
|
}
|
|
|
|
// If we don't require privatization of device pointers, we emit the body in
|
|
// between the runtime calls. This avoids duplicating the body code.
|
|
if (Info.CaptureDeviceAddrMap.empty()) {
|
|
CodeGen.setAction(NoPrivAction);
|
|
CodeGen(CGF);
|
|
}
|
|
|
|
if (IfCond) {
|
|
emitIfClause(CGF, IfCond, EndThenGen, EndElseGen);
|
|
} else {
|
|
RegionCodeGenTy RCG(EndThenGen);
|
|
RCG(CGF);
|
|
}
|
|
}
|
|
|
|
void CGOpenMPRuntime::emitTargetDataStandAloneCall(
|
|
CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond,
|
|
const Expr *Device) {
|
|
if (!CGF.HaveInsertPoint())
|
|
return;
|
|
|
|
assert((isa<OMPTargetEnterDataDirective>(D) ||
|
|
isa<OMPTargetExitDataDirective>(D) ||
|
|
isa<OMPTargetUpdateDirective>(D)) &&
|
|
"Expecting either target enter, exit data, or update directives.");
|
|
|
|
CodeGenFunction::OMPTargetDataInfo InputInfo;
|
|
llvm::Value *MapTypesArray = nullptr;
|
|
// Generate the code for the opening of the data environment.
|
|
auto &&ThenGen = [this, &D, Device, &InputInfo,
|
|
&MapTypesArray](CodeGenFunction &CGF, PrePostActionTy &) {
|
|
// Emit device ID if any.
|
|
llvm::Value *DeviceID = nullptr;
|
|
if (Device) {
|
|
DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
|
|
CGF.Int64Ty, /*isSigned=*/true);
|
|
} else {
|
|
DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF);
|
|
}
|
|
|
|
// Emit the number of elements in the offloading arrays.
|
|
llvm::Constant *PointerNum =
|
|
CGF.Builder.getInt32(InputInfo.NumberOfTargetItems);
|
|
|
|
llvm::Value *OffloadingArgs[] = {DeviceID,
|
|
PointerNum,
|
|
InputInfo.BasePointersArray.getPointer(),
|
|
InputInfo.PointersArray.getPointer(),
|
|
InputInfo.SizesArray.getPointer(),
|
|
MapTypesArray};
|
|
|
|
// Select the right runtime function call for each expected standalone
|
|
// directive.
|
|
const bool HasNowait = D.hasClausesOfKind<OMPNowaitClause>();
|
|
OpenMPRTLFunction RTLFn;
|
|
switch (D.getDirectiveKind()) {
|
|
case OMPD_target_enter_data:
|
|
RTLFn = HasNowait ? OMPRTL__tgt_target_data_begin_nowait
|
|
: OMPRTL__tgt_target_data_begin;
|
|
break;
|
|
case OMPD_target_exit_data:
|
|
RTLFn = HasNowait ? OMPRTL__tgt_target_data_end_nowait
|
|
: OMPRTL__tgt_target_data_end;
|
|
break;
|
|
case OMPD_target_update:
|
|
RTLFn = HasNowait ? OMPRTL__tgt_target_data_update_nowait
|
|
: OMPRTL__tgt_target_data_update;
|
|
break;
|
|
case OMPD_parallel:
|
|
case OMPD_for:
|
|
case OMPD_parallel_for:
|
|
case OMPD_parallel_master:
|
|
case OMPD_parallel_sections:
|
|
case OMPD_for_simd:
|
|
case OMPD_parallel_for_simd:
|
|
case OMPD_cancel:
|
|
case OMPD_cancellation_point:
|
|
case OMPD_ordered:
|
|
case OMPD_threadprivate:
|
|
case OMPD_allocate:
|
|
case OMPD_task:
|
|
case OMPD_simd:
|
|
case OMPD_sections:
|
|
case OMPD_section:
|
|
case OMPD_single:
|
|
case OMPD_master:
|
|
case OMPD_critical:
|
|
case OMPD_taskyield:
|
|
case OMPD_barrier:
|
|
case OMPD_taskwait:
|
|
case OMPD_taskgroup:
|
|
case OMPD_atomic:
|
|
case OMPD_flush:
|
|
case OMPD_teams:
|
|
case OMPD_target_data:
|
|
case OMPD_distribute:
|
|
case OMPD_distribute_simd:
|
|
case OMPD_distribute_parallel_for:
|
|
case OMPD_distribute_parallel_for_simd:
|
|
case OMPD_teams_distribute:
|
|
case OMPD_teams_distribute_simd:
|
|
case OMPD_teams_distribute_parallel_for:
|
|
case OMPD_teams_distribute_parallel_for_simd:
|
|
case OMPD_declare_simd:
|
|
case OMPD_declare_variant:
|
|
case OMPD_declare_target:
|
|
case OMPD_end_declare_target:
|
|
case OMPD_declare_reduction:
|
|
case OMPD_declare_mapper:
|
|
case OMPD_taskloop:
|
|
case OMPD_taskloop_simd:
|
|
case OMPD_master_taskloop:
|
|
case OMPD_master_taskloop_simd:
|
|
case OMPD_parallel_master_taskloop:
|
|
case OMPD_parallel_master_taskloop_simd:
|
|
case OMPD_target:
|
|
case OMPD_target_simd:
|
|
case OMPD_target_teams_distribute:
|
|
case OMPD_target_teams_distribute_simd:
|
|
case OMPD_target_teams_distribute_parallel_for:
|
|
case OMPD_target_teams_distribute_parallel_for_simd:
|
|
case OMPD_target_teams:
|
|
case OMPD_target_parallel:
|
|
case OMPD_target_parallel_for:
|
|
case OMPD_target_parallel_for_simd:
|
|
case OMPD_requires:
|
|
case OMPD_unknown:
|
|
llvm_unreachable("Unexpected standalone target data directive.");
|
|
break;
|
|
}
|
|
CGF.EmitRuntimeCall(createRuntimeFunction(RTLFn), OffloadingArgs);
|
|
};
|
|
|
|
auto &&TargetThenGen = [this, &ThenGen, &D, &InputInfo, &MapTypesArray](
|
|
CodeGenFunction &CGF, PrePostActionTy &) {
|
|
// Fill up the arrays with all the mapped variables.
|
|
MappableExprsHandler::MapBaseValuesArrayTy BasePointers;
|
|
MappableExprsHandler::MapValuesArrayTy Pointers;
|
|
MappableExprsHandler::MapValuesArrayTy Sizes;
|
|
MappableExprsHandler::MapFlagsArrayTy MapTypes;
|
|
|
|
// Get map clause information.
|
|
MappableExprsHandler MEHandler(D, CGF);
|
|
MEHandler.generateAllInfo(BasePointers, Pointers, Sizes, MapTypes);
|
|
|
|
TargetDataInfo Info;
|
|
// Fill up the arrays and create the arguments.
|
|
emitOffloadingArrays(CGF, BasePointers, Pointers, Sizes, MapTypes, Info);
|
|
emitOffloadingArraysArgument(CGF, Info.BasePointersArray,
|
|
Info.PointersArray, Info.SizesArray,
|
|
Info.MapTypesArray, Info);
|
|
InputInfo.NumberOfTargetItems = Info.NumberOfPtrs;
|
|
InputInfo.BasePointersArray =
|
|
Address(Info.BasePointersArray, CGM.getPointerAlign());
|
|
InputInfo.PointersArray =
|
|
Address(Info.PointersArray, CGM.getPointerAlign());
|
|
InputInfo.SizesArray =
|
|
Address(Info.SizesArray, CGM.getPointerAlign());
|
|
MapTypesArray = Info.MapTypesArray;
|
|
if (D.hasClausesOfKind<OMPDependClause>())
|
|
CGF.EmitOMPTargetTaskBasedDirective(D, ThenGen, InputInfo);
|
|
else
|
|
emitInlinedDirective(CGF, D.getDirectiveKind(), ThenGen);
|
|
};
|
|
|
|
if (IfCond) {
|
|
emitIfClause(CGF, IfCond, TargetThenGen,
|
|
[](CodeGenFunction &CGF, PrePostActionTy &) {});
|
|
} else {
|
|
RegionCodeGenTy ThenRCG(TargetThenGen);
|
|
ThenRCG(CGF);
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
/// Kind of parameter in a function with 'declare simd' directive.
|
|
enum ParamKindTy { LinearWithVarStride, Linear, Uniform, Vector };
|
|
/// Attribute set of the parameter.
|
|
struct ParamAttrTy {
|
|
ParamKindTy Kind = Vector;
|
|
llvm::APSInt StrideOrArg;
|
|
llvm::APSInt Alignment;
|
|
};
|
|
} // namespace
|
|
|
|
static unsigned evaluateCDTSize(const FunctionDecl *FD,
|
|
ArrayRef<ParamAttrTy> ParamAttrs) {
|
|
// Every vector variant of a SIMD-enabled function has a vector length (VLEN).
|
|
// If OpenMP clause "simdlen" is used, the VLEN is the value of the argument
|
|
// of that clause. The VLEN value must be power of 2.
|
|
// In other case the notion of the function`s "characteristic data type" (CDT)
|
|
// is used to compute the vector length.
|
|
// CDT is defined in the following order:
|
|
// a) For non-void function, the CDT is the return type.
|
|
// b) If the function has any non-uniform, non-linear parameters, then the
|
|
// CDT is the type of the first such parameter.
|
|
// c) If the CDT determined by a) or b) above is struct, union, or class
|
|
// type which is pass-by-value (except for the type that maps to the
|
|
// built-in complex data type), the characteristic data type is int.
|
|
// d) If none of the above three cases is applicable, the CDT is int.
|
|
// The VLEN is then determined based on the CDT and the size of vector
|
|
// register of that ISA for which current vector version is generated. The
|
|
// VLEN is computed using the formula below:
|
|
// VLEN = sizeof(vector_register) / sizeof(CDT),
|
|
// where vector register size specified in section 3.2.1 Registers and the
|
|
// Stack Frame of original AMD64 ABI document.
|
|
QualType RetType = FD->getReturnType();
|
|
if (RetType.isNull())
|
|
return 0;
|
|
ASTContext &C = FD->getASTContext();
|
|
QualType CDT;
|
|
if (!RetType.isNull() && !RetType->isVoidType()) {
|
|
CDT = RetType;
|
|
} else {
|
|
unsigned Offset = 0;
|
|
if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
|
|
if (ParamAttrs[Offset].Kind == Vector)
|
|
CDT = C.getPointerType(C.getRecordType(MD->getParent()));
|
|
++Offset;
|
|
}
|
|
if (CDT.isNull()) {
|
|
for (unsigned I = 0, E = FD->getNumParams(); I < E; ++I) {
|
|
if (ParamAttrs[I + Offset].Kind == Vector) {
|
|
CDT = FD->getParamDecl(I)->getType();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (CDT.isNull())
|
|
CDT = C.IntTy;
|
|
CDT = CDT->getCanonicalTypeUnqualified();
|
|
if (CDT->isRecordType() || CDT->isUnionType())
|
|
CDT = C.IntTy;
|
|
return C.getTypeSize(CDT);
|
|
}
|
|
|
|
static void
|
|
emitX86DeclareSimdFunction(const FunctionDecl *FD, llvm::Function *Fn,
|
|
const llvm::APSInt &VLENVal,
|
|
ArrayRef<ParamAttrTy> ParamAttrs,
|
|
OMPDeclareSimdDeclAttr::BranchStateTy State) {
|
|
struct ISADataTy {
|
|
char ISA;
|
|
unsigned VecRegSize;
|
|
};
|
|
ISADataTy ISAData[] = {
|
|
{
|
|
'b', 128
|
|
}, // SSE
|
|
{
|
|
'c', 256
|
|
}, // AVX
|
|
{
|
|
'd', 256
|
|
}, // AVX2
|
|
{
|
|
'e', 512
|
|
}, // AVX512
|
|
};
|
|
llvm::SmallVector<char, 2> Masked;
|
|
switch (State) {
|
|
case OMPDeclareSimdDeclAttr::BS_Undefined:
|
|
Masked.push_back('N');
|
|
Masked.push_back('M');
|
|
break;
|
|
case OMPDeclareSimdDeclAttr::BS_Notinbranch:
|
|
Masked.push_back('N');
|
|
break;
|
|
case OMPDeclareSimdDeclAttr::BS_Inbranch:
|
|
Masked.push_back('M');
|
|
break;
|
|
}
|
|
for (char Mask : Masked) {
|
|
for (const ISADataTy &Data : ISAData) {
|
|
SmallString<256> Buffer;
|
|
llvm::raw_svector_ostream Out(Buffer);
|
|
Out << "_ZGV" << Data.ISA << Mask;
|
|
if (!VLENVal) {
|
|
unsigned NumElts = evaluateCDTSize(FD, ParamAttrs);
|
|
assert(NumElts && "Non-zero simdlen/cdtsize expected");
|
|
Out << llvm::APSInt::getUnsigned(Data.VecRegSize / NumElts);
|
|
} else {
|
|
Out << VLENVal;
|
|
}
|
|
for (const ParamAttrTy &ParamAttr : ParamAttrs) {
|
|
switch (ParamAttr.Kind){
|
|
case LinearWithVarStride:
|
|
Out << 's' << ParamAttr.StrideOrArg;
|
|
break;
|
|
case Linear:
|
|
Out << 'l';
|
|
if (!!ParamAttr.StrideOrArg)
|
|
Out << ParamAttr.StrideOrArg;
|
|
break;
|
|
case Uniform:
|
|
Out << 'u';
|
|
break;
|
|
case Vector:
|
|
Out << 'v';
|
|
break;
|
|
}
|
|
if (!!ParamAttr.Alignment)
|
|
Out << 'a' << ParamAttr.Alignment;
|
|
}
|
|
Out << '_' << Fn->getName();
|
|
Fn->addFnAttr(Out.str());
|
|
}
|
|
}
|
|
}
|
|
|
|
// This are the Functions that are needed to mangle the name of the
|
|
// vector functions generated by the compiler, according to the rules
|
|
// defined in the "Vector Function ABI specifications for AArch64",
|
|
// available at
|
|
// https://developer.arm.com/products/software-development-tools/hpc/arm-compiler-for-hpc/vector-function-abi.
|
|
|
|
/// Maps To Vector (MTV), as defined in 3.1.1 of the AAVFABI.
|
|
///
|
|
/// TODO: Need to implement the behavior for reference marked with a
|
|
/// var or no linear modifiers (1.b in the section). For this, we
|
|
/// need to extend ParamKindTy to support the linear modifiers.
|
|
static bool getAArch64MTV(QualType QT, ParamKindTy Kind) {
|
|
QT = QT.getCanonicalType();
|
|
|
|
if (QT->isVoidType())
|
|
return false;
|
|
|
|
if (Kind == ParamKindTy::Uniform)
|
|
return false;
|
|
|
|
if (Kind == ParamKindTy::Linear)
|
|
return false;
|
|
|
|
// TODO: Handle linear references with modifiers
|
|
|
|
if (Kind == ParamKindTy::LinearWithVarStride)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Pass By Value (PBV), as defined in 3.1.2 of the AAVFABI.
|
|
static bool getAArch64PBV(QualType QT, ASTContext &C) {
|
|
QT = QT.getCanonicalType();
|
|
unsigned Size = C.getTypeSize(QT);
|
|
|
|
// Only scalars and complex within 16 bytes wide set PVB to true.
|
|
if (Size != 8 && Size != 16 && Size != 32 && Size != 64 && Size != 128)
|
|
return false;
|
|
|
|
if (QT->isFloatingType())
|
|
return true;
|
|
|
|
if (QT->isIntegerType())
|
|
return true;
|
|
|
|
if (QT->isPointerType())
|
|
return true;
|
|
|
|
// TODO: Add support for complex types (section 3.1.2, item 2).
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Computes the lane size (LS) of a return type or of an input parameter,
|
|
/// as defined by `LS(P)` in 3.2.1 of the AAVFABI.
|
|
/// TODO: Add support for references, section 3.2.1, item 1.
|
|
static unsigned getAArch64LS(QualType QT, ParamKindTy Kind, ASTContext &C) {
|
|
if (getAArch64MTV(QT, Kind) && QT.getCanonicalType()->isPointerType()) {
|
|
QualType PTy = QT.getCanonicalType()->getPointeeType();
|
|
if (getAArch64PBV(PTy, C))
|
|
return C.getTypeSize(PTy);
|
|
}
|
|
if (getAArch64PBV(QT, C))
|
|
return C.getTypeSize(QT);
|
|
|
|
return C.getTypeSize(C.getUIntPtrType());
|
|
}
|
|
|
|
// Get Narrowest Data Size (NDS) and Widest Data Size (WDS) from the
|
|
// signature of the scalar function, as defined in 3.2.2 of the
|
|
// AAVFABI.
|
|
static std::tuple<unsigned, unsigned, bool>
|
|
getNDSWDS(const FunctionDecl *FD, ArrayRef<ParamAttrTy> ParamAttrs) {
|
|
QualType RetType = FD->getReturnType().getCanonicalType();
|
|
|
|
ASTContext &C = FD->getASTContext();
|
|
|
|
bool OutputBecomesInput = false;
|
|
|
|
llvm::SmallVector<unsigned, 8> Sizes;
|
|
if (!RetType->isVoidType()) {
|
|
Sizes.push_back(getAArch64LS(RetType, ParamKindTy::Vector, C));
|
|
if (!getAArch64PBV(RetType, C) && getAArch64MTV(RetType, {}))
|
|
OutputBecomesInput = true;
|
|
}
|
|
for (unsigned I = 0, E = FD->getNumParams(); I < E; ++I) {
|
|
QualType QT = FD->getParamDecl(I)->getType().getCanonicalType();
|
|
Sizes.push_back(getAArch64LS(QT, ParamAttrs[I].Kind, C));
|
|
}
|
|
|
|
assert(!Sizes.empty() && "Unable to determine NDS and WDS.");
|
|
// The LS of a function parameter / return value can only be a power
|
|
// of 2, starting from 8 bits, up to 128.
|
|
assert(std::all_of(Sizes.begin(), Sizes.end(),
|
|
[](unsigned Size) {
|
|
return Size == 8 || Size == 16 || Size == 32 ||
|
|
Size == 64 || Size == 128;
|
|
}) &&
|
|
"Invalid size");
|
|
|
|
return std::make_tuple(*std::min_element(std::begin(Sizes), std::end(Sizes)),
|
|
*std::max_element(std::begin(Sizes), std::end(Sizes)),
|
|
OutputBecomesInput);
|
|
}
|
|
|
|
/// Mangle the parameter part of the vector function name according to
|
|
/// their OpenMP classification. The mangling function is defined in
|
|
/// section 3.5 of the AAVFABI.
|
|
static std::string mangleVectorParameters(ArrayRef<ParamAttrTy> ParamAttrs) {
|
|
SmallString<256> Buffer;
|
|
llvm::raw_svector_ostream Out(Buffer);
|
|
for (const auto &ParamAttr : ParamAttrs) {
|
|
switch (ParamAttr.Kind) {
|
|
case LinearWithVarStride:
|
|
Out << "ls" << ParamAttr.StrideOrArg;
|
|
break;
|
|
case Linear:
|
|
Out << 'l';
|
|
// Don't print the step value if it is not present or if it is
|
|
// equal to 1.
|
|
if (!!ParamAttr.StrideOrArg && ParamAttr.StrideOrArg != 1)
|
|
Out << ParamAttr.StrideOrArg;
|
|
break;
|
|
case Uniform:
|
|
Out << 'u';
|
|
break;
|
|
case Vector:
|
|
Out << 'v';
|
|
break;
|
|
}
|
|
|
|
if (!!ParamAttr.Alignment)
|
|
Out << 'a' << ParamAttr.Alignment;
|
|
}
|
|
|
|
return Out.str();
|
|
}
|
|
|
|
// Function used to add the attribute. The parameter `VLEN` is
|
|
// templated to allow the use of "x" when targeting scalable functions
|
|
// for SVE.
|
|
template <typename T>
|
|
static void addAArch64VectorName(T VLEN, StringRef LMask, StringRef Prefix,
|
|
char ISA, StringRef ParSeq,
|
|
StringRef MangledName, bool OutputBecomesInput,
|
|
llvm::Function *Fn) {
|
|
SmallString<256> Buffer;
|
|
llvm::raw_svector_ostream Out(Buffer);
|
|
Out << Prefix << ISA << LMask << VLEN;
|
|
if (OutputBecomesInput)
|
|
Out << "v";
|
|
Out << ParSeq << "_" << MangledName;
|
|
Fn->addFnAttr(Out.str());
|
|
}
|
|
|
|
// Helper function to generate the Advanced SIMD names depending on
|
|
// the value of the NDS when simdlen is not present.
|
|
static void addAArch64AdvSIMDNDSNames(unsigned NDS, StringRef Mask,
|
|
StringRef Prefix, char ISA,
|
|
StringRef ParSeq, StringRef MangledName,
|
|
bool OutputBecomesInput,
|
|
llvm::Function *Fn) {
|
|
switch (NDS) {
|
|
case 8:
|
|
addAArch64VectorName(8, Mask, Prefix, ISA, ParSeq, MangledName,
|
|
OutputBecomesInput, Fn);
|
|
addAArch64VectorName(16, Mask, Prefix, ISA, ParSeq, MangledName,
|
|
OutputBecomesInput, Fn);
|
|
break;
|
|
case 16:
|
|
addAArch64VectorName(4, Mask, Prefix, ISA, ParSeq, MangledName,
|
|
OutputBecomesInput, Fn);
|
|
addAArch64VectorName(8, Mask, Prefix, ISA, ParSeq, MangledName,
|
|
OutputBecomesInput, Fn);
|
|
break;
|
|
case 32:
|
|
addAArch64VectorName(2, Mask, Prefix, ISA, ParSeq, MangledName,
|
|
OutputBecomesInput, Fn);
|
|
addAArch64VectorName(4, Mask, Prefix, ISA, ParSeq, MangledName,
|
|
OutputBecomesInput, Fn);
|
|
break;
|
|
case 64:
|
|
case 128:
|
|
addAArch64VectorName(2, Mask, Prefix, ISA, ParSeq, MangledName,
|
|
OutputBecomesInput, Fn);
|
|
break;
|
|
default:
|
|
llvm_unreachable("Scalar type is too wide.");
|
|
}
|
|
}
|
|
|
|
/// Emit vector function attributes for AArch64, as defined in the AAVFABI.
|
|
static void emitAArch64DeclareSimdFunction(
|
|
CodeGenModule &CGM, const FunctionDecl *FD, unsigned UserVLEN,
|
|
ArrayRef<ParamAttrTy> ParamAttrs,
|
|
OMPDeclareSimdDeclAttr::BranchStateTy State, StringRef MangledName,
|
|
char ISA, unsigned VecRegSize, llvm::Function *Fn, SourceLocation SLoc) {
|
|
|
|
// Get basic data for building the vector signature.
|
|
const auto Data = getNDSWDS(FD, ParamAttrs);
|
|
const unsigned NDS = std::get<0>(Data);
|
|
const unsigned WDS = std::get<1>(Data);
|
|
const bool OutputBecomesInput = std::get<2>(Data);
|
|
|
|
// Check the values provided via `simdlen` by the user.
|
|
// 1. A `simdlen(1)` doesn't produce vector signatures,
|
|
if (UserVLEN == 1) {
|
|
unsigned DiagID = CGM.getDiags().getCustomDiagID(
|
|
DiagnosticsEngine::Warning,
|
|
"The clause simdlen(1) has no effect when targeting aarch64.");
|
|
CGM.getDiags().Report(SLoc, DiagID);
|
|
return;
|
|
}
|
|
|
|
// 2. Section 3.3.1, item 1: user input must be a power of 2 for
|
|
// Advanced SIMD output.
|
|
if (ISA == 'n' && UserVLEN && !llvm::isPowerOf2_32(UserVLEN)) {
|
|
unsigned DiagID = CGM.getDiags().getCustomDiagID(
|
|
DiagnosticsEngine::Warning, "The value specified in simdlen must be a "
|
|
"power of 2 when targeting Advanced SIMD.");
|
|
CGM.getDiags().Report(SLoc, DiagID);
|
|
return;
|
|
}
|
|
|
|
// 3. Section 3.4.1. SVE fixed lengh must obey the architectural
|
|
// limits.
|
|
if (ISA == 's' && UserVLEN != 0) {
|
|
if ((UserVLEN * WDS > 2048) || (UserVLEN * WDS % 128 != 0)) {
|
|
unsigned DiagID = CGM.getDiags().getCustomDiagID(
|
|
DiagnosticsEngine::Warning, "The clause simdlen must fit the %0-bit "
|
|
"lanes in the architectural constraints "
|
|
"for SVE (min is 128-bit, max is "
|
|
"2048-bit, by steps of 128-bit)");
|
|
CGM.getDiags().Report(SLoc, DiagID) << WDS;
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Sort out parameter sequence.
|
|
const std::string ParSeq = mangleVectorParameters(ParamAttrs);
|
|
StringRef Prefix = "_ZGV";
|
|
// Generate simdlen from user input (if any).
|
|
if (UserVLEN) {
|
|
if (ISA == 's') {
|
|
// SVE generates only a masked function.
|
|
addAArch64VectorName(UserVLEN, "M", Prefix, ISA, ParSeq, MangledName,
|
|
OutputBecomesInput, Fn);
|
|
} else {
|
|
assert(ISA == 'n' && "Expected ISA either 's' or 'n'.");
|
|
// Advanced SIMD generates one or two functions, depending on
|
|
// the `[not]inbranch` clause.
|
|
switch (State) {
|
|
case OMPDeclareSimdDeclAttr::BS_Undefined:
|
|
addAArch64VectorName(UserVLEN, "N", Prefix, ISA, ParSeq, MangledName,
|
|
OutputBecomesInput, Fn);
|
|
addAArch64VectorName(UserVLEN, "M", Prefix, ISA, ParSeq, MangledName,
|
|
OutputBecomesInput, Fn);
|
|
break;
|
|
case OMPDeclareSimdDeclAttr::BS_Notinbranch:
|
|
addAArch64VectorName(UserVLEN, "N", Prefix, ISA, ParSeq, MangledName,
|
|
OutputBecomesInput, Fn);
|
|
break;
|
|
case OMPDeclareSimdDeclAttr::BS_Inbranch:
|
|
addAArch64VectorName(UserVLEN, "M", Prefix, ISA, ParSeq, MangledName,
|
|
OutputBecomesInput, Fn);
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
// If no user simdlen is provided, follow the AAVFABI rules for
|
|
// generating the vector length.
|
|
if (ISA == 's') {
|
|
// SVE, section 3.4.1, item 1.
|
|
addAArch64VectorName("x", "M", Prefix, ISA, ParSeq, MangledName,
|
|
OutputBecomesInput, Fn);
|
|
} else {
|
|
assert(ISA == 'n' && "Expected ISA either 's' or 'n'.");
|
|
// Advanced SIMD, Section 3.3.1 of the AAVFABI, generates one or
|
|
// two vector names depending on the use of the clause
|
|
// `[not]inbranch`.
|
|
switch (State) {
|
|
case OMPDeclareSimdDeclAttr::BS_Undefined:
|
|
addAArch64AdvSIMDNDSNames(NDS, "N", Prefix, ISA, ParSeq, MangledName,
|
|
OutputBecomesInput, Fn);
|
|
addAArch64AdvSIMDNDSNames(NDS, "M", Prefix, ISA, ParSeq, MangledName,
|
|
OutputBecomesInput, Fn);
|
|
break;
|
|
case OMPDeclareSimdDeclAttr::BS_Notinbranch:
|
|
addAArch64AdvSIMDNDSNames(NDS, "N", Prefix, ISA, ParSeq, MangledName,
|
|
OutputBecomesInput, Fn);
|
|
break;
|
|
case OMPDeclareSimdDeclAttr::BS_Inbranch:
|
|
addAArch64AdvSIMDNDSNames(NDS, "M", Prefix, ISA, ParSeq, MangledName,
|
|
OutputBecomesInput, Fn);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void CGOpenMPRuntime::emitDeclareSimdFunction(const FunctionDecl *FD,
|
|
llvm::Function *Fn) {
|
|
ASTContext &C = CGM.getContext();
|
|
FD = FD->getMostRecentDecl();
|
|
// Map params to their positions in function decl.
|
|
llvm::DenseMap<const Decl *, unsigned> ParamPositions;
|
|
if (isa<CXXMethodDecl>(FD))
|
|
ParamPositions.try_emplace(FD, 0);
|
|
unsigned ParamPos = ParamPositions.size();
|
|
for (const ParmVarDecl *P : FD->parameters()) {
|
|
ParamPositions.try_emplace(P->getCanonicalDecl(), ParamPos);
|
|
++ParamPos;
|
|
}
|
|
while (FD) {
|
|
for (const auto *Attr : FD->specific_attrs<OMPDeclareSimdDeclAttr>()) {
|
|
llvm::SmallVector<ParamAttrTy, 8> ParamAttrs(ParamPositions.size());
|
|
// Mark uniform parameters.
|
|
for (const Expr *E : Attr->uniforms()) {
|
|
E = E->IgnoreParenImpCasts();
|
|
unsigned Pos;
|
|
if (isa<CXXThisExpr>(E)) {
|
|
Pos = ParamPositions[FD];
|
|
} else {
|
|
const auto *PVD = cast<ParmVarDecl>(cast<DeclRefExpr>(E)->getDecl())
|
|
->getCanonicalDecl();
|
|
Pos = ParamPositions[PVD];
|
|
}
|
|
ParamAttrs[Pos].Kind = Uniform;
|
|
}
|
|
// Get alignment info.
|
|
auto NI = Attr->alignments_begin();
|
|
for (const Expr *E : Attr->aligneds()) {
|
|
E = E->IgnoreParenImpCasts();
|
|
unsigned Pos;
|
|
QualType ParmTy;
|
|
if (isa<CXXThisExpr>(E)) {
|
|
Pos = ParamPositions[FD];
|
|
ParmTy = E->getType();
|
|
} else {
|
|
const auto *PVD = cast<ParmVarDecl>(cast<DeclRefExpr>(E)->getDecl())
|
|
->getCanonicalDecl();
|
|
Pos = ParamPositions[PVD];
|
|
ParmTy = PVD->getType();
|
|
}
|
|
ParamAttrs[Pos].Alignment =
|
|
(*NI)
|
|
? (*NI)->EvaluateKnownConstInt(C)
|
|
: llvm::APSInt::getUnsigned(
|
|
C.toCharUnitsFromBits(C.getOpenMPDefaultSimdAlign(ParmTy))
|
|
.getQuantity());
|
|
++NI;
|
|
}
|
|
// Mark linear parameters.
|
|
auto SI = Attr->steps_begin();
|
|
auto MI = Attr->modifiers_begin();
|
|
for (const Expr *E : Attr->linears()) {
|
|
E = E->IgnoreParenImpCasts();
|
|
unsigned Pos;
|
|
if (isa<CXXThisExpr>(E)) {
|
|
Pos = ParamPositions[FD];
|
|
} else {
|
|
const auto *PVD = cast<ParmVarDecl>(cast<DeclRefExpr>(E)->getDecl())
|
|
->getCanonicalDecl();
|
|
Pos = ParamPositions[PVD];
|
|
}
|
|
ParamAttrTy &ParamAttr = ParamAttrs[Pos];
|
|
ParamAttr.Kind = Linear;
|
|
if (*SI) {
|
|
Expr::EvalResult Result;
|
|
if (!(*SI)->EvaluateAsInt(Result, C, Expr::SE_AllowSideEffects)) {
|
|
if (const auto *DRE =
|
|
cast<DeclRefExpr>((*SI)->IgnoreParenImpCasts())) {
|
|
if (const auto *StridePVD = cast<ParmVarDecl>(DRE->getDecl())) {
|
|
ParamAttr.Kind = LinearWithVarStride;
|
|
ParamAttr.StrideOrArg = llvm::APSInt::getUnsigned(
|
|
ParamPositions[StridePVD->getCanonicalDecl()]);
|
|
}
|
|
}
|
|
} else {
|
|
ParamAttr.StrideOrArg = Result.Val.getInt();
|
|
}
|
|
}
|
|
++SI;
|
|
++MI;
|
|
}
|
|
llvm::APSInt VLENVal;
|
|
SourceLocation ExprLoc;
|
|
const Expr *VLENExpr = Attr->getSimdlen();
|
|
if (VLENExpr) {
|
|
VLENVal = VLENExpr->EvaluateKnownConstInt(C);
|
|
ExprLoc = VLENExpr->getExprLoc();
|
|
}
|
|
OMPDeclareSimdDeclAttr::BranchStateTy State = Attr->getBranchState();
|
|
if (CGM.getTriple().getArch() == llvm::Triple::x86 ||
|
|
CGM.getTriple().getArch() == llvm::Triple::x86_64) {
|
|
emitX86DeclareSimdFunction(FD, Fn, VLENVal, ParamAttrs, State);
|
|
} else if (CGM.getTriple().getArch() == llvm::Triple::aarch64) {
|
|
unsigned VLEN = VLENVal.getExtValue();
|
|
StringRef MangledName = Fn->getName();
|
|
if (CGM.getTarget().hasFeature("sve"))
|
|
emitAArch64DeclareSimdFunction(CGM, FD, VLEN, ParamAttrs, State,
|
|
MangledName, 's', 128, Fn, ExprLoc);
|
|
if (CGM.getTarget().hasFeature("neon"))
|
|
emitAArch64DeclareSimdFunction(CGM, FD, VLEN, ParamAttrs, State,
|
|
MangledName, 'n', 128, Fn, ExprLoc);
|
|
}
|
|
}
|
|
FD = FD->getPreviousDecl();
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
/// Cleanup action for doacross support.
|
|
class DoacrossCleanupTy final : public EHScopeStack::Cleanup {
|
|
public:
|
|
static const int DoacrossFinArgs = 2;
|
|
|
|
private:
|
|
llvm::FunctionCallee RTLFn;
|
|
llvm::Value *Args[DoacrossFinArgs];
|
|
|
|
public:
|
|
DoacrossCleanupTy(llvm::FunctionCallee RTLFn,
|
|
ArrayRef<llvm::Value *> CallArgs)
|
|
: RTLFn(RTLFn) {
|
|
assert(CallArgs.size() == DoacrossFinArgs);
|
|
std::copy(CallArgs.begin(), CallArgs.end(), std::begin(Args));
|
|
}
|
|
void Emit(CodeGenFunction &CGF, Flags /*flags*/) override {
|
|
if (!CGF.HaveInsertPoint())
|
|
return;
|
|
CGF.EmitRuntimeCall(RTLFn, Args);
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
void CGOpenMPRuntime::emitDoacrossInit(CodeGenFunction &CGF,
|
|
const OMPLoopDirective &D,
|
|
ArrayRef<Expr *> NumIterations) {
|
|
if (!CGF.HaveInsertPoint())
|
|
return;
|
|
|
|
ASTContext &C = CGM.getContext();
|
|
QualType Int64Ty = C.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/true);
|
|
RecordDecl *RD;
|
|
if (KmpDimTy.isNull()) {
|
|
// Build struct kmp_dim { // loop bounds info casted to kmp_int64
|
|
// kmp_int64 lo; // lower
|
|
// kmp_int64 up; // upper
|
|
// kmp_int64 st; // stride
|
|
// };
|
|
RD = C.buildImplicitRecord("kmp_dim");
|
|
RD->startDefinition();
|
|
addFieldToRecordDecl(C, RD, Int64Ty);
|
|
addFieldToRecordDecl(C, RD, Int64Ty);
|
|
addFieldToRecordDecl(C, RD, Int64Ty);
|
|
RD->completeDefinition();
|
|
KmpDimTy = C.getRecordType(RD);
|
|
} else {
|
|
RD = cast<RecordDecl>(KmpDimTy->getAsTagDecl());
|
|
}
|
|
llvm::APInt Size(/*numBits=*/32, NumIterations.size());
|
|
QualType ArrayTy =
|
|
C.getConstantArrayType(KmpDimTy, Size, nullptr, ArrayType::Normal, 0);
|
|
|
|
Address DimsAddr = CGF.CreateMemTemp(ArrayTy, "dims");
|
|
CGF.EmitNullInitialization(DimsAddr, ArrayTy);
|
|
enum { LowerFD = 0, UpperFD, StrideFD };
|
|
// Fill dims with data.
|
|
for (unsigned I = 0, E = NumIterations.size(); I < E; ++I) {
|
|
LValue DimsLVal = CGF.MakeAddrLValue(
|
|
CGF.Builder.CreateConstArrayGEP(DimsAddr, I), KmpDimTy);
|
|
// dims.upper = num_iterations;
|
|
LValue UpperLVal = CGF.EmitLValueForField(
|
|
DimsLVal, *std::next(RD->field_begin(), UpperFD));
|
|
llvm::Value *NumIterVal =
|
|
CGF.EmitScalarConversion(CGF.EmitScalarExpr(NumIterations[I]),
|
|
D.getNumIterations()->getType(), Int64Ty,
|
|
D.getNumIterations()->getExprLoc());
|
|
CGF.EmitStoreOfScalar(NumIterVal, UpperLVal);
|
|
// dims.stride = 1;
|
|
LValue StrideLVal = CGF.EmitLValueForField(
|
|
DimsLVal, *std::next(RD->field_begin(), StrideFD));
|
|
CGF.EmitStoreOfScalar(llvm::ConstantInt::getSigned(CGM.Int64Ty, /*V=*/1),
|
|
StrideLVal);
|
|
}
|
|
|
|
// Build call void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid,
|
|
// kmp_int32 num_dims, struct kmp_dim * dims);
|
|
llvm::Value *Args[] = {
|
|
emitUpdateLocation(CGF, D.getBeginLoc()),
|
|
getThreadID(CGF, D.getBeginLoc()),
|
|
llvm::ConstantInt::getSigned(CGM.Int32Ty, NumIterations.size()),
|
|
CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
|
|
CGF.Builder.CreateConstArrayGEP(DimsAddr, 0).getPointer(),
|
|
CGM.VoidPtrTy)};
|
|
|
|
llvm::FunctionCallee RTLFn =
|
|
createRuntimeFunction(OMPRTL__kmpc_doacross_init);
|
|
CGF.EmitRuntimeCall(RTLFn, Args);
|
|
llvm::Value *FiniArgs[DoacrossCleanupTy::DoacrossFinArgs] = {
|
|
emitUpdateLocation(CGF, D.getEndLoc()), getThreadID(CGF, D.getEndLoc())};
|
|
llvm::FunctionCallee FiniRTLFn =
|
|
createRuntimeFunction(OMPRTL__kmpc_doacross_fini);
|
|
CGF.EHStack.pushCleanup<DoacrossCleanupTy>(NormalAndEHCleanup, FiniRTLFn,
|
|
llvm::makeArrayRef(FiniArgs));
|
|
}
|
|
|
|
void CGOpenMPRuntime::emitDoacrossOrdered(CodeGenFunction &CGF,
|
|
const OMPDependClause *C) {
|
|
QualType Int64Ty =
|
|
CGM.getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1);
|
|
llvm::APInt Size(/*numBits=*/32, C->getNumLoops());
|
|
QualType ArrayTy = CGM.getContext().getConstantArrayType(
|
|
Int64Ty, Size, nullptr, ArrayType::Normal, 0);
|
|
Address CntAddr = CGF.CreateMemTemp(ArrayTy, ".cnt.addr");
|
|
for (unsigned I = 0, E = C->getNumLoops(); I < E; ++I) {
|
|
const Expr *CounterVal = C->getLoopData(I);
|
|
assert(CounterVal);
|
|
llvm::Value *CntVal = CGF.EmitScalarConversion(
|
|
CGF.EmitScalarExpr(CounterVal), CounterVal->getType(), Int64Ty,
|
|
CounterVal->getExprLoc());
|
|
CGF.EmitStoreOfScalar(CntVal, CGF.Builder.CreateConstArrayGEP(CntAddr, I),
|
|
/*Volatile=*/false, Int64Ty);
|
|
}
|
|
llvm::Value *Args[] = {
|
|
emitUpdateLocation(CGF, C->getBeginLoc()),
|
|
getThreadID(CGF, C->getBeginLoc()),
|
|
CGF.Builder.CreateConstArrayGEP(CntAddr, 0).getPointer()};
|
|
llvm::FunctionCallee RTLFn;
|
|
if (C->getDependencyKind() == OMPC_DEPEND_source) {
|
|
RTLFn = createRuntimeFunction(OMPRTL__kmpc_doacross_post);
|
|
} else {
|
|
assert(C->getDependencyKind() == OMPC_DEPEND_sink);
|
|
RTLFn = createRuntimeFunction(OMPRTL__kmpc_doacross_wait);
|
|
}
|
|
CGF.EmitRuntimeCall(RTLFn, Args);
|
|
}
|
|
|
|
void CGOpenMPRuntime::emitCall(CodeGenFunction &CGF, SourceLocation Loc,
|
|
llvm::FunctionCallee Callee,
|
|
ArrayRef<llvm::Value *> Args) const {
|
|
assert(Loc.isValid() && "Outlined function call location must be valid.");
|
|
auto DL = ApplyDebugLocation::CreateDefaultArtificial(CGF, Loc);
|
|
|
|
if (auto *Fn = dyn_cast<llvm::Function>(Callee.getCallee())) {
|
|
if (Fn->doesNotThrow()) {
|
|
CGF.EmitNounwindRuntimeCall(Fn, Args);
|
|
return;
|
|
}
|
|
}
|
|
CGF.EmitRuntimeCall(Callee, Args);
|
|
}
|
|
|
|
void CGOpenMPRuntime::emitOutlinedFunctionCall(
|
|
CodeGenFunction &CGF, SourceLocation Loc, llvm::FunctionCallee OutlinedFn,
|
|
ArrayRef<llvm::Value *> Args) const {
|
|
emitCall(CGF, Loc, OutlinedFn, Args);
|
|
}
|
|
|
|
void CGOpenMPRuntime::emitFunctionProlog(CodeGenFunction &CGF, const Decl *D) {
|
|
if (const auto *FD = dyn_cast<FunctionDecl>(D))
|
|
if (OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(FD))
|
|
HasEmittedDeclareTargetRegion = true;
|
|
}
|
|
|
|
Address CGOpenMPRuntime::getParameterAddress(CodeGenFunction &CGF,
|
|
const VarDecl *NativeParam,
|
|
const VarDecl *TargetParam) const {
|
|
return CGF.GetAddrOfLocalVar(NativeParam);
|
|
}
|
|
|
|
namespace {
|
|
/// Cleanup action for allocate support.
|
|
class OMPAllocateCleanupTy final : public EHScopeStack::Cleanup {
|
|
public:
|
|
static const int CleanupArgs = 3;
|
|
|
|
private:
|
|
llvm::FunctionCallee RTLFn;
|
|
llvm::Value *Args[CleanupArgs];
|
|
|
|
public:
|
|
OMPAllocateCleanupTy(llvm::FunctionCallee RTLFn,
|
|
ArrayRef<llvm::Value *> CallArgs)
|
|
: RTLFn(RTLFn) {
|
|
assert(CallArgs.size() == CleanupArgs &&
|
|
"Size of arguments does not match.");
|
|
std::copy(CallArgs.begin(), CallArgs.end(), std::begin(Args));
|
|
}
|
|
void Emit(CodeGenFunction &CGF, Flags /*flags*/) override {
|
|
if (!CGF.HaveInsertPoint())
|
|
return;
|
|
CGF.EmitRuntimeCall(RTLFn, Args);
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
Address CGOpenMPRuntime::getAddressOfLocalVariable(CodeGenFunction &CGF,
|
|
const VarDecl *VD) {
|
|
if (!VD)
|
|
return Address::invalid();
|
|
const VarDecl *CVD = VD->getCanonicalDecl();
|
|
if (!CVD->hasAttr<OMPAllocateDeclAttr>())
|
|
return Address::invalid();
|
|
const auto *AA = CVD->getAttr<OMPAllocateDeclAttr>();
|
|
// Use the default allocation.
|
|
if (AA->getAllocatorType() == OMPAllocateDeclAttr::OMPDefaultMemAlloc &&
|
|
!AA->getAllocator())
|
|
return Address::invalid();
|
|
llvm::Value *Size;
|
|
CharUnits Align = CGM.getContext().getDeclAlign(CVD);
|
|
if (CVD->getType()->isVariablyModifiedType()) {
|
|
Size = CGF.getTypeSize(CVD->getType());
|
|
// Align the size: ((size + align - 1) / align) * align
|
|
Size = CGF.Builder.CreateNUWAdd(
|
|
Size, CGM.getSize(Align - CharUnits::fromQuantity(1)));
|
|
Size = CGF.Builder.CreateUDiv(Size, CGM.getSize(Align));
|
|
Size = CGF.Builder.CreateNUWMul(Size, CGM.getSize(Align));
|
|
} else {
|
|
CharUnits Sz = CGM.getContext().getTypeSizeInChars(CVD->getType());
|
|
Size = CGM.getSize(Sz.alignTo(Align));
|
|
}
|
|
llvm::Value *ThreadID = getThreadID(CGF, CVD->getBeginLoc());
|
|
assert(AA->getAllocator() &&
|
|
"Expected allocator expression for non-default allocator.");
|
|
llvm::Value *Allocator = CGF.EmitScalarExpr(AA->getAllocator());
|
|
// According to the standard, the original allocator type is a enum (integer).
|
|
// Convert to pointer type, if required.
|
|
if (Allocator->getType()->isIntegerTy())
|
|
Allocator = CGF.Builder.CreateIntToPtr(Allocator, CGM.VoidPtrTy);
|
|
else if (Allocator->getType()->isPointerTy())
|
|
Allocator = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Allocator,
|
|
CGM.VoidPtrTy);
|
|
llvm::Value *Args[] = {ThreadID, Size, Allocator};
|
|
|
|
llvm::Value *Addr =
|
|
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_alloc), Args,
|
|
CVD->getName() + ".void.addr");
|
|
llvm::Value *FiniArgs[OMPAllocateCleanupTy::CleanupArgs] = {ThreadID, Addr,
|
|
Allocator};
|
|
llvm::FunctionCallee FiniRTLFn = createRuntimeFunction(OMPRTL__kmpc_free);
|
|
|
|
CGF.EHStack.pushCleanup<OMPAllocateCleanupTy>(NormalAndEHCleanup, FiniRTLFn,
|
|
llvm::makeArrayRef(FiniArgs));
|
|
Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
|
|
Addr,
|
|
CGF.ConvertTypeForMem(CGM.getContext().getPointerType(CVD->getType())),
|
|
CVD->getName() + ".addr");
|
|
return Address(Addr, Align);
|
|
}
|
|
|
|
namespace {
|
|
using OMPContextSelectorData =
|
|
OpenMPCtxSelectorData<ArrayRef<StringRef>, llvm::APSInt>;
|
|
using CompleteOMPContextSelectorData = SmallVector<OMPContextSelectorData, 4>;
|
|
} // anonymous namespace
|
|
|
|
/// Checks current context and returns true if it matches the context selector.
|
|
template <OpenMPContextSelectorSetKind CtxSet, OpenMPContextSelectorKind Ctx,
|
|
typename... Arguments>
|
|
static bool checkContext(const OMPContextSelectorData &Data,
|
|
Arguments... Params) {
|
|
assert(Data.CtxSet != OMP_CTX_SET_unknown && Data.Ctx != OMP_CTX_unknown &&
|
|
"Unknown context selector or context selector set.");
|
|
return false;
|
|
}
|
|
|
|
/// Checks for implementation={vendor(<vendor>)} context selector.
|
|
/// \returns true iff <vendor>="llvm", false otherwise.
|
|
template <>
|
|
bool checkContext<OMP_CTX_SET_implementation, OMP_CTX_vendor>(
|
|
const OMPContextSelectorData &Data) {
|
|
return llvm::all_of(Data.Names,
|
|
[](StringRef S) { return !S.compare_lower("llvm"); });
|
|
}
|
|
|
|
/// Checks for device={kind(<kind>)} context selector.
|
|
/// \returns true if <kind>="host" and compilation is for host.
|
|
/// true if <kind>="nohost" and compilation is for device.
|
|
/// true if <kind>="cpu" and compilation is for Arm, X86 or PPC CPU.
|
|
/// true if <kind>="gpu" and compilation is for NVPTX or AMDGCN.
|
|
/// false otherwise.
|
|
template <>
|
|
bool checkContext<OMP_CTX_SET_device, OMP_CTX_kind, CodeGenModule &>(
|
|
const OMPContextSelectorData &Data, CodeGenModule &CGM) {
|
|
for (StringRef Name : Data.Names) {
|
|
if (!Name.compare_lower("host")) {
|
|
if (CGM.getLangOpts().OpenMPIsDevice)
|
|
return false;
|
|
continue;
|
|
}
|
|
if (!Name.compare_lower("nohost")) {
|
|
if (!CGM.getLangOpts().OpenMPIsDevice)
|
|
return false;
|
|
continue;
|
|
}
|
|
switch (CGM.getTriple().getArch()) {
|
|
case llvm::Triple::arm:
|
|
case llvm::Triple::armeb:
|
|
case llvm::Triple::aarch64:
|
|
case llvm::Triple::aarch64_be:
|
|
case llvm::Triple::aarch64_32:
|
|
case llvm::Triple::ppc:
|
|
case llvm::Triple::ppc64:
|
|
case llvm::Triple::ppc64le:
|
|
case llvm::Triple::x86:
|
|
case llvm::Triple::x86_64:
|
|
if (Name.compare_lower("cpu"))
|
|
return false;
|
|
break;
|
|
case llvm::Triple::amdgcn:
|
|
case llvm::Triple::nvptx:
|
|
case llvm::Triple::nvptx64:
|
|
if (Name.compare_lower("gpu"))
|
|
return false;
|
|
break;
|
|
case llvm::Triple::UnknownArch:
|
|
case llvm::Triple::arc:
|
|
case llvm::Triple::avr:
|
|
case llvm::Triple::bpfel:
|
|
case llvm::Triple::bpfeb:
|
|
case llvm::Triple::hexagon:
|
|
case llvm::Triple::mips:
|
|
case llvm::Triple::mipsel:
|
|
case llvm::Triple::mips64:
|
|
case llvm::Triple::mips64el:
|
|
case llvm::Triple::msp430:
|
|
case llvm::Triple::r600:
|
|
case llvm::Triple::riscv32:
|
|
case llvm::Triple::riscv64:
|
|
case llvm::Triple::sparc:
|
|
case llvm::Triple::sparcv9:
|
|
case llvm::Triple::sparcel:
|
|
case llvm::Triple::systemz:
|
|
case llvm::Triple::tce:
|
|
case llvm::Triple::tcele:
|
|
case llvm::Triple::thumb:
|
|
case llvm::Triple::thumbeb:
|
|
case llvm::Triple::xcore:
|
|
case llvm::Triple::le32:
|
|
case llvm::Triple::le64:
|
|
case llvm::Triple::amdil:
|
|
case llvm::Triple::amdil64:
|
|
case llvm::Triple::hsail:
|
|
case llvm::Triple::hsail64:
|
|
case llvm::Triple::spir:
|
|
case llvm::Triple::spir64:
|
|
case llvm::Triple::kalimba:
|
|
case llvm::Triple::shave:
|
|
case llvm::Triple::lanai:
|
|
case llvm::Triple::wasm32:
|
|
case llvm::Triple::wasm64:
|
|
case llvm::Triple::renderscript32:
|
|
case llvm::Triple::renderscript64:
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool matchesContext(CodeGenModule &CGM,
|
|
const CompleteOMPContextSelectorData &ContextData) {
|
|
for (const OMPContextSelectorData &Data : ContextData) {
|
|
switch (Data.Ctx) {
|
|
case OMP_CTX_vendor:
|
|
assert(Data.CtxSet == OMP_CTX_SET_implementation &&
|
|
"Expected implementation context selector set.");
|
|
if (!checkContext<OMP_CTX_SET_implementation, OMP_CTX_vendor>(Data))
|
|
return false;
|
|
break;
|
|
case OMP_CTX_kind:
|
|
assert(Data.CtxSet == OMP_CTX_SET_device &&
|
|
"Expected device context selector set.");
|
|
if (!checkContext<OMP_CTX_SET_device, OMP_CTX_kind, CodeGenModule &>(Data,
|
|
CGM))
|
|
return false;
|
|
break;
|
|
case OMP_CTX_unknown:
|
|
llvm_unreachable("Unknown context selector kind.");
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static CompleteOMPContextSelectorData
|
|
translateAttrToContextSelectorData(ASTContext &C,
|
|
const OMPDeclareVariantAttr *A) {
|
|
CompleteOMPContextSelectorData Data;
|
|
for (unsigned I = 0, E = A->scores_size(); I < E; ++I) {
|
|
Data.emplace_back();
|
|
auto CtxSet = static_cast<OpenMPContextSelectorSetKind>(
|
|
*std::next(A->ctxSelectorSets_begin(), I));
|
|
auto Ctx = static_cast<OpenMPContextSelectorKind>(
|
|
*std::next(A->ctxSelectors_begin(), I));
|
|
Data.back().CtxSet = CtxSet;
|
|
Data.back().Ctx = Ctx;
|
|
const Expr *Score = *std::next(A->scores_begin(), I);
|
|
Data.back().Score = Score->EvaluateKnownConstInt(C);
|
|
switch (Ctx) {
|
|
case OMP_CTX_vendor:
|
|
assert(CtxSet == OMP_CTX_SET_implementation &&
|
|
"Expected implementation context selector set.");
|
|
Data.back().Names =
|
|
llvm::makeArrayRef(A->implVendors_begin(), A->implVendors_end());
|
|
break;
|
|
case OMP_CTX_kind:
|
|
assert(CtxSet == OMP_CTX_SET_device &&
|
|
"Expected device context selector set.");
|
|
Data.back().Names =
|
|
llvm::makeArrayRef(A->deviceKinds_begin(), A->deviceKinds_end());
|
|
break;
|
|
case OMP_CTX_unknown:
|
|
llvm_unreachable("Unknown context selector kind.");
|
|
}
|
|
}
|
|
return Data;
|
|
}
|
|
|
|
static bool isStrictSubset(const CompleteOMPContextSelectorData &LHS,
|
|
const CompleteOMPContextSelectorData &RHS) {
|
|
llvm::SmallDenseMap<std::pair<int, int>, llvm::StringSet<>, 4> RHSData;
|
|
for (const OMPContextSelectorData &D : RHS) {
|
|
auto &Pair = RHSData.FindAndConstruct(std::make_pair(D.CtxSet, D.Ctx));
|
|
Pair.getSecond().insert(D.Names.begin(), D.Names.end());
|
|
}
|
|
bool AllSetsAreEqual = true;
|
|
for (const OMPContextSelectorData &D : LHS) {
|
|
auto It = RHSData.find(std::make_pair(D.CtxSet, D.Ctx));
|
|
if (It == RHSData.end())
|
|
return false;
|
|
if (D.Names.size() > It->getSecond().size())
|
|
return false;
|
|
if (llvm::set_union(It->getSecond(), D.Names))
|
|
return false;
|
|
AllSetsAreEqual =
|
|
AllSetsAreEqual && (D.Names.size() == It->getSecond().size());
|
|
}
|
|
|
|
return LHS.size() != RHS.size() || !AllSetsAreEqual;
|
|
}
|
|
|
|
static bool greaterCtxScore(const CompleteOMPContextSelectorData &LHS,
|
|
const CompleteOMPContextSelectorData &RHS) {
|
|
// Score is calculated as sum of all scores + 1.
|
|
llvm::APSInt LHSScore(llvm::APInt(64, 1), /*isUnsigned=*/false);
|
|
bool RHSIsSubsetOfLHS = isStrictSubset(RHS, LHS);
|
|
if (RHSIsSubsetOfLHS) {
|
|
LHSScore = llvm::APSInt::get(0);
|
|
} else {
|
|
for (const OMPContextSelectorData &Data : LHS) {
|
|
if (Data.Score.getBitWidth() > LHSScore.getBitWidth()) {
|
|
LHSScore = LHSScore.extend(Data.Score.getBitWidth()) + Data.Score;
|
|
} else if (Data.Score.getBitWidth() < LHSScore.getBitWidth()) {
|
|
LHSScore += Data.Score.extend(LHSScore.getBitWidth());
|
|
} else {
|
|
LHSScore += Data.Score;
|
|
}
|
|
}
|
|
}
|
|
llvm::APSInt RHSScore(llvm::APInt(64, 1), /*isUnsigned=*/false);
|
|
if (!RHSIsSubsetOfLHS && isStrictSubset(LHS, RHS)) {
|
|
RHSScore = llvm::APSInt::get(0);
|
|
} else {
|
|
for (const OMPContextSelectorData &Data : RHS) {
|
|
if (Data.Score.getBitWidth() > RHSScore.getBitWidth()) {
|
|
RHSScore = RHSScore.extend(Data.Score.getBitWidth()) + Data.Score;
|
|
} else if (Data.Score.getBitWidth() < RHSScore.getBitWidth()) {
|
|
RHSScore += Data.Score.extend(RHSScore.getBitWidth());
|
|
} else {
|
|
RHSScore += Data.Score;
|
|
}
|
|
}
|
|
}
|
|
return llvm::APSInt::compareValues(LHSScore, RHSScore) >= 0;
|
|
}
|
|
|
|
/// Finds the variant function that matches current context with its context
|
|
/// selector.
|
|
static const FunctionDecl *getDeclareVariantFunction(CodeGenModule &CGM,
|
|
const FunctionDecl *FD) {
|
|
if (!FD->hasAttrs() || !FD->hasAttr<OMPDeclareVariantAttr>())
|
|
return FD;
|
|
// Iterate through all DeclareVariant attributes and check context selectors.
|
|
const OMPDeclareVariantAttr *TopMostAttr = nullptr;
|
|
CompleteOMPContextSelectorData TopMostData;
|
|
for (const auto *A : FD->specific_attrs<OMPDeclareVariantAttr>()) {
|
|
CompleteOMPContextSelectorData Data =
|
|
translateAttrToContextSelectorData(CGM.getContext(), A);
|
|
if (!matchesContext(CGM, Data))
|
|
continue;
|
|
// If the attribute matches the context, find the attribute with the highest
|
|
// score.
|
|
if (!TopMostAttr || !greaterCtxScore(TopMostData, Data)) {
|
|
TopMostAttr = A;
|
|
TopMostData.swap(Data);
|
|
}
|
|
}
|
|
if (!TopMostAttr)
|
|
return FD;
|
|
return cast<FunctionDecl>(
|
|
cast<DeclRefExpr>(TopMostAttr->getVariantFuncRef()->IgnoreParenImpCasts())
|
|
->getDecl());
|
|
}
|
|
|
|
bool CGOpenMPRuntime::emitDeclareVariant(GlobalDecl GD, bool IsForDefinition) {
|
|
const auto *D = cast<FunctionDecl>(GD.getDecl());
|
|
// If the original function is defined already, use its definition.
|
|
StringRef MangledName = CGM.getMangledName(GD);
|
|
llvm::GlobalValue *Orig = CGM.GetGlobalValue(MangledName);
|
|
if (Orig && !Orig->isDeclaration())
|
|
return false;
|
|
const FunctionDecl *NewFD = getDeclareVariantFunction(CGM, D);
|
|
// Emit original function if it does not have declare variant attribute or the
|
|
// context does not match.
|
|
if (NewFD == D)
|
|
return false;
|
|
GlobalDecl NewGD = GD.getWithDecl(NewFD);
|
|
if (tryEmitDeclareVariant(NewGD, GD, Orig, IsForDefinition)) {
|
|
DeferredVariantFunction.erase(D);
|
|
return true;
|
|
}
|
|
DeferredVariantFunction.insert(std::make_pair(D, std::make_pair(NewGD, GD)));
|
|
return true;
|
|
}
|
|
|
|
llvm::Function *CGOpenMPSIMDRuntime::emitParallelOutlinedFunction(
|
|
const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
|
|
OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|
|
|
|
llvm::Function *CGOpenMPSIMDRuntime::emitTeamsOutlinedFunction(
|
|
const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
|
|
OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|
|
|
|
llvm::Function *CGOpenMPSIMDRuntime::emitTaskOutlinedFunction(
|
|
const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
|
|
const VarDecl *PartIDVar, const VarDecl *TaskTVar,
|
|
OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen,
|
|
bool Tied, unsigned &NumberOfParts) {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|
|
|
|
void CGOpenMPSIMDRuntime::emitParallelCall(CodeGenFunction &CGF,
|
|
SourceLocation Loc,
|
|
llvm::Function *OutlinedFn,
|
|
ArrayRef<llvm::Value *> CapturedVars,
|
|
const Expr *IfCond) {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|
|
|
|
void CGOpenMPSIMDRuntime::emitCriticalRegion(
|
|
CodeGenFunction &CGF, StringRef CriticalName,
|
|
const RegionCodeGenTy &CriticalOpGen, SourceLocation Loc,
|
|
const Expr *Hint) {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|
|
|
|
void CGOpenMPSIMDRuntime::emitMasterRegion(CodeGenFunction &CGF,
|
|
const RegionCodeGenTy &MasterOpGen,
|
|
SourceLocation Loc) {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|
|
|
|
void CGOpenMPSIMDRuntime::emitTaskyieldCall(CodeGenFunction &CGF,
|
|
SourceLocation Loc) {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|
|
|
|
void CGOpenMPSIMDRuntime::emitTaskgroupRegion(
|
|
CodeGenFunction &CGF, const RegionCodeGenTy &TaskgroupOpGen,
|
|
SourceLocation Loc) {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|
|
|
|
void CGOpenMPSIMDRuntime::emitSingleRegion(
|
|
CodeGenFunction &CGF, const RegionCodeGenTy &SingleOpGen,
|
|
SourceLocation Loc, ArrayRef<const Expr *> CopyprivateVars,
|
|
ArrayRef<const Expr *> DestExprs, ArrayRef<const Expr *> SrcExprs,
|
|
ArrayRef<const Expr *> AssignmentOps) {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|
|
|
|
void CGOpenMPSIMDRuntime::emitOrderedRegion(CodeGenFunction &CGF,
|
|
const RegionCodeGenTy &OrderedOpGen,
|
|
SourceLocation Loc,
|
|
bool IsThreads) {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|
|
|
|
void CGOpenMPSIMDRuntime::emitBarrierCall(CodeGenFunction &CGF,
|
|
SourceLocation Loc,
|
|
OpenMPDirectiveKind Kind,
|
|
bool EmitChecks,
|
|
bool ForceSimpleCall) {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|
|
|
|
void CGOpenMPSIMDRuntime::emitForDispatchInit(
|
|
CodeGenFunction &CGF, SourceLocation Loc,
|
|
const OpenMPScheduleTy &ScheduleKind, unsigned IVSize, bool IVSigned,
|
|
bool Ordered, const DispatchRTInput &DispatchValues) {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|
|
|
|
void CGOpenMPSIMDRuntime::emitForStaticInit(
|
|
CodeGenFunction &CGF, SourceLocation Loc, OpenMPDirectiveKind DKind,
|
|
const OpenMPScheduleTy &ScheduleKind, const StaticRTInput &Values) {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|
|
|
|
void CGOpenMPSIMDRuntime::emitDistributeStaticInit(
|
|
CodeGenFunction &CGF, SourceLocation Loc,
|
|
OpenMPDistScheduleClauseKind SchedKind, const StaticRTInput &Values) {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|
|
|
|
void CGOpenMPSIMDRuntime::emitForOrderedIterationEnd(CodeGenFunction &CGF,
|
|
SourceLocation Loc,
|
|
unsigned IVSize,
|
|
bool IVSigned) {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|
|
|
|
void CGOpenMPSIMDRuntime::emitForStaticFinish(CodeGenFunction &CGF,
|
|
SourceLocation Loc,
|
|
OpenMPDirectiveKind DKind) {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|
|
|
|
llvm::Value *CGOpenMPSIMDRuntime::emitForNext(CodeGenFunction &CGF,
|
|
SourceLocation Loc,
|
|
unsigned IVSize, bool IVSigned,
|
|
Address IL, Address LB,
|
|
Address UB, Address ST) {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|
|
|
|
void CGOpenMPSIMDRuntime::emitNumThreadsClause(CodeGenFunction &CGF,
|
|
llvm::Value *NumThreads,
|
|
SourceLocation Loc) {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|
|
|
|
void CGOpenMPSIMDRuntime::emitProcBindClause(CodeGenFunction &CGF,
|
|
OpenMPProcBindClauseKind ProcBind,
|
|
SourceLocation Loc) {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|
|
|
|
Address CGOpenMPSIMDRuntime::getAddrOfThreadPrivate(CodeGenFunction &CGF,
|
|
const VarDecl *VD,
|
|
Address VDAddr,
|
|
SourceLocation Loc) {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|
|
|
|
llvm::Function *CGOpenMPSIMDRuntime::emitThreadPrivateVarDefinition(
|
|
const VarDecl *VD, Address VDAddr, SourceLocation Loc, bool PerformInit,
|
|
CodeGenFunction *CGF) {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|
|
|
|
Address CGOpenMPSIMDRuntime::getAddrOfArtificialThreadPrivate(
|
|
CodeGenFunction &CGF, QualType VarType, StringRef Name) {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|
|
|
|
void CGOpenMPSIMDRuntime::emitFlush(CodeGenFunction &CGF,
|
|
ArrayRef<const Expr *> Vars,
|
|
SourceLocation Loc) {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|
|
|
|
void CGOpenMPSIMDRuntime::emitTaskCall(CodeGenFunction &CGF, SourceLocation Loc,
|
|
const OMPExecutableDirective &D,
|
|
llvm::Function *TaskFunction,
|
|
QualType SharedsTy, Address Shareds,
|
|
const Expr *IfCond,
|
|
const OMPTaskDataTy &Data) {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|
|
|
|
void CGOpenMPSIMDRuntime::emitTaskLoopCall(
|
|
CodeGenFunction &CGF, SourceLocation Loc, const OMPLoopDirective &D,
|
|
llvm::Function *TaskFunction, QualType SharedsTy, Address Shareds,
|
|
const Expr *IfCond, const OMPTaskDataTy &Data) {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|
|
|
|
void CGOpenMPSIMDRuntime::emitReduction(
|
|
CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> Privates,
|
|
ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs,
|
|
ArrayRef<const Expr *> ReductionOps, ReductionOptionsTy Options) {
|
|
assert(Options.SimpleReduction && "Only simple reduction is expected.");
|
|
CGOpenMPRuntime::emitReduction(CGF, Loc, Privates, LHSExprs, RHSExprs,
|
|
ReductionOps, Options);
|
|
}
|
|
|
|
llvm::Value *CGOpenMPSIMDRuntime::emitTaskReductionInit(
|
|
CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> LHSExprs,
|
|
ArrayRef<const Expr *> RHSExprs, const OMPTaskDataTy &Data) {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|
|
|
|
void CGOpenMPSIMDRuntime::emitTaskReductionFixups(CodeGenFunction &CGF,
|
|
SourceLocation Loc,
|
|
ReductionCodeGen &RCG,
|
|
unsigned N) {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|
|
|
|
Address CGOpenMPSIMDRuntime::getTaskReductionItem(CodeGenFunction &CGF,
|
|
SourceLocation Loc,
|
|
llvm::Value *ReductionsPtr,
|
|
LValue SharedLVal) {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|
|
|
|
void CGOpenMPSIMDRuntime::emitTaskwaitCall(CodeGenFunction &CGF,
|
|
SourceLocation Loc) {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|
|
|
|
void CGOpenMPSIMDRuntime::emitCancellationPointCall(
|
|
CodeGenFunction &CGF, SourceLocation Loc,
|
|
OpenMPDirectiveKind CancelRegion) {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|
|
|
|
void CGOpenMPSIMDRuntime::emitCancelCall(CodeGenFunction &CGF,
|
|
SourceLocation Loc, const Expr *IfCond,
|
|
OpenMPDirectiveKind CancelRegion) {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|
|
|
|
void CGOpenMPSIMDRuntime::emitTargetOutlinedFunction(
|
|
const OMPExecutableDirective &D, StringRef ParentName,
|
|
llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID,
|
|
bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|
|
|
|
void CGOpenMPSIMDRuntime::emitTargetCall(
|
|
CodeGenFunction &CGF, const OMPExecutableDirective &D,
|
|
llvm::Function *OutlinedFn, llvm::Value *OutlinedFnID, const Expr *IfCond,
|
|
const Expr *Device,
|
|
llvm::function_ref<llvm::Value *(CodeGenFunction &CGF,
|
|
const OMPLoopDirective &D)>
|
|
SizeEmitter) {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|
|
|
|
bool CGOpenMPSIMDRuntime::emitTargetFunctions(GlobalDecl GD) {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|
|
|
|
bool CGOpenMPSIMDRuntime::emitTargetGlobalVariable(GlobalDecl GD) {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|
|
|
|
bool CGOpenMPSIMDRuntime::emitTargetGlobal(GlobalDecl GD) {
|
|
return false;
|
|
}
|
|
|
|
void CGOpenMPSIMDRuntime::emitTeamsCall(CodeGenFunction &CGF,
|
|
const OMPExecutableDirective &D,
|
|
SourceLocation Loc,
|
|
llvm::Function *OutlinedFn,
|
|
ArrayRef<llvm::Value *> CapturedVars) {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|
|
|
|
void CGOpenMPSIMDRuntime::emitNumTeamsClause(CodeGenFunction &CGF,
|
|
const Expr *NumTeams,
|
|
const Expr *ThreadLimit,
|
|
SourceLocation Loc) {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|
|
|
|
void CGOpenMPSIMDRuntime::emitTargetDataCalls(
|
|
CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond,
|
|
const Expr *Device, const RegionCodeGenTy &CodeGen, TargetDataInfo &Info) {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|
|
|
|
void CGOpenMPSIMDRuntime::emitTargetDataStandAloneCall(
|
|
CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond,
|
|
const Expr *Device) {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|
|
|
|
void CGOpenMPSIMDRuntime::emitDoacrossInit(CodeGenFunction &CGF,
|
|
const OMPLoopDirective &D,
|
|
ArrayRef<Expr *> NumIterations) {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|
|
|
|
void CGOpenMPSIMDRuntime::emitDoacrossOrdered(CodeGenFunction &CGF,
|
|
const OMPDependClause *C) {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|
|
|
|
const VarDecl *
|
|
CGOpenMPSIMDRuntime::translateParameter(const FieldDecl *FD,
|
|
const VarDecl *NativeParam) const {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|
|
|
|
Address
|
|
CGOpenMPSIMDRuntime::getParameterAddress(CodeGenFunction &CGF,
|
|
const VarDecl *NativeParam,
|
|
const VarDecl *TargetParam) const {
|
|
llvm_unreachable("Not supported in SIMD-only mode");
|
|
}
|