Jason Molenda eb7dc99184
[lldb] Add SBValue::GetValueAsAddress API (#90144)
I previously added this API via https://reviews.llvm.org/D142792 in
2023, along with changes to the ValueObject class to treat pointer types
as addresses, and to annotate those ValueObjects with the original
uint64_t byte sequence AND the name of the symbol once stripped, if that
points to a symbol.

I did this unconditionally for all pointer type ValueObjects, and it
caused several regressions in the Objective-C data formatters which have
a ValueObject of an object, it has the address of its class -- but with
ObjC, sometimes it is a "tagged pointer" which is metadata, not an
actual pointer. (e.g. a small NSInteger value is stored entirely in the
tagged pointer, instead of a separate object) Treating these
not-addresses as addresses -- clearing the non-addressable-bits -- is
invalid.

The original version of this patch we're using downstream only does this
bits clearing for pointer types that are specifically decorated with the
pointerauth typequal, but not all of those clang changes are upstreamed
to github main yet, so I tried this simpler approach and hit the tagged
pointer issue and bailed on the whole patch.

This patch, however, is simply adding SBValue::GetValueAsAddress so
script writers who know that an SBValue has an address in memory, can
strip off any metadata. It's an important API to have for script writers
when AArch64 ptrauth is in use, so I'm going to put this part of the
patch back on github main now until we can get the rest of that original
patch upstreamed.
2024-04-25 16:42:33 -07:00
2024-04-18 07:01:13 +01:00
2024-04-25 14:31:52 -04:00
2024-01-23 19:00:11 -08:00
2023-12-19 11:13:19 +00:00

The LLVM Compiler Infrastructure

OpenSSF Scorecard OpenSSF Best Practices libc++

Welcome to the LLVM project!

This repository contains the source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The LLVM project has multiple components. The core of the project is itself called "LLVM". This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer.

C-like languages use the Clang frontend. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

Consult the Getting Started with LLVM page for information on building and running LLVM.

For information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting in touch

Join the LLVM Discourse forums, Discord chat, LLVM Office Hours or Regular sync-ups.

The LLVM project has adopted a code of conduct for participants to all modes of communication within the project.

Description
The LLVM Project is a collection of modular and reusable compiler and toolchain technologies.
Readme 5.3 GiB
Languages
LLVM 42%
C++ 30.8%
C 13%
Assembly 9.5%
MLIR 1.4%
Other 2.9%