2023 lines
83 KiB
C++
2023 lines
83 KiB
C++
//===- VectorTransforms.cpp - Conversion within the Vector dialect --------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements target-independent rewrites as 1->N patterns.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include <type_traits>
|
|
|
|
#include "mlir/Dialect/Affine/IR/AffineOps.h"
|
|
#include "mlir/Dialect/StandardOps/IR/Ops.h"
|
|
#include "mlir/Dialect/Utils/StructuredOpsUtils.h"
|
|
#include "mlir/Dialect/Vector/VectorOps.h"
|
|
#include "mlir/Dialect/Vector/VectorTransforms.h"
|
|
#include "mlir/Dialect/Vector/VectorUtils.h"
|
|
#include "mlir/IR/AffineExpr.h"
|
|
#include "mlir/IR/AffineMap.h"
|
|
#include "mlir/IR/Attributes.h"
|
|
#include "mlir/IR/Builders.h"
|
|
#include "mlir/IR/Function.h"
|
|
#include "mlir/IR/Location.h"
|
|
#include "mlir/IR/Matchers.h"
|
|
#include "mlir/IR/Module.h"
|
|
#include "mlir/IR/OperationSupport.h"
|
|
#include "mlir/IR/PatternMatch.h"
|
|
#include "mlir/IR/TypeUtilities.h"
|
|
#include "mlir/IR/Types.h"
|
|
#include "mlir/Interfaces/VectorInterfaces.h"
|
|
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
#define DEBUG_TYPE "vector-to-vector"
|
|
|
|
using namespace mlir;
|
|
using llvm::dbgs;
|
|
|
|
// Helper to find an index in an affine map.
|
|
static Optional<int64_t> getResultIndex(AffineMap map, int64_t index) {
|
|
for (int64_t i = 0, e = map.getNumResults(); i < e; ++i) {
|
|
int64_t idx = map.getResult(i).cast<AffineDimExpr>().getPosition();
|
|
if (idx == index)
|
|
return i;
|
|
}
|
|
return None;
|
|
}
|
|
|
|
// Helper to construct iterator types with one index removed.
|
|
static SmallVector<Attribute, 4> adjustIter(ArrayAttr iteratorTypes,
|
|
int64_t index) {
|
|
SmallVector<Attribute, 4> results;
|
|
for (auto it : llvm::enumerate(iteratorTypes)) {
|
|
int64_t idx = it.index();
|
|
if (idx == index)
|
|
continue;
|
|
results.push_back(it.value());
|
|
}
|
|
return results;
|
|
}
|
|
|
|
// Helper to construct an affine map with one index removed.
|
|
static AffineMap adjustMap(AffineMap map, int64_t index,
|
|
PatternRewriter &rewriter) {
|
|
auto *ctx = rewriter.getContext();
|
|
SmallVector<AffineExpr, 4> results;
|
|
for (int64_t i = 0, e = map.getNumResults(); i < e; ++i) {
|
|
int64_t idx = map.getResult(i).cast<AffineDimExpr>().getPosition();
|
|
if (idx == index)
|
|
continue;
|
|
// Re-insert remaining indices, but renamed when occurring
|
|
// after the removed index.
|
|
auto targetExpr = getAffineDimExpr(idx < index ? idx : idx - 1, ctx);
|
|
results.push_back(targetExpr);
|
|
}
|
|
return AffineMap::get(map.getNumDims() - 1, 0, results, ctx);
|
|
}
|
|
|
|
// Helper to drop dimension from vector type.
|
|
static Type adjustType(VectorType tp, int64_t index) {
|
|
int64_t rank = tp.getRank();
|
|
Type eltType = tp.getElementType();
|
|
if (rank == 1) {
|
|
assert(index == 0 && "index for scalar result out of bounds");
|
|
return eltType;
|
|
}
|
|
SmallVector<int64_t, 4> adjustedShape;
|
|
for (int64_t i = 0; i < rank; ++i) {
|
|
// Omit dimension at the given index.
|
|
if (i == index)
|
|
continue;
|
|
// Otherwise, add dimension back.
|
|
adjustedShape.push_back(tp.getDimSize(i));
|
|
}
|
|
return VectorType::get(adjustedShape, eltType);
|
|
}
|
|
|
|
// Helper method to possibly drop a dimension in a load.
|
|
// TODO
|
|
static Value reshapeLoad(Location loc, Value val, VectorType type,
|
|
int64_t index, int64_t pos,
|
|
PatternRewriter &rewriter) {
|
|
if (index == -1)
|
|
return val;
|
|
Type lowType = adjustType(type, 0);
|
|
// At extraction dimension?
|
|
if (index == 0) {
|
|
auto posAttr = rewriter.getI64ArrayAttr(pos);
|
|
return rewriter.create<vector::ExtractOp>(loc, lowType, val, posAttr);
|
|
}
|
|
// Unroll leading dimensions.
|
|
VectorType vType = lowType.cast<VectorType>();
|
|
VectorType resType = adjustType(type, index).cast<VectorType>();
|
|
Value result =
|
|
rewriter.create<ConstantOp>(loc, resType, rewriter.getZeroAttr(resType));
|
|
for (int64_t d = 0, e = resType.getDimSize(0); d < e; d++) {
|
|
auto posAttr = rewriter.getI64ArrayAttr(d);
|
|
Value ext = rewriter.create<vector::ExtractOp>(loc, vType, val, posAttr);
|
|
Value load = reshapeLoad(loc, ext, vType, index - 1, pos, rewriter);
|
|
result =
|
|
rewriter.create<vector::InsertOp>(loc, resType, load, result, posAttr);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
// Helper method to possibly drop a dimension in a store.
|
|
// TODO
|
|
static Value reshapeStore(Location loc, Value val, Value result,
|
|
VectorType type, int64_t index, int64_t pos,
|
|
PatternRewriter &rewriter) {
|
|
// Unmodified?
|
|
if (index == -1)
|
|
return val;
|
|
// At insertion dimension?
|
|
if (index == 0) {
|
|
auto posAttr = rewriter.getI64ArrayAttr(pos);
|
|
return rewriter.create<vector::InsertOp>(loc, type, val, result, posAttr);
|
|
}
|
|
// Unroll leading dimensions.
|
|
Type lowType = adjustType(type, 0);
|
|
VectorType vType = lowType.cast<VectorType>();
|
|
Type insType = adjustType(vType, 0);
|
|
for (int64_t d = 0, e = type.getDimSize(0); d < e; d++) {
|
|
auto posAttr = rewriter.getI64ArrayAttr(d);
|
|
Value ext = rewriter.create<vector::ExtractOp>(loc, vType, result, posAttr);
|
|
Value ins = rewriter.create<vector::ExtractOp>(loc, insType, val, posAttr);
|
|
Value sto = reshapeStore(loc, ins, ext, vType, index - 1, pos, rewriter);
|
|
result = rewriter.create<vector::InsertOp>(loc, type, sto, result, posAttr);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
// Clones `op` into a new operations that takes `operands` and returns
|
|
// `resultTypes`.
|
|
static Operation *cloneOpWithOperandsAndTypes(OpBuilder &builder, Location loc,
|
|
Operation *op,
|
|
ArrayRef<Value> operands,
|
|
ArrayRef<Type> resultTypes) {
|
|
OperationState res(loc, op->getName().getStringRef(), operands, resultTypes,
|
|
op->getAttrs());
|
|
return builder.createOperation(res);
|
|
}
|
|
|
|
// Populates 'resultElements[indexMap[i]]' with elements from 'inputElements[i]'
|
|
// for each index 'i' in inputElements with a valid mapping in 'indexMap'.
|
|
static void getMappedElements(const DenseMap<int64_t, int64_t> &indexMap,
|
|
ArrayRef<int64_t> inputElements,
|
|
SmallVectorImpl<int64_t> &resultElements) {
|
|
assert(indexMap.size() == resultElements.size());
|
|
assert(inputElements.size() >= resultElements.size());
|
|
for (unsigned i = 0, e = inputElements.size(); i < e; ++i) {
|
|
auto it = indexMap.find(i);
|
|
if (it != indexMap.end())
|
|
resultElements[it->second] = inputElements[i];
|
|
}
|
|
}
|
|
|
|
// Returns a tuple type with vector element types for each resulting slice
|
|
// of 'vectorType' unrolled by 'sizes' and 'strides'.
|
|
// TODO: Move this to a utility function and share it with
|
|
// Extract/InsertSlicesOp verification.
|
|
static TupleType generateExtractSlicesOpResultType(VectorType vectorType,
|
|
ArrayRef<int64_t> sizes,
|
|
ArrayRef<int64_t> strides,
|
|
OpBuilder &builder) {
|
|
assert(llvm::all_of(strides, [](int64_t s) { return s == 1; }));
|
|
assert(static_cast<int64_t>(sizes.size()) == vectorType.getRank());
|
|
assert(static_cast<int64_t>(strides.size()) == vectorType.getRank());
|
|
|
|
// Compute shape ratio of 'shape' and 'sizes'.
|
|
auto shape = vectorType.getShape();
|
|
auto maybeDimSliceCounts = shapeRatio(shape, sizes);
|
|
assert(maybeDimSliceCounts.hasValue());
|
|
auto sliceDimCounts = *maybeDimSliceCounts;
|
|
|
|
// Compute strides w.r.t number of slices in each dimension.
|
|
auto sliceStrides = computeStrides(sliceDimCounts);
|
|
int64_t sliceCount = computeMaxLinearIndex(sliceDimCounts);
|
|
SmallVector<Type, 4> vectorTypes(sliceCount);
|
|
for (unsigned i = 0; i < sliceCount; ++i) {
|
|
auto vectorOffsets = delinearize(sliceStrides, i);
|
|
auto elementOffsets =
|
|
computeElementOffsetsFromVectorSliceOffsets(sizes, vectorOffsets);
|
|
auto sliceSizes = computeSliceSizes(shape, sizes, elementOffsets);
|
|
// Create Vector type and add to 'vectorTypes[i]'.
|
|
vectorTypes[i] = VectorType::get(sliceSizes, vectorType.getElementType());
|
|
}
|
|
return TupleType::get(vectorTypes, builder.getContext());
|
|
}
|
|
|
|
// UnrolledVectorState aggregates per-operand/result vector state required for
|
|
// unrolling.
|
|
struct UnrolledVectorState {
|
|
SmallVector<int64_t, 4> unrolledShape;
|
|
SmallVector<int64_t, 4> unrollFactors;
|
|
SmallVector<int64_t, 8> basis;
|
|
int64_t numInstances;
|
|
Value slicesTuple;
|
|
};
|
|
|
|
// Populates 'state' with unrolled shape, unroll factors, basis and
|
|
// num unrolled instances for 'vectorType'.
|
|
static void initUnrolledVectorState(VectorType vectorType, Value initValue,
|
|
const DenseMap<int64_t, int64_t> &indexMap,
|
|
ArrayRef<int64_t> targetShape,
|
|
UnrolledVectorState &state,
|
|
OpBuilder &builder) {
|
|
// Compute unrolled shape of 'vectorType'.
|
|
state.unrolledShape.resize(vectorType.getRank());
|
|
getMappedElements(indexMap, targetShape, state.unrolledShape);
|
|
// Compute unroll factors for unrolled shape.
|
|
auto maybeUnrollFactors =
|
|
shapeRatio(vectorType.getShape(), state.unrolledShape);
|
|
assert(maybeUnrollFactors.hasValue());
|
|
state.unrollFactors = *maybeUnrollFactors;
|
|
// Compute 'basis' and 'numInstances' based on 'state.unrollFactors'.
|
|
state.basis = computeStrides(state.unrollFactors);
|
|
state.numInstances = computeMaxLinearIndex(state.unrollFactors);
|
|
state.slicesTuple = nullptr;
|
|
if (initValue != nullptr) {
|
|
// Create ExtractSlicesOp.
|
|
SmallVector<int64_t, 4> sizes(state.unrolledShape);
|
|
SmallVector<int64_t, 4> strides(state.unrollFactors.size(), 1);
|
|
auto tupleType =
|
|
generateExtractSlicesOpResultType(vectorType, sizes, strides, builder);
|
|
state.slicesTuple = builder.create<vector::ExtractSlicesOp>(
|
|
initValue.getLoc(), tupleType, initValue, sizes, strides);
|
|
}
|
|
}
|
|
|
|
// Computes and returns the linear index of the unrolled vector at
|
|
// 'vectorOffsets' within the vector represented by 'state'.
|
|
static int64_t
|
|
getUnrolledVectorLinearIndex(UnrolledVectorState &state,
|
|
ArrayRef<int64_t> vectorOffsets,
|
|
DenseMap<int64_t, int64_t> &indexMap) {
|
|
// Compute vector offsets.
|
|
SmallVector<int64_t, 4> sliceOffsets(state.unrolledShape.size());
|
|
getMappedElements(indexMap, vectorOffsets, sliceOffsets);
|
|
// Compute and return linear index of 'sliceOffsets' w.r.t 'state.basis'.
|
|
return linearize(sliceOffsets, state.basis);
|
|
}
|
|
|
|
// Returns an unrolled vector at 'vectorOffsets' within the vector
|
|
// represented by 'state'. The vector is created from a slice of 'initValue'
|
|
// if not present in 'cache'.
|
|
static Value getOrCreateUnrolledVectorSlice(
|
|
Location loc, UnrolledVectorState &state, ArrayRef<int64_t> vectorOffsets,
|
|
ArrayRef<int64_t> offsets, DenseMap<int64_t, int64_t> &indexMap,
|
|
Value initValue, SmallVectorImpl<Value> &cache, OpBuilder &builder) {
|
|
// Compute slice offsets.
|
|
SmallVector<int64_t, 4> sliceOffsets(state.unrolledShape.size());
|
|
getMappedElements(indexMap, offsets, sliceOffsets);
|
|
// TODO: Support non-1 strides.
|
|
SmallVector<int64_t, 4> sliceStrides(state.unrolledShape.size(), 1);
|
|
// Compute linear index of 'sliceOffsets' w.r.t 'state.basis'.
|
|
int64_t sliceLinearIndex =
|
|
getUnrolledVectorLinearIndex(state, vectorOffsets, indexMap);
|
|
assert(sliceLinearIndex < static_cast<int64_t>(cache.size()));
|
|
auto valueSlice = cache[sliceLinearIndex];
|
|
if (valueSlice == nullptr) {
|
|
// Return tuple element at 'sliceLinearIndex'.
|
|
auto tupleIndex = builder.getI64IntegerAttr(sliceLinearIndex);
|
|
auto initValueType = initValue.getType().cast<VectorType>();
|
|
auto vectorType =
|
|
VectorType::get(state.unrolledShape, initValueType.getElementType());
|
|
// Initialize 'cache' with slice from 'initValue'.
|
|
valueSlice = builder.create<vector::TupleGetOp>(
|
|
loc, vectorType, state.slicesTuple, tupleIndex);
|
|
// Store value back to 'cache'.
|
|
cache[sliceLinearIndex] = valueSlice;
|
|
}
|
|
return valueSlice;
|
|
}
|
|
|
|
// VectorState aggregates per-operand/result vector state required for
|
|
// creating slices of vector operands, and clones of the operation being
|
|
// unrolled.
|
|
struct VectorState {
|
|
// The type of this vector.
|
|
VectorType type;
|
|
// Map from iteration space index to vector dimension index.
|
|
DenseMap<int64_t, int64_t> indexMap;
|
|
// Index of this value in operation's operand list (-1 if not an operand).
|
|
int64_t operandIndex = -1;
|
|
// Accumulator iterator flag.
|
|
bool isAcc = false;
|
|
};
|
|
|
|
//
|
|
// unrollSingleResultStructuredOp
|
|
//
|
|
// Returns a value representing the result of structured operation 'op'
|
|
// with iteration bounds 'iterationBounds' unrolled to 'targetShape'.
|
|
// A list of VectorState objects must be specified in 'vectors', where
|
|
// each VectorState in the list represents a vector operand or vector result
|
|
// (if the operation does not have an accumulator operand).
|
|
// The VectorState at index 'resultIndex' in the list must be the state
|
|
// associated with the operations single result (i.e. either its accumulator
|
|
// operand or vector result value).
|
|
//
|
|
// Example:
|
|
//
|
|
// // Before unrolling
|
|
//
|
|
// operand0 operand1 operand2
|
|
// \ | /
|
|
// -------------------- opA --------------------
|
|
//
|
|
// // After unrolling by 2
|
|
//
|
|
// operand0 operand1 operand2
|
|
// / \ / \ / \
|
|
// slice00 slice01 slice10 slice11 slice20 slice21
|
|
// \ | | | / |
|
|
// -------------------- opA0 -------------------- |
|
|
// | | | |
|
|
// \ | | /
|
|
// -------------------- opA1 -------------------
|
|
// | |
|
|
// \ /
|
|
// insertslice
|
|
// |
|
|
|
|
// TODO: Add the following canonicalization/simplification patterns:
|
|
// *) Add pattern which matches InsertStridedSlice -> StridedSlice and forwards
|
|
// InsertStridedSlice operand to StridedSlice.
|
|
// *) Add pattern which matches SourceOp -> StridedSlice -> UserOp which checks
|
|
// if there are duplicate identical StridedSlice ops from SourceOp, and
|
|
// rewrites itself to use the first duplicate. This transformation should
|
|
// cause users of identifical StridedSlice ops to reuse the same StridedSlice
|
|
// operation, and leave the duplicate StridedSlice ops with no users
|
|
// (removable with DCE).
|
|
|
|
// TODO: Generalize this to support structured ops beyond
|
|
// vector ContractionOp, and merge it with 'unrollSingleResultVectorOp'
|
|
static Value unrollSingleResultStructuredOp(Operation *op,
|
|
ArrayRef<int64_t> iterationBounds,
|
|
std::vector<VectorState> &vectors,
|
|
unsigned resultIndex,
|
|
ArrayRef<int64_t> targetShape,
|
|
OpBuilder &builder) {
|
|
auto shapedType = op->getResult(0).getType().dyn_cast_or_null<ShapedType>();
|
|
if (!shapedType || !shapedType.hasStaticShape())
|
|
assert(false && "Expected a statically shaped result type");
|
|
|
|
// Compute unroll factors for 'iterationBounds' based on 'targetShape'
|
|
auto maybeUnrollFactors = shapeRatio(iterationBounds, targetShape);
|
|
if (!maybeUnrollFactors.hasValue())
|
|
assert(false && "Failed to compute unroll factors for target shape");
|
|
auto unrollFactors = *maybeUnrollFactors;
|
|
|
|
// Compute unrolled vector state for each vector in 'vectors'.
|
|
unsigned numVectors = vectors.size();
|
|
SmallVector<UnrolledVectorState, 3> unrolledVectorState(numVectors);
|
|
for (unsigned i = 0; i < numVectors; ++i) {
|
|
int64_t operandIndex = vectors[i].operandIndex;
|
|
auto operand = operandIndex >= 0 ? op->getOperand(operandIndex) : nullptr;
|
|
initUnrolledVectorState(vectors[i].type, operand, vectors[i].indexMap,
|
|
targetShape, unrolledVectorState[i], builder);
|
|
}
|
|
// Compute number of total unrolled instances.
|
|
auto numUnrolledInstances = computeMaxLinearIndex(unrollFactors);
|
|
auto sliceStrides = computeStrides(unrollFactors);
|
|
|
|
auto &resultValueState = unrolledVectorState[resultIndex];
|
|
auto unrolledResultType = VectorType::get(resultValueState.unrolledShape,
|
|
shapedType.getElementType());
|
|
|
|
// Initialize caches for intermediate vector results.
|
|
std::vector<SmallVector<Value, 4>> caches(numVectors);
|
|
for (unsigned i = 0; i < numVectors; ++i)
|
|
caches[i].resize(unrolledVectorState[i].numInstances);
|
|
|
|
// Unroll 'numUnrolledInstances' of 'op', storing results in 'caches'.
|
|
for (unsigned i = 0; i < numUnrolledInstances; ++i) {
|
|
auto vectorOffsets = delinearize(sliceStrides, i);
|
|
auto elementOffsets =
|
|
computeElementOffsetsFromVectorSliceOffsets(targetShape, vectorOffsets);
|
|
// Get cached slice (or create slice) for each operand at 'offsets'.
|
|
SmallVector<Value, 3> operands;
|
|
operands.resize(op->getNumOperands());
|
|
for (unsigned i = 0; i < numVectors; ++i) {
|
|
int64_t operandIndex = vectors[i].operandIndex;
|
|
if (operandIndex < 0)
|
|
continue; // Output
|
|
auto operand = op->getOperand(operandIndex);
|
|
operands[operandIndex] = getOrCreateUnrolledVectorSlice(
|
|
op->getLoc(), unrolledVectorState[i], vectorOffsets, elementOffsets,
|
|
vectors[i].indexMap, operand, caches[i], builder);
|
|
}
|
|
// Create op on sliced vector arguments.
|
|
auto resultVector =
|
|
cloneOpWithOperandsAndTypes(builder, op->getLoc(), op, operands,
|
|
unrolledResultType)
|
|
->getResult(0);
|
|
|
|
// Compute linear result index.
|
|
int64_t linearIndex = getUnrolledVectorLinearIndex(
|
|
resultValueState, vectorOffsets, vectors[resultIndex].indexMap);
|
|
// Update result cache at 'linearIndex'.
|
|
caches[resultIndex][linearIndex] = resultVector;
|
|
}
|
|
|
|
// Create TupleOp of unrolled result vectors.
|
|
SmallVector<Type, 4> vectorTupleTypes(resultValueState.numInstances);
|
|
SmallVector<Value, 4> vectorTupleValues(resultValueState.numInstances);
|
|
for (unsigned i = 0; i < resultValueState.numInstances; ++i) {
|
|
vectorTupleTypes[i] = caches[resultIndex][i].getType().cast<VectorType>();
|
|
vectorTupleValues[i] = caches[resultIndex][i];
|
|
}
|
|
TupleType tupleType = builder.getTupleType(vectorTupleTypes);
|
|
Value tupleOp = builder.create<vector::TupleOp>(op->getLoc(), tupleType,
|
|
vectorTupleValues);
|
|
|
|
// Create InsertSlicesOp(Tuple(result_vectors)).
|
|
auto resultVectorType = op->getResult(0).getType().cast<VectorType>();
|
|
SmallVector<int64_t, 4> sizes(resultValueState.unrolledShape);
|
|
SmallVector<int64_t, 4> strides(resultValueState.unrollFactors.size(), 1);
|
|
|
|
Value insertSlicesOp = builder.create<vector::InsertSlicesOp>(
|
|
op->getLoc(), resultVectorType, tupleOp, builder.getI64ArrayAttr(sizes),
|
|
builder.getI64ArrayAttr(strides));
|
|
return insertSlicesOp;
|
|
}
|
|
|
|
static void getVectorContractionOpUnrollState(
|
|
vector::ContractionOp contractionOp, ArrayRef<int64_t> targetShape,
|
|
std::vector<VectorState> &vectors, unsigned &resultIndex) {
|
|
// Get map from iteration space index to lhs/rhs/result shape index.
|
|
std::vector<DenseMap<int64_t, int64_t>> iterationIndexMapList;
|
|
contractionOp.getIterationIndexMap(iterationIndexMapList);
|
|
unsigned numIterators = iterationIndexMapList.size();
|
|
vectors.resize(numIterators);
|
|
unsigned accOperandIndex = vector::ContractionOp::getAccOperandIndex();
|
|
for (unsigned i = 0; i < numIterators; ++i) {
|
|
vectors[i].type = contractionOp.getOperand(i).getType().cast<VectorType>();
|
|
vectors[i].indexMap = iterationIndexMapList[i];
|
|
vectors[i].operandIndex = i;
|
|
vectors[i].isAcc = i == accOperandIndex ? true : false;
|
|
}
|
|
|
|
if (llvm::size(contractionOp.masks()) == 2) {
|
|
// Add vectors for lhs/rhs vector mask arguments. Masks have the
|
|
// same vector shape lhs/rhs args, so copy their index maps.
|
|
vectors.push_back({contractionOp.getLHSVectorMaskType(),
|
|
vectors[0].indexMap, accOperandIndex + 1, false});
|
|
vectors.push_back({contractionOp.getRHSVectorMaskType(),
|
|
vectors[1].indexMap, accOperandIndex + 2, false});
|
|
}
|
|
// TODO: Use linalg style 'args_in'/'args_out' to partition
|
|
// 'vectors' instead of 'resultIndex'.
|
|
resultIndex = accOperandIndex;
|
|
}
|
|
|
|
static void getVectorElementwiseOpUnrollState(Operation *op,
|
|
ArrayRef<int64_t> targetShape,
|
|
std::vector<VectorState> &vectors,
|
|
unsigned &resultIndex) {
|
|
// Verify that operation and operands all have the same vector shape.
|
|
auto resultType = op->getResult(0).getType().dyn_cast_or_null<VectorType>();
|
|
assert(resultType && "Expected op with vector result type");
|
|
auto resultShape = resultType.getShape();
|
|
// Verify that all operands have the same vector type as result.
|
|
assert(llvm::all_of(op->getOperandTypes(),
|
|
[=](Type type) { return type == resultType; }));
|
|
|
|
// Create trivial elementwise identity index map based on 'resultShape'.
|
|
DenseMap<int64_t, int64_t> indexMap;
|
|
indexMap.reserve(resultShape.size());
|
|
for (unsigned i = 0; i < resultShape.size(); ++i)
|
|
indexMap[i] = i;
|
|
|
|
// Create VectorState each operand and single result.
|
|
unsigned numVectors = op->getNumOperands() + op->getNumResults();
|
|
vectors.resize(numVectors);
|
|
for (unsigned i = 0; i < op->getNumOperands(); ++i)
|
|
vectors[i] = {resultType, indexMap, i, false};
|
|
vectors[numVectors - 1] = {resultType, indexMap, -1, false};
|
|
resultIndex = numVectors - 1;
|
|
}
|
|
|
|
// Entry point for unrolling declarative pattern rewrites.
|
|
SmallVector<Value, 1>
|
|
mlir::vector::unrollSingleResultVectorOp(OpBuilder &builder, Operation *op,
|
|
ArrayRef<int64_t> targetShape) {
|
|
assert(op->getNumResults() == 1 && "Expected single result operation");
|
|
|
|
// Populate 'iterationBounds', 'vectors' and 'resultIndex' to unroll 'op'.
|
|
SmallVector<int64_t, 6> iterationBounds;
|
|
auto unrollableVectorOp = cast<VectorUnrollOpInterface>(op);
|
|
auto maybeUnrollShape = unrollableVectorOp.getShapeForUnroll();
|
|
assert(maybeUnrollShape && "Trying to unroll an incorrect vector op");
|
|
|
|
std::vector<VectorState> vectors;
|
|
unsigned resultIndex;
|
|
|
|
if (auto contractionOp = dyn_cast<vector::ContractionOp>(op)) {
|
|
// Populate state for vector ContractionOp.
|
|
getVectorContractionOpUnrollState(contractionOp, targetShape, vectors,
|
|
resultIndex);
|
|
} else {
|
|
// Populate state for vector elementwise op.
|
|
getVectorElementwiseOpUnrollState(op, targetShape, vectors, resultIndex);
|
|
}
|
|
|
|
// Unroll 'op' with 'iterationBounds' to 'targetShape'.
|
|
return SmallVector<Value, 1>{unrollSingleResultStructuredOp(
|
|
op, *maybeUnrollShape, vectors, resultIndex, targetShape, builder)};
|
|
}
|
|
|
|
/// Generates slices of 'vectorType' according to 'sizes' and 'strides, and
|
|
/// calls 'fn' with linear index and indices for each slice.
|
|
static void generateTransferOpSlices(
|
|
Type memrefElementType, VectorType vectorType, TupleType tupleType,
|
|
ArrayRef<int64_t> sizes, ArrayRef<int64_t> strides, ArrayRef<Value> indices,
|
|
OpBuilder &builder, function_ref<void(unsigned, ArrayRef<Value>)> fn) {
|
|
// Compute strides w.r.t. to slice counts in each dimension.
|
|
auto maybeDimSliceCounts = shapeRatio(vectorType.getShape(), sizes);
|
|
assert(maybeDimSliceCounts.hasValue());
|
|
auto sliceDimCounts = *maybeDimSliceCounts;
|
|
auto sliceStrides = computeStrides(sliceDimCounts);
|
|
|
|
int64_t numSlices = tupleType.size();
|
|
unsigned numSliceIndices = indices.size();
|
|
// Compute 'indexOffset' at which to update 'indices', which is equal
|
|
// to the memref rank (indices.size) minus the effective 'vectorRank'.
|
|
// The effective 'vectorRank', is equal to the rank of the vector type
|
|
// minus the rank of the memref vector element type (if it has one).
|
|
//
|
|
// For example:
|
|
//
|
|
// Given memref type 'memref<6x2x1xvector<2x4xf32>>' and vector
|
|
// transfer_read/write ops which read/write vectors of type
|
|
// 'vector<2x1x2x4xf32>'. The memref rank is 3, and the effective
|
|
// vector rank is 4 - 2 = 2, and so 'indexOffset' = 3 - 2 = 1.
|
|
//
|
|
unsigned vectorRank = vectorType.getRank();
|
|
if (auto memrefVectorElementType = memrefElementType.dyn_cast<VectorType>()) {
|
|
assert(vectorRank >= memrefVectorElementType.getRank());
|
|
vectorRank -= memrefVectorElementType.getRank();
|
|
}
|
|
unsigned indexOffset = numSliceIndices - vectorRank;
|
|
|
|
auto *ctx = builder.getContext();
|
|
for (unsigned i = 0; i < numSlices; ++i) {
|
|
auto vectorOffsets = delinearize(sliceStrides, i);
|
|
auto elementOffsets =
|
|
computeElementOffsetsFromVectorSliceOffsets(sizes, vectorOffsets);
|
|
// Compute 'sliceIndices' by adding 'sliceOffsets[i]' to 'indices[i]'.
|
|
SmallVector<Value, 4> sliceIndices(numSliceIndices);
|
|
for (unsigned j = 0; j < numSliceIndices; ++j) {
|
|
if (j < indexOffset) {
|
|
sliceIndices[j] = indices[j];
|
|
} else {
|
|
auto expr = getAffineDimExpr(0, ctx) +
|
|
getAffineConstantExpr(elementOffsets[j - indexOffset], ctx);
|
|
auto map = AffineMap::get(/*dimCount=*/1, /*symbolCount=*/0, expr);
|
|
sliceIndices[j] = builder.create<AffineApplyOp>(
|
|
indices[j].getLoc(), map, ArrayRef<Value>(indices[j]));
|
|
}
|
|
}
|
|
// Call 'fn' to generate slice 'i' at 'sliceIndices'.
|
|
fn(i, sliceIndices);
|
|
}
|
|
}
|
|
|
|
/// Returns true if 'map' is a suffix of an identity affine map, false
|
|
/// otherwise. Example: affine_map<(d0, d1, d2, d3) -> (d2, d3)>
|
|
static bool isIdentitySuffix(AffineMap map) {
|
|
if (map.getNumDims() < map.getNumResults())
|
|
return false;
|
|
ArrayRef<AffineExpr> results = map.getResults();
|
|
Optional<int> lastPos;
|
|
for (unsigned i = 0, e = map.getNumResults(); i < e; ++i) {
|
|
auto expr = results[i].dyn_cast<AffineDimExpr>();
|
|
if (!expr)
|
|
return false;
|
|
int currPos = static_cast<int>(expr.getPosition());
|
|
if (lastPos.hasValue() && currPos != lastPos.getValue() + 1)
|
|
return false;
|
|
lastPos = currPos;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
namespace {
|
|
|
|
// Splits vector TransferReadOp into smaller TransferReadOps based on slicing
|
|
// scheme of its unique ExtractSlicesOp user.
|
|
struct SplitTransferReadOp : public OpRewritePattern<vector::TransferReadOp> {
|
|
using OpRewritePattern<vector::TransferReadOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(vector::TransferReadOp xferReadOp,
|
|
PatternRewriter &rewriter) const override {
|
|
// TODO: Support splitting TransferReadOp with non-identity
|
|
// permutation maps. Repurpose code from MaterializeVectors transformation.
|
|
if (!isIdentitySuffix(xferReadOp.permutation_map()))
|
|
return failure();
|
|
// Return unless the unique 'xferReadOp' user is an ExtractSlicesOp.
|
|
Value xferReadResult = xferReadOp.getResult();
|
|
auto extractSlicesOp =
|
|
dyn_cast<vector::ExtractSlicesOp>(*xferReadResult.getUsers().begin());
|
|
if (!xferReadResult.hasOneUse() || !extractSlicesOp)
|
|
return failure();
|
|
|
|
// Get 'sizes' and 'strides' parameters from ExtractSlicesOp user.
|
|
auto sourceVectorType = extractSlicesOp.getSourceVectorType();
|
|
auto resultTupleType = extractSlicesOp.getResultTupleType();
|
|
SmallVector<int64_t, 4> sizes;
|
|
extractSlicesOp.getSizes(sizes);
|
|
SmallVector<int64_t, 4> strides;
|
|
extractSlicesOp.getStrides(strides);
|
|
assert(llvm::all_of(strides, [](int64_t s) { return s == 1; }));
|
|
|
|
Location loc = xferReadOp.getLoc();
|
|
auto memrefElementType =
|
|
xferReadOp.memref().getType().cast<MemRefType>().getElementType();
|
|
int64_t numSlices = resultTupleType.size();
|
|
SmallVector<Value, 4> vectorTupleValues(numSlices);
|
|
SmallVector<Value, 4> indices(xferReadOp.indices().begin(),
|
|
xferReadOp.indices().end());
|
|
auto createSlice = [&](unsigned index, ArrayRef<Value> sliceIndices) {
|
|
// Get VectorType for slice 'i'.
|
|
auto sliceVectorType = resultTupleType.getType(index);
|
|
// Create split TransferReadOp for 'sliceUser'.
|
|
// `masked` attribute propagates conservatively: if the coarse op didn't
|
|
// need masking, the fine op doesn't either.
|
|
vectorTupleValues[index] = rewriter.create<vector::TransferReadOp>(
|
|
loc, sliceVectorType, xferReadOp.memref(), sliceIndices,
|
|
xferReadOp.permutation_map(), xferReadOp.padding(),
|
|
xferReadOp.masked() ? *xferReadOp.masked() : ArrayAttr());
|
|
};
|
|
generateTransferOpSlices(memrefElementType, sourceVectorType,
|
|
resultTupleType, sizes, strides, indices, rewriter,
|
|
createSlice);
|
|
|
|
// Create tuple of splice xfer read operations.
|
|
Value tupleOp = rewriter.create<vector::TupleOp>(loc, resultTupleType,
|
|
vectorTupleValues);
|
|
// Replace 'xferReadOp' with result 'insertSlicesResult'.
|
|
rewriter.replaceOpWithNewOp<vector::InsertSlicesOp>(
|
|
xferReadOp, sourceVectorType, tupleOp, extractSlicesOp.sizes(),
|
|
extractSlicesOp.strides());
|
|
return success();
|
|
}
|
|
};
|
|
|
|
// Splits vector TransferWriteOp into smaller TransferWriteOps for each source.
|
|
struct SplitTransferWriteOp : public OpRewritePattern<vector::TransferWriteOp> {
|
|
using OpRewritePattern<vector::TransferWriteOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(vector::TransferWriteOp xferWriteOp,
|
|
PatternRewriter &rewriter) const override {
|
|
// TODO: Support splitting TransferWriteOp with non-identity
|
|
// permutation maps. Repurpose code from MaterializeVectors transformation.
|
|
if (!isIdentitySuffix(xferWriteOp.permutation_map()))
|
|
return failure();
|
|
// Return unless the 'xferWriteOp' 'vector' operand is an 'InsertSlicesOp'.
|
|
auto *vectorDefOp = xferWriteOp.vector().getDefiningOp();
|
|
auto insertSlicesOp = dyn_cast_or_null<vector::InsertSlicesOp>(vectorDefOp);
|
|
if (!insertSlicesOp)
|
|
return failure();
|
|
|
|
// Get TupleOp operand of 'insertSlicesOp'.
|
|
auto tupleOp = dyn_cast_or_null<vector::TupleOp>(
|
|
insertSlicesOp.vectors().getDefiningOp());
|
|
if (!tupleOp)
|
|
return failure();
|
|
|
|
// Get 'sizes' and 'strides' parameters from InsertSlicesOp user.
|
|
auto sourceTupleType = insertSlicesOp.getSourceTupleType();
|
|
auto resultVectorType = insertSlicesOp.getResultVectorType();
|
|
SmallVector<int64_t, 4> sizes;
|
|
insertSlicesOp.getSizes(sizes);
|
|
SmallVector<int64_t, 4> strides;
|
|
insertSlicesOp.getStrides(strides);
|
|
|
|
Location loc = xferWriteOp.getLoc();
|
|
auto memrefElementType =
|
|
xferWriteOp.memref().getType().cast<MemRefType>().getElementType();
|
|
SmallVector<Value, 4> indices(xferWriteOp.indices().begin(),
|
|
xferWriteOp.indices().end());
|
|
auto createSlice = [&](unsigned index, ArrayRef<Value> sliceIndices) {
|
|
// Create split TransferWriteOp for source vector 'tupleOp.operand[i]'.
|
|
// `masked` attribute propagates conservatively: if the coarse op didn't
|
|
// need masking, the fine op doesn't either.
|
|
rewriter.create<vector::TransferWriteOp>(
|
|
loc, tupleOp.getOperand(index), xferWriteOp.memref(), sliceIndices,
|
|
xferWriteOp.permutation_map(),
|
|
xferWriteOp.masked() ? *xferWriteOp.masked() : ArrayAttr());
|
|
};
|
|
generateTransferOpSlices(memrefElementType, resultVectorType,
|
|
sourceTupleType, sizes, strides, indices, rewriter,
|
|
createSlice);
|
|
|
|
// Erase old 'xferWriteOp'.
|
|
rewriter.eraseOp(xferWriteOp);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Decomposes ShapeCastOp on tuple-of-vectors to multiple ShapeCastOps, each
|
|
/// on vector types.
|
|
struct ShapeCastOpDecomposer : public OpRewritePattern<vector::ShapeCastOp> {
|
|
using OpRewritePattern<vector::ShapeCastOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(vector::ShapeCastOp shapeCastOp,
|
|
PatternRewriter &rewriter) const override {
|
|
// Check if 'shapeCastOp' has tuple source/result type.
|
|
auto sourceTupleType =
|
|
shapeCastOp.source().getType().dyn_cast_or_null<TupleType>();
|
|
auto resultTupleType =
|
|
shapeCastOp.result().getType().dyn_cast_or_null<TupleType>();
|
|
if (!sourceTupleType || !resultTupleType)
|
|
return failure();
|
|
assert(sourceTupleType.size() == resultTupleType.size());
|
|
|
|
// Create single-vector ShapeCastOp for each source tuple element.
|
|
Location loc = shapeCastOp.getLoc();
|
|
SmallVector<Value, 8> resultElements;
|
|
resultElements.reserve(resultTupleType.size());
|
|
for (unsigned i = 0, e = sourceTupleType.size(); i < e; ++i) {
|
|
auto sourceElement = rewriter.create<vector::TupleGetOp>(
|
|
loc, sourceTupleType.getType(i), shapeCastOp.source(),
|
|
rewriter.getI64IntegerAttr(i));
|
|
resultElements.push_back(rewriter.create<vector::ShapeCastOp>(
|
|
loc, resultTupleType.getType(i), sourceElement));
|
|
}
|
|
|
|
// Replace 'shapeCastOp' with tuple of 'resultElements'.
|
|
rewriter.replaceOpWithNewOp<vector::TupleOp>(shapeCastOp, resultTupleType,
|
|
resultElements);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Returns the producer Value of the same type as 'consumerValue', by tracking
|
|
/// the tuple index and offsets of the consumer vector value through the
|
|
/// chain of operations (TupleGetOp, InsertSlicesOp, ExtractSlicesOp, TupleOp,
|
|
/// and ShapeCastOp) from consumer to producer. Each operation in the chain is
|
|
/// structured, and so the tuple index and offsets can be mapped from result to
|
|
/// input, while visiting each operation in the chain.
|
|
/// Returns nullptr on failure.
|
|
static Value getProducerValue(Value consumerValue) {
|
|
auto consumerVectorType = consumerValue.getType().cast<VectorType>();
|
|
// A tupleIndex == -1 indicates that 'offsets' are w.r.t a vector type.
|
|
int64_t tupleIndex = -1;
|
|
SmallVector<int64_t, 4> offsets(consumerVectorType.getRank(), 0);
|
|
auto *op = consumerValue.getDefiningOp();
|
|
while (op != nullptr) {
|
|
if (auto tupleGetOp = dyn_cast<vector::TupleGetOp>(op)) {
|
|
assert(tupleIndex == -1 && "TupleGetOp must have vector result type");
|
|
|
|
// Update 'tupleIndex' and next defining 'op' to visit.
|
|
tupleIndex = tupleGetOp.getIndex();
|
|
op = tupleGetOp.vectors().getDefiningOp();
|
|
} else if (auto extractSlicesOp = dyn_cast<vector::ExtractSlicesOp>(op)) {
|
|
assert(tupleIndex >= 0);
|
|
|
|
// Compute slice strides for 'extractSlicesOp'.
|
|
SmallVector<int64_t, 4> sizes;
|
|
extractSlicesOp.getSizes(sizes);
|
|
auto sliceStrides = computeStrides(
|
|
extractSlicesOp.getSourceVectorType().getShape(), sizes);
|
|
|
|
// Compute 'elementOffsets' into 'extractSlicesOp' input vector type,
|
|
// of 'extractSlicesOp' result vector tuple element at 'tupleIndex'.
|
|
auto vectorOffsets = delinearize(sliceStrides, tupleIndex);
|
|
auto elementOffsets =
|
|
computeElementOffsetsFromVectorSliceOffsets(sizes, vectorOffsets);
|
|
|
|
// Add 'elementOffsets' to 'offsets' so that 'offsets' are now relative
|
|
// to the 'extractSlicesOp' input vector type.
|
|
assert(offsets.size() == elementOffsets.size());
|
|
for (unsigned i = 0, e = offsets.size(); i < e; ++i)
|
|
offsets[i] += elementOffsets[i];
|
|
|
|
// Clear 'tupleIndex' and update next defining 'op' to visit.
|
|
tupleIndex = -1;
|
|
op = extractSlicesOp.vector().getDefiningOp();
|
|
} else if (auto insertSlicesOp = dyn_cast<vector::InsertSlicesOp>(op)) {
|
|
assert(tupleIndex == -1);
|
|
|
|
// Compute slice strides for 'insertSlicesOp'.
|
|
SmallVector<int64_t, 4> sizes;
|
|
insertSlicesOp.getSizes(sizes);
|
|
auto sliceStrides = computeStrides(
|
|
insertSlicesOp.getResultVectorType().getShape(), sizes);
|
|
|
|
// Compute 'vectorOffsets' of 'insertSlicesOp' input vector slice,
|
|
// of 'insertSlicesOp' result vector type at 'offsets'.
|
|
SmallVector<int64_t, 4> vectorOffsets(offsets.size());
|
|
assert(offsets.size() == sizes.size());
|
|
for (unsigned i = 0, e = offsets.size(); i < e; ++i)
|
|
vectorOffsets[i] = offsets[i] / sizes[i];
|
|
|
|
// Compute the source tuple element index.
|
|
tupleIndex = linearize(vectorOffsets, sliceStrides);
|
|
|
|
// Subtract 'elementOffsets' from 'offsets' so that 'offsets' are now
|
|
// relative to input tuple element vector type at 'tupleIndex'.
|
|
auto elementOffsets =
|
|
computeElementOffsetsFromVectorSliceOffsets(sizes, vectorOffsets);
|
|
assert(offsets.size() == elementOffsets.size());
|
|
for (unsigned i = 0, e = offsets.size(); i < e; ++i) {
|
|
offsets[i] -= elementOffsets[i];
|
|
assert(offsets[i] >= 0);
|
|
}
|
|
|
|
// Update next defining 'op' to visit.
|
|
op = insertSlicesOp.vectors().getDefiningOp();
|
|
} else if (auto tupleOp = dyn_cast<vector::TupleOp>(op)) {
|
|
assert(tupleIndex >= 0);
|
|
|
|
// Return tuple element 'value' at 'tupleIndex' if it matches type.
|
|
auto value = tupleOp.getOperand(tupleIndex);
|
|
if (value.getType() == consumerVectorType)
|
|
return value;
|
|
|
|
// Update 'tupleIndex' and next defining 'op' to visit.
|
|
tupleIndex = -1;
|
|
op = value.getDefiningOp();
|
|
} else if (auto shapeCastOp = dyn_cast<vector::ShapeCastOp>(op)) {
|
|
if (shapeCastOp.source().getType().isa<TupleType>())
|
|
return nullptr;
|
|
assert(tupleIndex == -1);
|
|
auto sourceVectorType = shapeCastOp.getSourceVectorType();
|
|
auto sourceVectorShape = sourceVectorType.getShape();
|
|
unsigned sourceVectorRank = sourceVectorType.getRank();
|
|
auto resultVectorType = shapeCastOp.getResultVectorType();
|
|
auto resultVectorShape = resultVectorType.getShape();
|
|
unsigned resultVectorRank = resultVectorType.getRank();
|
|
|
|
int i = sourceVectorRank - 1;
|
|
int j = resultVectorRank - 1;
|
|
|
|
// Check that source/result vector shape prefixes match while updating
|
|
// 'newOffsets'.
|
|
SmallVector<int64_t, 4> newOffsets(sourceVectorRank, 0);
|
|
for (auto it : llvm::zip(llvm::reverse(sourceVectorShape),
|
|
llvm::reverse(resultVectorShape))) {
|
|
if (std::get<0>(it) != std::get<1>(it))
|
|
return nullptr;
|
|
newOffsets[i--] = offsets[j--];
|
|
}
|
|
|
|
// Check that remaining prefix of source/result vector shapes are all 1s.
|
|
// Currently we only support producer/consumer tracking through trivial
|
|
// shape cast ops. Examples:
|
|
// %1 = vector.shape_cast %0 : vector<1x1x2x4xf32> to vector<2x4xf32>
|
|
// %3 = vector.shape_cast %2 : vector<16x8xf32> to vector<1x16x8xf32>
|
|
assert(i == -1 || j == -1);
|
|
if (i >= 0 &&
|
|
!std::all_of(sourceVectorShape.begin(), sourceVectorShape.begin() + i,
|
|
[](int64_t v) { return v == 1; }))
|
|
return nullptr;
|
|
if (j >= 0 &&
|
|
!std::all_of(resultVectorShape.begin(), resultVectorShape.begin() + j,
|
|
[](int64_t v) { return v == 1; }))
|
|
return nullptr;
|
|
|
|
offsets.swap(newOffsets);
|
|
op = shapeCastOp.source().getDefiningOp();
|
|
} else {
|
|
// Check if 'op' produces a Value with the same type as 'consumerValue'.
|
|
if (op->getNumResults() == 1 &&
|
|
op->getResult(0).getType() == consumerVectorType)
|
|
return op->getResult(0);
|
|
return nullptr;
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
/// ShapeCastOpFolder folds cancelling ShapeCastOps away.
|
|
//
|
|
// Example:
|
|
//
|
|
// The following MLIR with cancelling ShapeCastOps:
|
|
//
|
|
// %0 = source : vector<5x4x2xf32>
|
|
// %1 = shape_cast %0 : vector<5x4x2xf32> to vector<20x2xf32>
|
|
// %2 = shape_cast %1 : vector<20x2xf32> to vector<5x4x2xf32>
|
|
// %3 = user %2 : vector<5x4x2xf32>
|
|
//
|
|
// Should canonicalize to the following:
|
|
//
|
|
// %0 = source : vector<5x4x2xf32>
|
|
// %1 = user %0 : vector<5x4x2xf32>
|
|
//
|
|
struct ShapeCastOpFolder : public OpRewritePattern<vector::ShapeCastOp> {
|
|
using OpRewritePattern<vector::ShapeCastOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(vector::ShapeCastOp shapeCastOp,
|
|
PatternRewriter &rewriter) const override {
|
|
// Check if we can replace 'shapeCastOp' result with its producer.
|
|
if (auto producer = getProducerValue(shapeCastOp.getResult())) {
|
|
rewriter.replaceOp(shapeCastOp, producer);
|
|
return success();
|
|
}
|
|
|
|
// Check if 'shapeCastOp' has vector source/result type.
|
|
auto sourceVectorType =
|
|
shapeCastOp.source().getType().dyn_cast_or_null<VectorType>();
|
|
auto resultVectorType =
|
|
shapeCastOp.result().getType().dyn_cast_or_null<VectorType>();
|
|
if (!sourceVectorType || !resultVectorType)
|
|
return failure();
|
|
|
|
// Check if shape cast op source operand is also a shape cast op.
|
|
auto sourceShapeCastOp = dyn_cast_or_null<vector::ShapeCastOp>(
|
|
shapeCastOp.source().getDefiningOp());
|
|
if (!sourceShapeCastOp)
|
|
return failure();
|
|
auto operandSourceVectorType =
|
|
sourceShapeCastOp.source().getType().cast<VectorType>();
|
|
auto operandResultVectorType =
|
|
sourceShapeCastOp.result().getType().cast<VectorType>();
|
|
|
|
// Check if shape cast operations invert each other.
|
|
if (operandSourceVectorType != resultVectorType ||
|
|
operandResultVectorType != sourceVectorType)
|
|
return failure();
|
|
|
|
rewriter.replaceOp(shapeCastOp, sourceShapeCastOp.source());
|
|
return success();
|
|
}
|
|
};
|
|
|
|
// Patter rewrite which forward tuple elements to their users.
|
|
// User(TupleGetOp(ExtractSlicesOp(InsertSlicesOp(TupleOp(Producer)))))
|
|
// -> User(Producer)
|
|
struct TupleGetFolderOp : public OpRewritePattern<vector::TupleGetOp> {
|
|
using OpRewritePattern<vector::TupleGetOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(vector::TupleGetOp tupleGetOp,
|
|
PatternRewriter &rewriter) const override {
|
|
if (auto producer = getProducerValue(tupleGetOp.getResult())) {
|
|
rewriter.replaceOp(tupleGetOp, producer);
|
|
return success();
|
|
}
|
|
return failure();
|
|
}
|
|
};
|
|
|
|
/// Progressive lowering of ExtractSlicesOp to tuple of ExtractStridedSliceOp.
|
|
/// One:
|
|
/// %x = vector.extract_slices %0
|
|
/// is replaced by:
|
|
/// %a = vector.strided_slice %0
|
|
/// %b = vector.strided_slice %0
|
|
/// ..
|
|
/// %x = vector.tuple %a, %b, ..
|
|
class ExtractSlicesOpLowering
|
|
: public OpRewritePattern<vector::ExtractSlicesOp> {
|
|
public:
|
|
using OpRewritePattern<vector::ExtractSlicesOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(vector::ExtractSlicesOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
auto loc = op.getLoc();
|
|
|
|
VectorType vectorType = op.getSourceVectorType();
|
|
auto shape = vectorType.getShape();
|
|
|
|
SmallVector<int64_t, 4> sizes;
|
|
op.getSizes(sizes);
|
|
SmallVector<int64_t, 4> strides;
|
|
op.getStrides(strides); // all-ones at the moment
|
|
|
|
// For each element in the tuple, generate the proper strided slice.
|
|
TupleType tupleType = op.getResultTupleType();
|
|
int64_t tupleSize = tupleType.size();
|
|
SmallVector<Value, 4> tupleValues(tupleSize);
|
|
auto sliceStrides = computeStrides(shape, sizes);
|
|
for (int64_t i = 0; i < tupleSize; ++i) {
|
|
auto vectorOffsets = delinearize(sliceStrides, i);
|
|
auto elementOffsets =
|
|
computeElementOffsetsFromVectorSliceOffsets(sizes, vectorOffsets);
|
|
auto sliceSizes = computeSliceSizes(shape, sizes, elementOffsets);
|
|
// Insert in tuple.
|
|
tupleValues[i] = rewriter.create<vector::ExtractStridedSliceOp>(
|
|
loc, op.vector(), elementOffsets, sliceSizes, strides);
|
|
}
|
|
|
|
rewriter.replaceOpWithNewOp<vector::TupleOp>(op, tupleType, tupleValues);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Progressive lowering of InsertSlicesOp to series of InsertStridedSliceOp.
|
|
/// One:
|
|
/// %x = vector.insert_slices %0
|
|
/// is replaced by:
|
|
/// %r0 = zero-result
|
|
/// %t1 = vector.tuple_get %0, 0
|
|
/// %r1 = vector.insert_strided_slice %r0, %t1
|
|
/// %t2 = vector.tuple_get %0, 1
|
|
/// %r2 = vector.insert_strided_slice %r1, %t2
|
|
/// ..
|
|
/// %x = ..
|
|
class InsertSlicesOpLowering : public OpRewritePattern<vector::InsertSlicesOp> {
|
|
public:
|
|
using OpRewritePattern<vector::InsertSlicesOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(vector::InsertSlicesOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
auto loc = op.getLoc();
|
|
|
|
VectorType vectorType = op.getResultVectorType();
|
|
auto shape = vectorType.getShape();
|
|
|
|
SmallVector<int64_t, 4> sizes;
|
|
op.getSizes(sizes);
|
|
SmallVector<int64_t, 4> strides;
|
|
op.getStrides(strides); // all-ones at the moment
|
|
|
|
// Prepare result.
|
|
Value result = rewriter.create<ConstantOp>(
|
|
loc, vectorType, rewriter.getZeroAttr(vectorType));
|
|
|
|
// For each element in the tuple, extract the proper strided slice.
|
|
TupleType tupleType = op.getSourceTupleType();
|
|
int64_t tupleSize = tupleType.size();
|
|
auto sliceStrides = computeStrides(shape, sizes);
|
|
for (int64_t i = 0; i < tupleSize; ++i) {
|
|
auto vectorOffsets = delinearize(sliceStrides, i);
|
|
auto elementOffsets =
|
|
computeElementOffsetsFromVectorSliceOffsets(sizes, vectorOffsets);
|
|
// Extract from tuple into the result.
|
|
auto index = rewriter.getI64IntegerAttr(i);
|
|
auto tupleGet = rewriter.create<vector::TupleGetOp>(
|
|
loc, tupleType.getType(i), op.getOperand(), index);
|
|
result = rewriter.create<vector::InsertStridedSliceOp>(
|
|
loc, tupleGet, result, elementOffsets, strides);
|
|
}
|
|
|
|
rewriter.replaceOp(op, result);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Progressive lowering of BroadcastOp.
|
|
class BroadcastOpLowering : public OpRewritePattern<vector::BroadcastOp> {
|
|
public:
|
|
using OpRewritePattern<vector::BroadcastOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(vector::BroadcastOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
auto loc = op.getLoc();
|
|
VectorType dstType = op.getVectorType();
|
|
VectorType srcType = op.getSourceType().dyn_cast<VectorType>();
|
|
Type eltType = dstType.getElementType();
|
|
|
|
// Determine rank of source and destination.
|
|
int64_t srcRank = srcType ? srcType.getRank() : 0;
|
|
int64_t dstRank = dstType.getRank();
|
|
|
|
// Duplicate this rank.
|
|
// For example:
|
|
// %x = broadcast %y : k-D to n-D, k < n
|
|
// becomes:
|
|
// %b = broadcast %y : k-D to (n-1)-D
|
|
// %x = [%b,%b,%b,%b] : n-D
|
|
// becomes:
|
|
// %b = [%y,%y] : (n-1)-D
|
|
// %x = [%b,%b,%b,%b] : n-D
|
|
if (srcRank < dstRank) {
|
|
// Scalar to any vector can use splat.
|
|
if (srcRank == 0) {
|
|
rewriter.replaceOpWithNewOp<SplatOp>(op, dstType, op.source());
|
|
return success();
|
|
}
|
|
// Duplication.
|
|
VectorType resType =
|
|
VectorType::get(dstType.getShape().drop_front(), eltType);
|
|
Value bcst =
|
|
rewriter.create<vector::BroadcastOp>(loc, resType, op.source());
|
|
Value result = rewriter.create<ConstantOp>(loc, dstType,
|
|
rewriter.getZeroAttr(dstType));
|
|
for (int64_t d = 0, dim = dstType.getDimSize(0); d < dim; ++d)
|
|
result = rewriter.create<vector::InsertOp>(loc, bcst, result, d);
|
|
rewriter.replaceOp(op, result);
|
|
return success();
|
|
}
|
|
|
|
// Find non-matching dimension, if any.
|
|
assert(srcRank == dstRank);
|
|
int64_t m = -1;
|
|
for (int64_t r = 0; r < dstRank; r++)
|
|
if (srcType.getDimSize(r) != dstType.getDimSize(r)) {
|
|
m = r;
|
|
break;
|
|
}
|
|
|
|
// All trailing dimensions are the same. Simply pass through.
|
|
if (m == -1) {
|
|
rewriter.replaceOp(op, op.source());
|
|
return success();
|
|
}
|
|
|
|
// Stretching scalar inside vector (e.g. vector<1xf32>) can use splat.
|
|
if (srcRank == 1) {
|
|
assert(m == 0);
|
|
Value ext = rewriter.create<vector::ExtractOp>(loc, op.source(), 0);
|
|
rewriter.replaceOpWithNewOp<SplatOp>(op, dstType, ext);
|
|
return success();
|
|
}
|
|
|
|
// Any non-matching dimension forces a stretch along this rank.
|
|
// For example:
|
|
// %x = broadcast %y : vector<4x1x2xf32> to vector<4x2x2xf32>
|
|
// becomes:
|
|
// %a = broadcast %y[0] : vector<1x2xf32> to vector<2x2xf32>
|
|
// %b = broadcast %y[1] : vector<1x2xf32> to vector<2x2xf32>
|
|
// %c = broadcast %y[2] : vector<1x2xf32> to vector<2x2xf32>
|
|
// %d = broadcast %y[3] : vector<1x2xf32> to vector<2x2xf32>
|
|
// %x = [%a,%b,%c,%d]
|
|
// becomes:
|
|
// %u = broadcast %y[0][0] : vector<2xf32> to vector <2x2xf32>
|
|
// %v = broadcast %y[1][0] : vector<2xf32> to vector <2x2xf32>
|
|
// %a = [%u, %v]
|
|
// ..
|
|
// %x = [%a,%b,%c,%d]
|
|
VectorType resType =
|
|
VectorType::get(dstType.getShape().drop_front(), eltType);
|
|
Value result = rewriter.create<ConstantOp>(loc, dstType,
|
|
rewriter.getZeroAttr(dstType));
|
|
if (m == 0) {
|
|
// Stetch at start.
|
|
Value ext = rewriter.create<vector::ExtractOp>(loc, op.source(), 0);
|
|
Value bcst = rewriter.create<vector::BroadcastOp>(loc, resType, ext);
|
|
for (int64_t d = 0, dim = dstType.getDimSize(0); d < dim; ++d)
|
|
result = rewriter.create<vector::InsertOp>(loc, bcst, result, d);
|
|
} else {
|
|
// Stetch not at start.
|
|
for (int64_t d = 0, dim = dstType.getDimSize(0); d < dim; ++d) {
|
|
Value ext = rewriter.create<vector::ExtractOp>(loc, op.source(), d);
|
|
Value bcst = rewriter.create<vector::BroadcastOp>(loc, resType, ext);
|
|
result = rewriter.create<vector::InsertOp>(loc, bcst, result, d);
|
|
}
|
|
}
|
|
rewriter.replaceOp(op, result);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Progressive lowering of TransposeOp.
|
|
/// One:
|
|
/// %x = vector.transpose %y, [1, 0]
|
|
/// is replaced by:
|
|
/// %z = constant dense<0.000000e+00>
|
|
/// %0 = vector.extract %y[0, 0]
|
|
/// %1 = vector.insert %0, %z [0, 0]
|
|
/// ..
|
|
/// %x = vector.insert .., .. [.., ..]
|
|
class TransposeOpLowering : public OpRewritePattern<vector::TransposeOp> {
|
|
public:
|
|
using OpRewritePattern<vector::TransposeOp>::OpRewritePattern;
|
|
|
|
TransposeOpLowering(vector::VectorTransformsOptions vectorTransformsOptions,
|
|
MLIRContext *context)
|
|
: OpRewritePattern<vector::TransposeOp>(context),
|
|
vectorTransformsOptions(vectorTransformsOptions) {}
|
|
|
|
LogicalResult matchAndRewrite(vector::TransposeOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
auto loc = op.getLoc();
|
|
|
|
VectorType resType = op.getResultType();
|
|
|
|
// Set up convenience transposition table.
|
|
SmallVector<int64_t, 4> transp;
|
|
for (auto attr : op.transp())
|
|
transp.push_back(attr.cast<IntegerAttr>().getInt());
|
|
|
|
// Handle a true 2-D matrix transpose differently when requested.
|
|
if (vectorTransformsOptions.vectorTransposeLowering ==
|
|
vector::VectorTransposeLowering::Flat &&
|
|
resType.getRank() == 2 && transp[0] == 1 && transp[1] == 0) {
|
|
Type flattenedType =
|
|
VectorType::get(resType.getNumElements(), resType.getElementType());
|
|
auto matrix =
|
|
rewriter.create<vector::ShapeCastOp>(loc, flattenedType, op.vector());
|
|
auto rows = rewriter.getI32IntegerAttr(resType.getShape()[0]);
|
|
auto columns = rewriter.getI32IntegerAttr(resType.getShape()[1]);
|
|
Value trans = rewriter.create<vector::FlatTransposeOp>(
|
|
loc, flattenedType, matrix, rows, columns);
|
|
rewriter.replaceOpWithNewOp<vector::ShapeCastOp>(op, resType, trans);
|
|
return success();
|
|
}
|
|
|
|
// Generate fully unrolled extract/insert ops.
|
|
Value result = rewriter.create<ConstantOp>(loc, resType,
|
|
rewriter.getZeroAttr(resType));
|
|
SmallVector<int64_t, 4> lhs(transp.size(), 0);
|
|
SmallVector<int64_t, 4> rhs(transp.size(), 0);
|
|
rewriter.replaceOp(op, expandIndices(loc, resType, 0, transp, lhs, rhs,
|
|
op.vector(), result, rewriter));
|
|
return success();
|
|
}
|
|
|
|
private:
|
|
// Builds the indices arrays for the lhs and rhs. Generates the extract/insert
|
|
// operation when al ranks are exhausted.
|
|
Value expandIndices(Location loc, VectorType resType, int64_t pos,
|
|
SmallVector<int64_t, 4> &transp,
|
|
SmallVector<int64_t, 4> &lhs,
|
|
SmallVector<int64_t, 4> &rhs, Value input, Value result,
|
|
PatternRewriter &rewriter) const {
|
|
if (pos >= resType.getRank()) {
|
|
auto ridx = rewriter.getI64ArrayAttr(rhs);
|
|
auto lidx = rewriter.getI64ArrayAttr(lhs);
|
|
Type eltType = resType.getElementType();
|
|
Value e = rewriter.create<vector::ExtractOp>(loc, eltType, input, ridx);
|
|
return rewriter.create<vector::InsertOp>(loc, resType, e, result, lidx);
|
|
}
|
|
for (int64_t d = 0, e = resType.getDimSize(pos); d < e; ++d) {
|
|
lhs[pos] = d;
|
|
rhs[transp[pos]] = d;
|
|
result = expandIndices(loc, resType, pos + 1, transp, lhs, rhs, input,
|
|
result, rewriter);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/// Options to control the vector patterns.
|
|
vector::VectorTransformsOptions vectorTransformsOptions;
|
|
};
|
|
|
|
/// Progressive lowering of OuterProductOp.
|
|
/// One:
|
|
/// %x = vector.outerproduct %lhs, %rhs, %acc
|
|
/// is replaced by:
|
|
/// %z = zero-result
|
|
/// %0 = vector.extract %lhs[0]
|
|
/// %1 = vector.broadcast %0
|
|
/// %2 = vector.extract %acc[0]
|
|
/// %3 = vector.fma %1, %rhs, %2
|
|
/// %4 = vector.insert %3, %z[0]
|
|
/// ..
|
|
/// %x = vector.insert %.., %..[N-1]
|
|
///
|
|
class OuterProductOpLowering : public OpRewritePattern<vector::OuterProductOp> {
|
|
public:
|
|
using OpRewritePattern<vector::OuterProductOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(vector::OuterProductOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
auto loc = op.getLoc();
|
|
|
|
VectorType lhsType = op.getOperandVectorTypeLHS();
|
|
VectorType rhsType = op.getOperandTypeRHS().dyn_cast<VectorType>();
|
|
VectorType resType = op.getVectorType();
|
|
Type eltType = resType.getElementType();
|
|
bool isInt = eltType.isa<IntegerType>();
|
|
Value acc = (op.acc().empty()) ? nullptr : op.acc()[0];
|
|
|
|
if (!rhsType) {
|
|
// Special case: AXPY operation.
|
|
Value b = rewriter.create<vector::BroadcastOp>(loc, lhsType, op.rhs());
|
|
rewriter.replaceOp(op, genMult(loc, op.lhs(), b, acc, isInt, rewriter));
|
|
return success();
|
|
}
|
|
|
|
Value result = rewriter.create<ConstantOp>(loc, resType,
|
|
rewriter.getZeroAttr(resType));
|
|
for (int64_t d = 0, e = resType.getDimSize(0); d < e; ++d) {
|
|
auto pos = rewriter.getI64ArrayAttr(d);
|
|
Value x = rewriter.create<vector::ExtractOp>(loc, eltType, op.lhs(), pos);
|
|
Value a = rewriter.create<vector::BroadcastOp>(loc, rhsType, x);
|
|
Value r = nullptr;
|
|
if (acc)
|
|
r = rewriter.create<vector::ExtractOp>(loc, rhsType, acc, pos);
|
|
Value m = genMult(loc, a, op.rhs(), r, isInt, rewriter);
|
|
result = rewriter.create<vector::InsertOp>(loc, resType, m, result, pos);
|
|
}
|
|
rewriter.replaceOp(op, result);
|
|
return success();
|
|
}
|
|
|
|
private:
|
|
static Value genMult(Location loc, Value x, Value y, Value acc, bool isInt,
|
|
PatternRewriter &rewriter) {
|
|
if (acc) {
|
|
if (isInt)
|
|
return rewriter.create<AddIOp>(loc, rewriter.create<MulIOp>(loc, x, y),
|
|
acc);
|
|
return rewriter.create<vector::FMAOp>(loc, x, y, acc);
|
|
}
|
|
if (isInt)
|
|
return rewriter.create<MulIOp>(loc, x, y);
|
|
return rewriter.create<MulFOp>(loc, x, y);
|
|
}
|
|
};
|
|
|
|
/// Progressive lowering of ConstantMaskOp.
|
|
/// One:
|
|
/// %x = vector.constant_mask [a,b]
|
|
/// is replaced by:
|
|
/// %z = zero-result
|
|
/// %l = vector.constant_mask [b]
|
|
/// %4 = vector.insert %l, %z[0]
|
|
/// ..
|
|
/// %x = vector.insert %l, %..[a-1]
|
|
/// until a one-dimensional vector is reached. All these operations
|
|
/// will be folded at LLVM IR level.
|
|
class ConstantMaskOpLowering : public OpRewritePattern<vector::ConstantMaskOp> {
|
|
public:
|
|
using OpRewritePattern<vector::ConstantMaskOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(vector::ConstantMaskOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
auto loc = op.getLoc();
|
|
auto dstType = op.getResult().getType().cast<VectorType>();
|
|
auto eltType = dstType.getElementType();
|
|
auto dimSizes = op.mask_dim_sizes();
|
|
int64_t rank = dimSizes.size();
|
|
int64_t trueDim = dimSizes[0].cast<IntegerAttr>().getInt();
|
|
|
|
if (rank == 1) {
|
|
// Express constant 1-D case in explicit vector form:
|
|
// [T,..,T,F,..,F].
|
|
SmallVector<bool, 4> values(dstType.getDimSize(0));
|
|
for (int64_t d = 0; d < trueDim; d++)
|
|
values[d] = true;
|
|
rewriter.replaceOpWithNewOp<ConstantOp>(
|
|
op, dstType, rewriter.getBoolVectorAttr(values));
|
|
return success();
|
|
}
|
|
|
|
VectorType lowType =
|
|
VectorType::get(dstType.getShape().drop_front(), eltType);
|
|
SmallVector<int64_t, 4> newDimSizes;
|
|
for (int64_t r = 1; r < rank; r++)
|
|
newDimSizes.push_back(dimSizes[r].cast<IntegerAttr>().getInt());
|
|
Value trueVal = rewriter.create<vector::ConstantMaskOp>(
|
|
loc, lowType, rewriter.getI64ArrayAttr(newDimSizes));
|
|
Value result = rewriter.create<ConstantOp>(loc, dstType,
|
|
rewriter.getZeroAttr(dstType));
|
|
for (int64_t d = 0; d < trueDim; d++) {
|
|
auto pos = rewriter.getI64ArrayAttr(d);
|
|
result =
|
|
rewriter.create<vector::InsertOp>(loc, dstType, trueVal, result, pos);
|
|
}
|
|
rewriter.replaceOp(op, result);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Progressive lowering of CreateMaskOp.
|
|
/// One:
|
|
/// %x = vector.create_mask %a, ... : vector<dx...>
|
|
/// is replaced by:
|
|
/// %l = vector.create_mask ... : vector<...> ; one lower rank
|
|
/// %0 = cmpi "slt", %ci, %a |
|
|
/// %1 = select %0, %l, %zeroes |
|
|
/// %r = vector.insert %1, %pr [i] | d-times
|
|
/// %x = ....
|
|
/// until a one-dimensional vector is reached.
|
|
class CreateMaskOpLowering : public OpRewritePattern<vector::CreateMaskOp> {
|
|
public:
|
|
using OpRewritePattern<vector::CreateMaskOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(vector::CreateMaskOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
auto loc = op.getLoc();
|
|
auto dstType = op.getResult().getType().cast<VectorType>();
|
|
auto eltType = dstType.getElementType();
|
|
int64_t dim = dstType.getDimSize(0);
|
|
int64_t rank = dstType.getRank();
|
|
Value idx = op.getOperand(0);
|
|
|
|
if (rank == 1) {
|
|
// Express dynamic 1-D case in explicit vector form:
|
|
// mask = [0,1,..,n-1] < [a,a,..,a]
|
|
SmallVector<int64_t, 4> values(dim);
|
|
for (int64_t d = 0; d < dim; d++)
|
|
values[d] = d;
|
|
Value indices =
|
|
rewriter.create<ConstantOp>(loc, rewriter.getI64VectorAttr(values));
|
|
Value bound =
|
|
rewriter.create<IndexCastOp>(loc, rewriter.getI64Type(), idx);
|
|
Value bounds = rewriter.create<SplatOp>(loc, indices.getType(), bound);
|
|
rewriter.replaceOpWithNewOp<CmpIOp>(op, CmpIPredicate::slt, indices,
|
|
bounds);
|
|
return success();
|
|
}
|
|
|
|
VectorType lowType =
|
|
VectorType::get(dstType.getShape().drop_front(), eltType);
|
|
Value trueVal = rewriter.create<vector::CreateMaskOp>(
|
|
loc, lowType, op.getOperands().drop_front());
|
|
Value falseVal = rewriter.create<ConstantOp>(loc, lowType,
|
|
rewriter.getZeroAttr(lowType));
|
|
Value result = rewriter.create<ConstantOp>(loc, dstType,
|
|
rewriter.getZeroAttr(dstType));
|
|
for (int64_t d = 0; d < dim; d++) {
|
|
Value bnd = rewriter.create<ConstantOp>(loc, rewriter.getIndexAttr(d));
|
|
Value val = rewriter.create<CmpIOp>(loc, CmpIPredicate::slt, bnd, idx);
|
|
Value sel = rewriter.create<SelectOp>(loc, val, trueVal, falseVal);
|
|
auto pos = rewriter.getI64ArrayAttr(d);
|
|
result =
|
|
rewriter.create<vector::InsertOp>(loc, dstType, sel, result, pos);
|
|
}
|
|
rewriter.replaceOp(op, result);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// ShapeOp 2D -> 1D downcast serves the purpose of flattening 2-D to 1-D
|
|
/// vectors progressively on the way to target llvm.matrix intrinsics.
|
|
/// This iterates over the most major dimension of the 2-D vector and performs
|
|
/// rewrites into:
|
|
/// vector.extract from 2-D + vector.insert_strided_slice offset into 1-D
|
|
class ShapeCastOp2DDownCastRewritePattern
|
|
: public OpRewritePattern<vector::ShapeCastOp> {
|
|
public:
|
|
using OpRewritePattern<vector::ShapeCastOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(vector::ShapeCastOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
auto sourceVectorType = op.getSourceVectorType();
|
|
auto resultVectorType = op.getResultVectorType();
|
|
if (sourceVectorType.getRank() != 2 || resultVectorType.getRank() != 1)
|
|
return failure();
|
|
|
|
auto loc = op.getLoc();
|
|
Value desc = rewriter.create<ConstantOp>(
|
|
loc, resultVectorType, rewriter.getZeroAttr(resultVectorType));
|
|
unsigned mostMinorVectorSize = sourceVectorType.getShape()[1];
|
|
for (int64_t i = 0, e = sourceVectorType.getShape().front(); i != e; ++i) {
|
|
Value vec = rewriter.create<vector::ExtractOp>(loc, op.source(), i);
|
|
desc = rewriter.create<vector::InsertStridedSliceOp>(
|
|
loc, vec, desc,
|
|
/*offsets=*/i * mostMinorVectorSize, /*strides=*/1);
|
|
}
|
|
rewriter.replaceOp(op, desc);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// ShapeOp 1D -> 2D upcast serves the purpose of unflattening 2-D from 1-D
|
|
/// vectors progressively on the way from targeting llvm.matrix intrinsics.
|
|
/// This iterates over the most major dimension of the 2-D vector and performs
|
|
/// rewrites into:
|
|
/// vector.strided_slice from 1-D + vector.insert into 2-D
|
|
class ShapeCastOp2DUpCastRewritePattern
|
|
: public OpRewritePattern<vector::ShapeCastOp> {
|
|
public:
|
|
using OpRewritePattern<vector::ShapeCastOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(vector::ShapeCastOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
auto sourceVectorType = op.getSourceVectorType();
|
|
auto resultVectorType = op.getResultVectorType();
|
|
if (sourceVectorType.getRank() != 1 || resultVectorType.getRank() != 2)
|
|
return failure();
|
|
|
|
auto loc = op.getLoc();
|
|
Value desc = rewriter.create<ConstantOp>(
|
|
loc, resultVectorType, rewriter.getZeroAttr(resultVectorType));
|
|
unsigned mostMinorVectorSize = resultVectorType.getShape()[1];
|
|
for (int64_t i = 0, e = resultVectorType.getShape().front(); i != e; ++i) {
|
|
Value vec = rewriter.create<vector::ExtractStridedSliceOp>(
|
|
loc, op.source(), /*offsets=*/i * mostMinorVectorSize,
|
|
/*sizes=*/mostMinorVectorSize,
|
|
/*strides=*/1);
|
|
desc = rewriter.create<vector::InsertOp>(loc, vec, desc, i);
|
|
}
|
|
rewriter.replaceOp(op, desc);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
// We typically should not lower general shape cast operations into data
|
|
// movement instructions, since the assumption is that these casts are
|
|
// optimized away during progressive lowering. For completeness, however,
|
|
// we fall back to a reference implementation that moves all elements
|
|
// into the right place if we get here.
|
|
class ShapeCastOpRewritePattern : public OpRewritePattern<vector::ShapeCastOp> {
|
|
public:
|
|
using OpRewritePattern<vector::ShapeCastOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(vector::ShapeCastOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
Location loc = op.getLoc();
|
|
auto sourceVectorType = op.getSourceVectorType();
|
|
auto resultVectorType = op.getResultVectorType();
|
|
// Intended 2D/1D lowerings with better implementations.
|
|
int64_t srcRank = sourceVectorType.getRank();
|
|
int64_t resRank = resultVectorType.getRank();
|
|
if ((srcRank == 2 && resRank == 1) || (srcRank == 1 && resRank == 2))
|
|
return failure();
|
|
// Compute number of elements involved in the reshape.
|
|
int64_t numElts = 1;
|
|
for (int64_t r = 0; r < srcRank; r++)
|
|
numElts *= sourceVectorType.getDimSize(r);
|
|
// Replace with data movement operations:
|
|
// x[0,0,0] = y[0,0]
|
|
// x[0,0,1] = y[0,1]
|
|
// x[0,1,0] = y[0,2]
|
|
// etc., incrementing the two index vectors "row-major"
|
|
// within the source and result shape.
|
|
SmallVector<int64_t, 4> srcIdx(srcRank);
|
|
SmallVector<int64_t, 4> resIdx(resRank);
|
|
Value result = rewriter.create<ConstantOp>(
|
|
loc, resultVectorType, rewriter.getZeroAttr(resultVectorType));
|
|
for (int64_t i = 0; i < numElts; i++) {
|
|
if (i != 0) {
|
|
incIdx(srcIdx, sourceVectorType, srcRank - 1);
|
|
incIdx(resIdx, resultVectorType, resRank - 1);
|
|
}
|
|
Value e = rewriter.create<vector::ExtractOp>(loc, op.source(), srcIdx);
|
|
result = rewriter.create<vector::InsertOp>(loc, e, result, resIdx);
|
|
}
|
|
rewriter.replaceOp(op, result);
|
|
return success();
|
|
}
|
|
|
|
private:
|
|
static void incIdx(SmallVector<int64_t, 4> &idx, VectorType tp, int64_t r) {
|
|
assert(0 <= r && r < tp.getRank());
|
|
if (++idx[r] == tp.getDimSize(r)) {
|
|
idx[r] = 0;
|
|
incIdx(idx, tp, r - 1);
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
namespace mlir {
|
|
|
|
/// Progressively lower a `vector.contract %a, %b, %c` with row-major matmul
|
|
/// semantics to:
|
|
/// ```
|
|
/// %flattened_a = vector.shape_cast %a
|
|
/// %flattened_b = vector.shape_cast %b
|
|
/// %flattened_d = vector.matmul %flattened_a, %flattened_b
|
|
/// %d = vector.shape_cast %%flattened_d
|
|
/// %e = add %c, %d
|
|
/// ```
|
|
/// `vector.matmul` later lowers to `llvm.matrix.multiply`.
|
|
//
|
|
/// This only kicks in when VectorTransformsOptions is set to OuterProduct and
|
|
/// the vector.contract op is a row-major matrix multiply.
|
|
LogicalResult
|
|
ContractionOpToMatmulOpLowering::match(vector::ContractionOp op) const {
|
|
// TODO: implement masks
|
|
if (llvm::size(op.masks()) != 0)
|
|
return failure();
|
|
|
|
if (vectorTransformsOptions.vectorContractLowering !=
|
|
vector::VectorContractLowering::Matmul)
|
|
return failure();
|
|
|
|
if (failed(filter(op)))
|
|
return failure();
|
|
|
|
auto iteratorTypes = op.iterator_types().getValue();
|
|
if (!isParallelIterator(iteratorTypes[0]) ||
|
|
!isParallelIterator(iteratorTypes[1]) ||
|
|
!isReductionIterator(iteratorTypes[2]))
|
|
return failure();
|
|
|
|
if (!isRowMajorMatmul(op.indexing_maps()))
|
|
return failure();
|
|
|
|
return success();
|
|
}
|
|
|
|
void ContractionOpToMatmulOpLowering::rewrite(vector::ContractionOp op,
|
|
PatternRewriter &rewriter) const {
|
|
VectorType lhsType = op.getLhsType();
|
|
VectorType rhsType = op.getRhsType();
|
|
int64_t lhsRows = lhsType.getDimSize(0);
|
|
int64_t lhsColumns = lhsType.getDimSize(1);
|
|
int64_t rhsColumns = rhsType.getDimSize(1);
|
|
|
|
Type flattenedLHSType =
|
|
VectorType::get(lhsType.getNumElements(), lhsType.getElementType());
|
|
Type flattenedRHSType =
|
|
VectorType::get(rhsType.getNumElements(), rhsType.getElementType());
|
|
auto lhs = rewriter.create<vector::ShapeCastOp>(op.getLoc(), flattenedLHSType,
|
|
op.lhs());
|
|
auto rhs = rewriter.create<vector::ShapeCastOp>(op.getLoc(), flattenedRHSType,
|
|
op.rhs());
|
|
|
|
Value mul = rewriter.create<vector::MatmulOp>(op.getLoc(), lhs, rhs, lhsRows,
|
|
lhsColumns, rhsColumns);
|
|
mul = rewriter.create<vector::ShapeCastOp>(op.getLoc(), op.acc().getType(),
|
|
mul);
|
|
Type elementType = op.getLhsType().getElementType();
|
|
assert(elementType.isIntOrFloat());
|
|
if (elementType.isa<IntegerType>())
|
|
rewriter.replaceOpWithNewOp<AddIOp>(op, op.acc(), mul);
|
|
else
|
|
rewriter.replaceOpWithNewOp<AddFOp>(op, op.acc(), mul);
|
|
}
|
|
|
|
/// Progressively lower a `vector.contract %a, %b, %c` with row-major matmul
|
|
/// semantics to a reduction_size-unrolled sequence:
|
|
/// ```
|
|
/// %at = vector.transpose %a, [1, 0]
|
|
/// %bRow0 = vector.extract %b[0]
|
|
/// %atRow0 = vector.extract %at[0]
|
|
/// %c0 = vector.outerproduct %atRow0, %bRow0, %c
|
|
/// ...
|
|
/// %bRowK = vector.extract %b[K]
|
|
/// %atRowK = vector.extract %at[K]
|
|
/// %cK = vector.outerproduct %atRowK, %bRowK, %cK-1
|
|
/// ```
|
|
///
|
|
/// This only kicks in when VectorTransformsOptions is set to OuterProduct but
|
|
/// otherwise supports any layout permutation of the matrix-multiply.
|
|
LogicalResult
|
|
ContractionOpToOuterProductOpLowering::match(vector::ContractionOp op) const {
|
|
// TODO: implement masks
|
|
if (llvm::size(op.masks()) != 0)
|
|
return failure();
|
|
|
|
if (vectorTransformsOptions.vectorContractLowering !=
|
|
vector::VectorContractLowering::OuterProduct)
|
|
return failure();
|
|
|
|
if (failed(filter(op)))
|
|
return failure();
|
|
|
|
// Determine if the parallel/reduction structure matches something
|
|
// that can be expressed a reduction_size unrolled sequence.
|
|
using MapList = ArrayRef<ArrayRef<AffineExpr>>;
|
|
auto infer = [](MapList m) { return AffineMap::inferFromExprList(m); };
|
|
AffineExpr m, n, k;
|
|
bindDims(op.getContext(), m, n, k);
|
|
auto iteratorTypes = op.iterator_types().getValue();
|
|
SmallVector<AffineMap, 4> maps = op.getIndexingMaps();
|
|
if (isParallelIterator(iteratorTypes[0]) &&
|
|
isParallelIterator(iteratorTypes[1]) &&
|
|
isReductionIterator(iteratorTypes[2])) {
|
|
//
|
|
// Two outer parallel, one inner reduction (matmat flavor).
|
|
// When lowering to outerproduct we can support all permutations.
|
|
//
|
|
if (maps != infer({{m, k}, {k, n}, {m, n}}) &&
|
|
maps != infer({{m, k}, {n, k}, {m, n}}) &&
|
|
maps != infer({{k, m}, {k, n}, {m, n}}) &&
|
|
maps != infer({{k, m}, {n, k}, {m, n}}) &&
|
|
maps != infer({{m, k}, {k, n}, {n, m}}) &&
|
|
maps != infer({{m, k}, {n, k}, {n, m}}) &&
|
|
maps != infer({{k, m}, {k, n}, {n, m}}) &&
|
|
maps != infer({{k, m}, {n, k}, {n, m}}))
|
|
return failure();
|
|
return success();
|
|
} else if (isParallelIterator(iteratorTypes[0]) &&
|
|
isReductionIterator(iteratorTypes[1])) {
|
|
//
|
|
// One outer parallel, one inner reduction (matvec flavor)
|
|
// See if a series of AXPY operations chained through FMA operations
|
|
// could replace the default DOT implementation.
|
|
//
|
|
if (maps != infer({{m, n}, {n}, {m}}) && // mat-vec
|
|
maps != infer({{n, m}, {n}, {m}}) && // mat-trans-vec
|
|
maps != infer({{n}, {m, n}, {m}}) && // vec-mat
|
|
maps != infer({{n}, {n, m}, {m}})) // vec-mat-trans
|
|
return failure();
|
|
return success();
|
|
}
|
|
return failure();
|
|
}
|
|
|
|
void ContractionOpToOuterProductOpLowering::rewrite(
|
|
vector::ContractionOp op, PatternRewriter &rewriter) const {
|
|
Location loc = op.getLoc();
|
|
int64_t reductionSize = 0;
|
|
VectorType lhsType = op.getLhsType();
|
|
Value lhs = op.lhs(), rhs = op.rhs(), res = op.acc();
|
|
|
|
// Set up the parallel/reduction structure in right form.
|
|
using MapList = ArrayRef<ArrayRef<AffineExpr>>;
|
|
auto infer = [](MapList m) { return AffineMap::inferFromExprList(m); };
|
|
AffineExpr m, n, k;
|
|
bindDims(rewriter.getContext(), m, n, k);
|
|
static constexpr std::array<int64_t, 2> perm = {1, 0};
|
|
auto iteratorTypes = op.iterator_types().getValue();
|
|
SmallVector<AffineMap, 4> maps = op.getIndexingMaps();
|
|
if (isParallelIterator(iteratorTypes[0]) &&
|
|
isParallelIterator(iteratorTypes[1]) &&
|
|
isReductionIterator(iteratorTypes[2])) {
|
|
//
|
|
// Two outer parallel, one inner reduction (matmat flavor).
|
|
//
|
|
if (maps == infer({{m, k}, {k, n}, {m, n}})) {
|
|
// This is the classical row-major matmul. Just permute the lhs.
|
|
reductionSize = lhsType.getDimSize(1);
|
|
lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm);
|
|
} else if (maps == infer({{m, k}, {n, k}, {m, n}})) {
|
|
// TODO: may be better to fail and use some vector<k> -> scalar reduction.
|
|
reductionSize = lhsType.getDimSize(1);
|
|
lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm);
|
|
rhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm);
|
|
} else if (maps == infer({{k, m}, {k, n}, {m, n}})) {
|
|
// No need to permute anything.
|
|
reductionSize = lhsType.getDimSize(0);
|
|
} else if (maps == infer({{k, m}, {n, k}, {m, n}})) {
|
|
// Just permute the rhs.
|
|
reductionSize = lhsType.getDimSize(0);
|
|
rhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm);
|
|
} else if (maps == infer({{m, k}, {k, n}, {n, m}})) {
|
|
// This is the classical row-major matmul. Just permute the lhs.
|
|
reductionSize = lhsType.getDimSize(1);
|
|
Value tmp = rhs;
|
|
rhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm);
|
|
lhs = tmp;
|
|
} else if (maps == infer({{m, k}, {n, k}, {n, m}})) {
|
|
// TODO: may be better to fail and use some vector<k> -> scalar reduction.
|
|
reductionSize = lhsType.getDimSize(1);
|
|
Value tmp = rhs;
|
|
rhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm);
|
|
lhs = rewriter.create<vector::TransposeOp>(loc, tmp, perm);
|
|
} else if (maps == infer({{k, m}, {k, n}, {n, m}})) {
|
|
// No need to permute anything, but still swap lhs and rhs.
|
|
reductionSize = lhsType.getDimSize(0);
|
|
std::swap(lhs, rhs);
|
|
} else if (maps == infer({{k, m}, {n, k}, {n, m}})) {
|
|
// Just permute the rhs.
|
|
reductionSize = lhsType.getDimSize(0);
|
|
Value tmp = lhs;
|
|
lhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm);
|
|
rhs = tmp;
|
|
}
|
|
} else {
|
|
//
|
|
// One outer parallel, one inner reduction (matvec flavor)
|
|
//
|
|
assert(isParallelIterator(iteratorTypes[0]) &&
|
|
isReductionIterator(iteratorTypes[1]));
|
|
if (maps == infer({{m, n}, {n}, {m}})) {
|
|
// Case mat-vec: transpose.
|
|
reductionSize = lhsType.getDimSize(1);
|
|
lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm);
|
|
} else if (maps == infer({{n, m}, {n}, {m}})) {
|
|
// Case mat-trans-vec: ready to go.
|
|
reductionSize = lhsType.getDimSize(0);
|
|
} else if (maps == infer({{n}, {m, n}, {m}})) {
|
|
// Case vec-mat: swap and transpose.
|
|
reductionSize = lhsType.getDimSize(0);
|
|
std::swap(lhs, rhs);
|
|
lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm);
|
|
} else if (maps == infer({{n}, {n, m}, {m}})) {
|
|
// Case vec-mat-trans: swap and ready to go.
|
|
reductionSize = lhsType.getDimSize(0);
|
|
std::swap(lhs, rhs);
|
|
}
|
|
}
|
|
assert(reductionSize > 0);
|
|
|
|
// Unroll outer-products along reduction.
|
|
for (int64_t k = 0; k < reductionSize; ++k) {
|
|
Value a = rewriter.create<vector::ExtractOp>(op.getLoc(), lhs, k);
|
|
Value b = rewriter.create<vector::ExtractOp>(op.getLoc(), rhs, k);
|
|
res = rewriter.create<vector::OuterProductOp>(op.getLoc(), a, b, res);
|
|
}
|
|
rewriter.replaceOp(op, res);
|
|
}
|
|
|
|
/// Progressive lowering of ContractionOp.
|
|
/// One:
|
|
/// %x = vector.contract with at least one free/batch dimension
|
|
/// is replaced by:
|
|
/// %a = vector.contract with one less free/batch dimension
|
|
/// %b = vector.contract with one less free/batch dimension
|
|
/// ..
|
|
/// %x = combine %a %b ..
|
|
/// until a pure contraction is reached (no free/batch dimensions),
|
|
/// which is replaced by a dot-product.
|
|
///
|
|
/// This only kicks in when either VectorTransformsOptions is set
|
|
/// to DOT or when other contraction patterns fail.
|
|
//
|
|
// TODO: break down into transpose/reshape/cast ops
|
|
// when they become available to avoid code dup
|
|
// TODO: investigate lowering order impact on performance
|
|
LogicalResult
|
|
ContractionOpLowering::matchAndRewrite(vector::ContractionOp op,
|
|
PatternRewriter &rewriter) const {
|
|
|
|
// TODO: implement masks.
|
|
if (llvm::size(op.masks()) != 0)
|
|
return failure();
|
|
|
|
if (failed(filter(op)))
|
|
return failure();
|
|
|
|
// TODO: support mixed mode contract lowering.
|
|
if (op.getLhsType().getElementType() !=
|
|
getElementTypeOrSelf(op.getAccType()) ||
|
|
op.getRhsType().getElementType() != getElementTypeOrSelf(op.getAccType()))
|
|
return failure();
|
|
|
|
// TODO: implement benefits, cost models.
|
|
MLIRContext *ctx = op.getContext();
|
|
ContractionOpToMatmulOpLowering pat1(vectorTransformsOptions, ctx);
|
|
if (succeeded(pat1.match(op)))
|
|
return failure();
|
|
ContractionOpToOuterProductOpLowering pat2(vectorTransformsOptions, ctx);
|
|
if (succeeded(pat2.match(op)))
|
|
return failure();
|
|
|
|
// Find first batch dimension in LHS/RHS, and lower when found.
|
|
std::vector<std::pair<int64_t, int64_t>> batchDimMap = op.getBatchDimMap();
|
|
if (!batchDimMap.empty()) {
|
|
int64_t lhsIndex = batchDimMap[0].first;
|
|
int64_t rhsIndex = batchDimMap[0].second;
|
|
rewriter.replaceOp(op, lowerParallel(op, lhsIndex, rhsIndex, rewriter));
|
|
return success();
|
|
}
|
|
|
|
// Collect contracting dimensions.
|
|
std::vector<std::pair<int64_t, int64_t>> contractingDimMap =
|
|
op.getContractingDimMap();
|
|
DenseSet<int64_t> lhsContractingDimSet;
|
|
DenseSet<int64_t> rhsContractingDimSet;
|
|
for (auto &dimPair : contractingDimMap) {
|
|
lhsContractingDimSet.insert(dimPair.first);
|
|
rhsContractingDimSet.insert(dimPair.second);
|
|
}
|
|
|
|
// Find first free dimension in LHS, and lower when found.
|
|
VectorType lhsType = op.getLhsType();
|
|
for (int64_t lhsIndex = 0, e = lhsType.getRank(); lhsIndex < e; ++lhsIndex) {
|
|
if (lhsContractingDimSet.count(lhsIndex) == 0) {
|
|
rewriter.replaceOp(
|
|
op, lowerParallel(op, lhsIndex, /*rhsIndex=*/-1, rewriter));
|
|
return success();
|
|
}
|
|
}
|
|
|
|
// Find first free dimension in RHS, and lower when found.
|
|
VectorType rhsType = op.getRhsType();
|
|
for (int64_t rhsIndex = 0, e = rhsType.getRank(); rhsIndex < e; ++rhsIndex) {
|
|
if (rhsContractingDimSet.count(rhsIndex) == 0) {
|
|
rewriter.replaceOp(
|
|
op, lowerParallel(op, /*lhsIndex=*/-1, rhsIndex, rewriter));
|
|
return success();
|
|
}
|
|
}
|
|
|
|
// Lower the first remaining reduction dimension.
|
|
if (!contractingDimMap.empty()) {
|
|
rewriter.replaceOp(op, lowerReduction(op, rewriter));
|
|
return success();
|
|
}
|
|
|
|
return failure();
|
|
}
|
|
|
|
// Lower one parallel dimension.
|
|
// TODO: consider reusing existing contract unrolling
|
|
Value ContractionOpLowering::lowerParallel(vector::ContractionOp op,
|
|
int64_t lhsIndex, int64_t rhsIndex,
|
|
PatternRewriter &rewriter) const {
|
|
VectorType lhsType = op.getLhsType();
|
|
VectorType rhsType = op.getRhsType();
|
|
VectorType resType = op.getResultType().cast<VectorType>();
|
|
// Find the iterator type index and result index.
|
|
SmallVector<AffineMap, 4> iMap = op.getIndexingMaps();
|
|
int64_t iterIndex = -1;
|
|
int64_t dimSize = -1;
|
|
if (lhsIndex >= 0) {
|
|
iterIndex = iMap[0].getResult(lhsIndex).cast<AffineDimExpr>().getPosition();
|
|
assert(
|
|
(rhsIndex < 0 ||
|
|
iterIndex ==
|
|
iMap[1].getResult(rhsIndex).cast<AffineDimExpr>().getPosition()) &&
|
|
"parallel index should be free in LHS or batch in LHS/RHS");
|
|
dimSize = lhsType.getDimSize(lhsIndex);
|
|
} else {
|
|
assert(rhsIndex >= 0 && "missing parallel index");
|
|
iterIndex = iMap[1].getResult(rhsIndex).cast<AffineDimExpr>().getPosition();
|
|
dimSize = rhsType.getDimSize(rhsIndex);
|
|
}
|
|
assert(iterIndex >= 0 && "parallel index not listed in operand mapping");
|
|
Optional<int64_t> lookup = getResultIndex(iMap[2], iterIndex);
|
|
assert(lookup.hasValue() && "parallel index not listed in reduction");
|
|
int64_t resIndex = lookup.getValue();
|
|
// Construct new iterator types and affine map array attribute.
|
|
std::array<AffineMap, 3> lowIndexingMaps = {
|
|
adjustMap(iMap[0], iterIndex, rewriter),
|
|
adjustMap(iMap[1], iterIndex, rewriter),
|
|
adjustMap(iMap[2], iterIndex, rewriter)};
|
|
auto lowAffine = rewriter.getAffineMapArrayAttr(lowIndexingMaps);
|
|
auto lowIter =
|
|
rewriter.getArrayAttr(adjustIter(op.iterator_types(), iterIndex));
|
|
// Unroll into a series of lower dimensional vector.contract ops.
|
|
Location loc = op.getLoc();
|
|
Value result =
|
|
rewriter.create<ConstantOp>(loc, resType, rewriter.getZeroAttr(resType));
|
|
for (int64_t d = 0; d < dimSize; ++d) {
|
|
auto lhs = reshapeLoad(loc, op.lhs(), lhsType, lhsIndex, d, rewriter);
|
|
auto rhs = reshapeLoad(loc, op.rhs(), rhsType, rhsIndex, d, rewriter);
|
|
auto acc = reshapeLoad(loc, op.acc(), resType, resIndex, d, rewriter);
|
|
Value lowContract = rewriter.create<vector::ContractionOp>(
|
|
loc, lhs, rhs, acc, lowAffine, lowIter);
|
|
result =
|
|
reshapeStore(loc, lowContract, result, resType, resIndex, d, rewriter);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
// Lower one reduction dimension.
|
|
Value ContractionOpLowering::lowerReduction(vector::ContractionOp op,
|
|
PatternRewriter &rewriter) const {
|
|
auto loc = op.getLoc();
|
|
VectorType lhsType = op.getLhsType();
|
|
VectorType rhsType = op.getRhsType();
|
|
Type resType = op.getResultType();
|
|
assert(!resType.isa<VectorType>());
|
|
// Use iterator index 0.
|
|
int64_t iterIndex = 0;
|
|
SmallVector<AffineMap, 4> iMap = op.getIndexingMaps();
|
|
Optional<int64_t> lookupLhs = getResultIndex(iMap[0], iterIndex);
|
|
Optional<int64_t> lookupRhs = getResultIndex(iMap[1], iterIndex);
|
|
assert(lookupLhs.hasValue() && "missing LHS parallel index");
|
|
assert(lookupRhs.hasValue() && "missing RHS parallel index");
|
|
int64_t lhsIndex = lookupLhs.getValue();
|
|
int64_t rhsIndex = lookupRhs.getValue();
|
|
int64_t dimSize = lhsType.getDimSize(lhsIndex);
|
|
assert(dimSize == rhsType.getDimSize(rhsIndex) && "corrupt shape");
|
|
// Base case.
|
|
if (lhsType.getRank() == 1) {
|
|
assert(rhsType.getRank() == 1 && "corrupt contraction");
|
|
Value m = rewriter.create<MulFOp>(loc, op.lhs(), op.rhs());
|
|
StringAttr kind = rewriter.getStringAttr("add");
|
|
return rewriter.create<vector::ReductionOp>(loc, resType, kind, m,
|
|
op.acc());
|
|
}
|
|
// Construct new iterator types and affine map array attribute.
|
|
std::array<AffineMap, 3> lowIndexingMaps = {
|
|
adjustMap(iMap[0], iterIndex, rewriter),
|
|
adjustMap(iMap[1], iterIndex, rewriter),
|
|
adjustMap(iMap[2], iterIndex, rewriter)};
|
|
auto lowAffine = rewriter.getAffineMapArrayAttr(lowIndexingMaps);
|
|
auto lowIter =
|
|
rewriter.getArrayAttr(adjustIter(op.iterator_types(), iterIndex));
|
|
// Unroll into a series of lower dimensional vector.contract ops.
|
|
// By feeding the initial accumulator into the first contraction,
|
|
// and the result of each contraction into the next, eventually
|
|
// the sum of all reductions is computed.
|
|
Value result = op.acc();
|
|
for (int64_t d = 0; d < dimSize; ++d) {
|
|
auto lhs = reshapeLoad(loc, op.lhs(), lhsType, lhsIndex, d, rewriter);
|
|
auto rhs = reshapeLoad(loc, op.rhs(), rhsType, rhsIndex, d, rewriter);
|
|
result = rewriter.create<vector::ContractionOp>(loc, lhs, rhs, result,
|
|
lowAffine, lowIter);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
} // namespace mlir
|
|
|
|
// TODO: Add pattern to rewrite ExtractSlices(ConstantMaskOp).
|
|
// TODO: Add this as DRR pattern.
|
|
void mlir::vector::populateVectorToVectorTransformationPatterns(
|
|
OwningRewritePatternList &patterns, MLIRContext *context) {
|
|
// clang-format off
|
|
patterns.insert<ShapeCastOpDecomposer,
|
|
ShapeCastOpFolder,
|
|
SplitTransferReadOp,
|
|
SplitTransferWriteOp,
|
|
TupleGetFolderOp>(context);
|
|
// clang-format on
|
|
}
|
|
|
|
void mlir::vector::populateVectorSlicesLoweringPatterns(
|
|
OwningRewritePatternList &patterns, MLIRContext *context) {
|
|
patterns.insert<ExtractSlicesOpLowering, InsertSlicesOpLowering>(context);
|
|
}
|
|
|
|
void mlir::vector::populateVectorContractLoweringPatterns(
|
|
OwningRewritePatternList &patterns, MLIRContext *context,
|
|
VectorTransformsOptions parameters) {
|
|
// clang-format off
|
|
patterns.insert<BroadcastOpLowering,
|
|
CreateMaskOpLowering,
|
|
ConstantMaskOpLowering,
|
|
OuterProductOpLowering,
|
|
ShapeCastOp2DDownCastRewritePattern,
|
|
ShapeCastOp2DUpCastRewritePattern,
|
|
ShapeCastOpRewritePattern>(context);
|
|
patterns.insert<TransposeOpLowering,
|
|
ContractionOpLowering,
|
|
ContractionOpToMatmulOpLowering,
|
|
ContractionOpToOuterProductOpLowering>(parameters, context);
|
|
// clang-format on
|
|
}
|