llvm-project/mlir/test/lib/Transforms/TestLinalgTransforms.cpp
Mehdi Amini ebf521e784 Separate the Registration from Loading dialects in the Context
This changes the behavior of constructing MLIRContext to no longer load globally registered dialects on construction. Instead Dialects are only loaded explicitly on demand:
- the Parser is lazily loading Dialects in the context as it encounters them during parsing. This is the only purpose for registering dialects and not load them in the context.
- Passes are expected to declare the dialects they will create entity from (Operations, Attributes, or Types), and the PassManager is loading Dialects into the Context when starting a pipeline.

This changes simplifies the configuration of the registration: a compiler only need to load the dialect for the IR it will emit, and the optimizer is self-contained and load the required Dialects. For example in the Toy tutorial, the compiler only needs to load the Toy dialect in the Context, all the others (linalg, affine, std, LLVM, ...) are automatically loaded depending on the optimization pipeline enabled.
2020-08-14 09:40:27 +00:00

509 lines
21 KiB
C++

//===- TestLinalgTransforms.cpp - Test Linalg transformation patterns -----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements logic for testing Linalg transformations.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/GPU/GPUDialect.h"
#include "mlir/Dialect/Linalg/IR/LinalgOps.h"
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/Dialect/Vector/VectorOps.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Pass/Pass.h"
#include "llvm/ADT/SetVector.h"
using namespace mlir;
using namespace mlir::linalg;
namespace {
struct TestLinalgTransforms
: public PassWrapper<TestLinalgTransforms, FunctionPass> {
TestLinalgTransforms() = default;
TestLinalgTransforms(const TestLinalgTransforms &pass) {}
void getDependentDialects(DialectRegistry &registry) const override {
registry.insert<AffineDialect>();
registry.insert<scf::SCFDialect>();
registry.insert<StandardOpsDialect>();
registry.insert<vector::VectorDialect>();
registry.insert<gpu::GPUDialect>();
}
void runOnFunction() override;
Option<bool> testPatterns{*this, "test-patterns",
llvm::cl::desc("Test a mixed set of patterns"),
llvm::cl::init(false)};
Option<bool> testMatmulToVectorPatterns1dTiling{
*this, "test-matmul-to-vector-patterns-tile-1d",
llvm::cl::desc(
"Test a fused pass that applies patterns from matmul to vectors via "
"1-d tiling"),
llvm::cl::init(false)};
Option<bool> testMatmulToVectorPatterns2dTiling{
*this, "test-matmul-to-vector-patterns-tile-2d",
llvm::cl::desc(
"Test a fused pass that applies patterns from matmul to vectors via "
"2-d tiling"),
llvm::cl::init(false)};
Option<bool> testPromotionOptions{*this, "test-linalg-promotion-options",
llvm::cl::desc("Test promotion options"),
llvm::cl::init(false)};
Option<bool> testTileAndDistributionOptions{
*this, "test-tile-and-distribute-options",
llvm::cl::desc("Test tile and distribute options"),
llvm::cl::init(false)};
Option<bool> testVectorTransferForwardingPatterns{
*this, "test-vector-transfer-forwarding-patterns",
llvm::cl::desc(
"Test a fused pass that forwards linalg.copy to vector.transfer"),
llvm::cl::init(false)};
Option<bool> testGenericToVectorPattern{
*this, "test-contraction-to-vector-patterns",
llvm::cl::desc("Test a set of patterns that rewrite a linalg contraction "
"in vector.contract form"),
llvm::cl::init(false)};
Option<bool> testAffineMinSCFCanonicalizationPatterns{
*this, "test-affine-min-scf-canonicalization-patterns",
llvm::cl::desc("Test affine-min + scf canonicalization patterns."),
llvm::cl::init(false)};
};
} // end anonymous namespace
static void applyPatterns(FuncOp funcOp) {
MLIRContext *ctx = funcOp.getContext();
OwningRewritePatternList patterns;
//===--------------------------------------------------------------------===//
// Linalg tiling patterns.
//===--------------------------------------------------------------------===//
patterns.insert<LinalgTilingPattern<MatmulOp>>(
ctx, LinalgTilingOptions().setTileSizes({2000, 3000, 4000}),
LinalgMarker(Identifier::get("MEM", ctx), Identifier::get("L3", ctx)));
patterns.insert<LinalgTilingPattern<MatmulOp>>(
ctx, LinalgTilingOptions().setTileSizes({200, 300, 400}),
LinalgMarker(Identifier::get("L3", ctx), Identifier::get("L2", ctx)));
patterns.insert<LinalgTilingPattern<MatmulOp>>(
ctx, LinalgTilingOptions().setTileSizes({20, 30, 40}),
LinalgMarker(Identifier::get("L2", ctx), Identifier::get("L1", ctx)));
patterns.insert<LinalgTilingPattern<MatmulOp>>(
ctx, LinalgTilingOptions().setTileSizes({2, 3, 4}),
LinalgMarker(Identifier::get("L1", ctx), Identifier::get("REG", ctx)));
patterns.insert<LinalgTilingPattern<MatvecOp>>(
ctx,
LinalgTilingOptions().setTileSizes({5, 6}).setLoopType(
LinalgTilingLoopType::ParallelLoops),
LinalgMarker({}, Identifier::get("L1", ctx)));
patterns.insert<LinalgTilingPattern<DotOp>>(
ctx, LinalgTilingOptions().setTileSizes(8000),
LinalgMarker(ArrayRef<Identifier>{Identifier::get("MEM", ctx),
Identifier::get("L3", ctx),
Identifier::get("L2", ctx)},
Identifier::get("REG", ctx)));
//===--------------------------------------------------------------------===//
// Linalg tiling and permutation patterns.
//===--------------------------------------------------------------------===//
patterns.insert<LinalgTilingPattern<MatmulOp>>(
ctx,
LinalgTilingOptions()
.setTileSizes({2000, 3000, 4000})
.setInterchange({1, 2, 0}),
LinalgMarker(Identifier::get("__with_perm__", ctx),
Identifier::get("L2__with_perm__", ctx)));
patterns.insert<LinalgTilingPattern<MatmulOp>>(
ctx,
LinalgTilingOptions()
.setTileSizes({200, 300, 400})
.setInterchange({1, 0, 2}),
LinalgMarker(Identifier::get("L2__with_perm__", ctx),
Identifier::get("L1__with_perm__", ctx)));
patterns.insert<LinalgTilingPattern<MatmulOp>>(
ctx, LinalgTilingOptions().setTileSizes({20, 30, 40}),
LinalgMarker(Identifier::get("L1__with_perm__", ctx),
Identifier::get("REG__with_perm__", ctx)));
patterns.insert<LinalgTilingPattern<MatvecOp>>(
ctx, LinalgTilingOptions().setTileSizes({5, 6}).setInterchange({1, 0}),
LinalgMarker(Identifier::get("__with_perm__", ctx),
Identifier::get("L1__with_perm__", ctx)));
patterns.insert<LinalgTilingPattern<MatmulOp>>(
ctx,
LinalgTilingOptions()
.setTileSizes({16, 8, 4})
.setInterchange({1, 2, 0})
.setLoopType(LinalgTilingLoopType::ParallelLoops),
LinalgMarker(Identifier::get("par__with_perm__", ctx),
Identifier::get("after_par__with_perm__", ctx)));
//===--------------------------------------------------------------------===//
// Linalg to loops patterns.
//===--------------------------------------------------------------------===//
patterns.insert<LinalgLoweringPattern<DotOp>>(
ctx,
/*loweringType=*/LinalgLoweringType::Loops,
LinalgMarker(Identifier::get("REG", ctx)));
//===--------------------------------------------------------------------===//
// Linalg distribution patterns.
//===--------------------------------------------------------------------===//
LinalgLoopDistributionOptions distributionOptions;
//===--------------------------------------------------------------------===//
// Linalg to vector contraction patterns.
//===--------------------------------------------------------------------===//
patterns.insert<LinalgVectorizationPattern<MatmulOp>,
LinalgVectorizationPattern<FillOp>,
LinalgVectorizationPattern<CopyOp>,
LinalgVectorizationPattern<GenericOp>>(
ctx, LinalgMarker(Identifier::get("VECTORIZE", ctx)));
//===--------------------------------------------------------------------===//
// Linalg generic permutation patterns.
//===--------------------------------------------------------------------===//
patterns.insert<LinalgInterchangePattern<GenericOp>>(
ctx,
/*interchangeVector=*/ArrayRef<unsigned>{1, 2, 0},
LinalgMarker({}, Identifier::get("PERMUTED", ctx)));
patterns.insert<LinalgInterchangePattern<IndexedGenericOp>>(
ctx,
/*interchangeVector=*/ArrayRef<unsigned>{1, 2, 0},
LinalgMarker({}, Identifier::get("PERMUTED", ctx)));
//===--------------------------------------------------------------------===//
// Linalg subview operands promotion.
//===--------------------------------------------------------------------===//
patterns.insert<LinalgPromotionPattern<MatmulOp>>(
ctx, LinalgPromotionOptions().setUseFullTileBuffersByDefault(true),
LinalgMarker(Identifier::get("_promote_views_", ctx),
Identifier::get("_views_promoted_", ctx)));
patterns.insert<LinalgPromotionPattern<MatmulOp>>(
ctx,
LinalgPromotionOptions()
.setOperandsToPromote({0})
.setUseFullTileBuffersByDefault(true),
LinalgMarker(Identifier::get("_promote_first_view_", ctx),
Identifier::get("_first_view_promoted_", ctx)));
patterns.insert<LinalgPromotionPattern<FillOp>>(
ctx,
LinalgPromotionOptions()
.setOperandsToPromote({0})
.setUseFullTileBuffers({true})
.setAlignment(32),
LinalgMarker(Identifier::get("_promote_views_aligned_", ctx),
Identifier::get("_views_aligned_promoted_", ctx)));
applyPatternsAndFoldGreedily(funcOp, patterns);
// Drop the marker.
funcOp.walk([](LinalgOp op) {
op.removeAttr(LinalgTransforms::kLinalgTransformMarker);
});
}
static void fillL1TilingAndMatmulToVectorPatterns(
FuncOp funcOp, StringRef startMarker,
SmallVectorImpl<OwningRewritePatternList> &patternsVector) {
MLIRContext *ctx = funcOp.getContext();
patternsVector.emplace_back(LinalgTilingPattern<MatmulOp>(
ctx,
LinalgTilingOptions().setTileSizes({8, 12, 16}).setInterchange({1, 0, 2}),
LinalgMarker(Identifier::get(startMarker, ctx),
Identifier::get("L1", ctx))));
patternsVector.emplace_back(LinalgPromotionPattern<MatmulOp>(
ctx, LinalgPromotionOptions().setUseFullTileBuffersByDefault(true),
LinalgMarker(Identifier::get("L1", ctx), Identifier::get("VEC", ctx))));
patternsVector.emplace_back(LinalgVectorizationPattern<MatmulOp>(
ctx, LinalgMarker(Identifier::get("VEC", ctx))));
patternsVector.back()
.insert<LinalgVectorizationPattern<FillOp>,
LinalgVectorizationPattern<CopyOp>>(ctx);
}
//===----------------------------------------------------------------------===//
// Test promotion callbacks
//===----------------------------------------------------------------------===//
// Allocation call back
static Optional<Value> allocCallBackFn(OpBuilder &b, SubViewOp subView,
ArrayRef<Value> boundingSubViewSize,
OperationFolder *folder) {
SmallVector<int64_t, 4> shape(boundingSubViewSize.size(), -1);
return b
.create<AllocOp>(subView.getLoc(),
MemRefType::get(shape,
subView.getType().getElementType(),
/*affineMapComposition =*/{}, 3),
boundingSubViewSize)
.getResult();
}
// Deallocation callback
static LogicalResult deallocCallBackFn(OpBuilder &b, Value buffer) {
b.create<DeallocOp>(buffer.getLoc(), buffer);
return success();
}
// Copy in call back
static LogicalResult copyCallBackFn(OpBuilder &b, Value src, Value dst,
bool isOutput) {
auto floatType = src.getType().cast<MemRefType>().getElementType();
if (!floatType.isa<FloatType>())
return failure();
if (!isOutput)
b.create<FillOp>(
src.getLoc(), dst,
b.create<ConstantOp>(src.getLoc(), FloatAttr::get(floatType, 42.0)));
b.create<CopyOp>(src.getLoc(), src, dst);
return success();
}
static void fillPromotionCallBackPatterns(MLIRContext *ctx,
OwningRewritePatternList &patterns) {
patterns.insert<LinalgTilingPattern<MatmulOp>>(
ctx, LinalgTilingOptions().setTileSizes({16, 16, 16}),
LinalgMarker(Identifier::get("START", ctx),
Identifier::get("PROMOTE", ctx)));
patterns.insert<LinalgPromotionPattern<MatmulOp>>(
ctx,
LinalgPromotionOptions()
.setOperandsToPromote({0, 2})
.setUseFullTileBuffers({false, false})
.setAllocationDeallocationFns(allocCallBackFn, deallocCallBackFn)
.setCopyInOutFns(
[](OpBuilder &b, Value src, Value dst) -> LogicalResult {
copyCallBackFn(b, src, dst, false);
return success();
},
[](OpBuilder &b, Value src, Value dst) -> LogicalResult {
copyCallBackFn(b, src, dst, true);
return success();
}),
LinalgMarker(Identifier::get("PROMOTE", ctx)));
}
template <typename IdOp, typename NProcsOp>
static ProcInfo getGpuProcIds(OpBuilder &b, Location loc, unsigned loopNum) {
Type indexType = b.getIndexType();
switch (loopNum) {
case 0:
return {b.create<IdOp>(loc, indexType, b.getStringAttr("y")),
b.create<NProcsOp>(loc, indexType, b.getStringAttr("y"))};
case 1:
return {b.create<IdOp>(loc, indexType, b.getStringAttr("x")),
b.create<NProcsOp>(loc, indexType, b.getStringAttr("x"))};
default:
llvm_unreachable("test patterns handles only upto 2-level nested loops");
}
return {nullptr, nullptr};
}
static void fillTileAndDistributePatterns(MLIRContext *context,
OwningRewritePatternList &patterns) {
{
LinalgLoopDistributionOptions cyclicNprocsEqNiters;
cyclicNprocsEqNiters.distributionMethod.resize(
2, DistributionMethod::CyclicNumProcsEqNumIters);
cyclicNprocsEqNiters.procInfo =
getGpuProcIds<gpu::BlockIdOp, gpu::GridDimOp>;
patterns.insert<LinalgTilingPattern<MatmulOp>>(
context,
LinalgTilingOptions()
.setTileSizes({8, 8, 4})
.setLoopType(LinalgTilingLoopType::ParallelLoops)
.setDistributionOptions(cyclicNprocsEqNiters),
LinalgMarker(Identifier::get("distribute1", context),
Identifier::get("after_distribute1", context)));
}
{
LinalgLoopDistributionOptions cyclicNprocsGeNiters;
cyclicNprocsGeNiters.distributionMethod.resize(
2, DistributionMethod::CyclicNumProcsGeNumIters);
cyclicNprocsGeNiters.procInfo =
getGpuProcIds<gpu::BlockIdOp, gpu::GridDimOp>;
patterns.insert<LinalgTilingPattern<MatmulOp>>(
context,
LinalgTilingOptions()
.setTileSizes({8, 8, 4})
.setLoopType(LinalgTilingLoopType::ParallelLoops)
.setDistributionOptions(cyclicNprocsGeNiters),
LinalgMarker(Identifier::get("distribute2", context),
Identifier::get("after_distribute2", context)));
}
{
LinalgLoopDistributionOptions cyclicNprocsDefault;
cyclicNprocsDefault.distributionMethod.resize(2,
DistributionMethod::Cyclic);
cyclicNprocsDefault.procInfo =
getGpuProcIds<gpu::BlockIdOp, gpu::GridDimOp>;
patterns.insert<LinalgTilingPattern<MatmulOp>>(
context,
LinalgTilingOptions()
.setTileSizes({8, 8, 4})
.setLoopType(LinalgTilingLoopType::ParallelLoops)
.setDistributionOptions(cyclicNprocsDefault),
LinalgMarker(Identifier::get("distribute3", context),
Identifier::get("after_distribute3", context)));
}
{
LinalgLoopDistributionOptions cyclicNprocsMixed1;
cyclicNprocsMixed1.distributionMethod = {
DistributionMethod::CyclicNumProcsEqNumIters,
DistributionMethod::CyclicNumProcsGeNumIters};
cyclicNprocsMixed1.procInfo = getGpuProcIds<gpu::BlockIdOp, gpu::GridDimOp>;
patterns.insert<LinalgTilingPattern<MatmulOp>>(
context,
LinalgTilingOptions()
.setTileSizes({8, 8, 4})
.setLoopType(LinalgTilingLoopType::ParallelLoops)
.setDistributionOptions(cyclicNprocsMixed1),
LinalgMarker(Identifier::get("distribute4", context),
Identifier::get("after_distribute4", context)));
}
{
LinalgLoopDistributionOptions cyclicNprocsMixed2;
cyclicNprocsMixed2.distributionMethod = {
DistributionMethod::CyclicNumProcsGeNumIters,
DistributionMethod::Cyclic};
cyclicNprocsMixed2.procInfo = getGpuProcIds<gpu::BlockIdOp, gpu::GridDimOp>;
patterns.insert<LinalgTilingPattern<MatmulOp>>(
context,
LinalgTilingOptions()
.setTileSizes({8, 8, 4})
.setLoopType(LinalgTilingLoopType::ParallelLoops)
.setDistributionOptions(cyclicNprocsMixed2),
LinalgMarker(Identifier::get("distribute5", context),
Identifier::get("after_distribute5", context)));
}
{
LinalgLoopDistributionOptions cyclicNprocsMixed3;
cyclicNprocsMixed3.distributionMethod = {
DistributionMethod::Cyclic,
DistributionMethod::CyclicNumProcsEqNumIters};
cyclicNprocsMixed3.procInfo = getGpuProcIds<gpu::BlockIdOp, gpu::GridDimOp>;
patterns.insert<LinalgTilingPattern<MatmulOp>>(
context,
LinalgTilingOptions()
.setTileSizes({8, 8, 4})
.setLoopType(LinalgTilingLoopType::ParallelLoops)
.setDistributionOptions(cyclicNprocsMixed3),
LinalgMarker(Identifier::get("distribute6", context),
Identifier::get("after_distribute6", context)));
}
}
static void
applyMatmulToVectorPatterns(FuncOp funcOp,
bool testMatmulToVectorPatterns1dTiling,
bool testMatmulToVectorPatterns2dTiling) {
MLIRContext *ctx = funcOp.getContext();
SmallVector<OwningRewritePatternList, 4> stage1Patterns;
if (testMatmulToVectorPatterns1dTiling) {
fillL1TilingAndMatmulToVectorPatterns(funcOp, Identifier::get("START", ctx),
stage1Patterns);
} else if (testMatmulToVectorPatterns2dTiling) {
stage1Patterns.emplace_back(LinalgTilingPattern<MatmulOp>(
ctx,
LinalgTilingOptions()
.setTileSizes({768, 264, 768})
.setInterchange({1, 2, 0}),
LinalgMarker(Identifier::get("START", ctx),
Identifier::get("L2", ctx))));
fillL1TilingAndMatmulToVectorPatterns(funcOp, Identifier::get("L2", ctx),
stage1Patterns);
}
OwningRewritePatternList stage2Patterns =
getLinalgTilingCanonicalizationPatterns(ctx);
applyStagedPatterns(funcOp, stage1Patterns, stage2Patterns);
}
static void applyVectorTransferForwardingPatterns(FuncOp funcOp) {
OwningRewritePatternList forwardPattern;
forwardPattern.insert<LinalgCopyVTRForwardingPattern>(funcOp.getContext());
forwardPattern.insert<LinalgCopyVTWForwardingPattern>(funcOp.getContext());
applyPatternsAndFoldGreedily(funcOp, forwardPattern);
}
static void applyContractionToVectorPatterns(FuncOp funcOp) {
OwningRewritePatternList patterns;
patterns.insert<LinalgVectorizationPattern<BatchMatmulOp>,
LinalgVectorizationPattern<MatmulOp>,
LinalgVectorizationPattern<MatvecOp>,
LinalgVectorizationPattern<DotOp>,
LinalgVectorizationPattern<GenericOp>>(funcOp.getContext());
applyPatternsAndFoldGreedily(funcOp, patterns);
}
static void applyAffineMinSCFCanonicalizationPatterns(FuncOp funcOp) {
OwningRewritePatternList foldPattern;
foldPattern.insert<AffineMinSCFCanonicalizationPattern>(funcOp.getContext());
// Explicitly walk and apply the pattern locally to avoid more general folding
// on the rest of the IR.
funcOp.walk([&foldPattern](AffineMinOp minOp) {
applyOpPatternsAndFold(minOp, foldPattern);
});
}
/// Apply transformations specified as patterns.
void TestLinalgTransforms::runOnFunction() {
auto lambda = [&](void *) {
getFunction().walk([](LinalgOp op) {
op.removeAttr(LinalgTransforms::kLinalgTransformMarker);
});
};
std::unique_ptr<void, decltype(lambda)> cleanupGuard{(void *)1, lambda};
if (testPromotionOptions) {
OwningRewritePatternList patterns;
fillPromotionCallBackPatterns(&getContext(), patterns);
applyPatternsAndFoldGreedily(getFunction(), patterns);
return;
}
if (testTileAndDistributionOptions) {
OwningRewritePatternList patterns;
fillTileAndDistributePatterns(&getContext(), patterns);
applyPatternsAndFoldGreedily(getFunction(), patterns);
return;
}
if (testPatterns)
return applyPatterns(getFunction());
if (testMatmulToVectorPatterns1dTiling || testMatmulToVectorPatterns2dTiling)
return applyMatmulToVectorPatterns(getFunction(),
testMatmulToVectorPatterns1dTiling,
testMatmulToVectorPatterns2dTiling);
if (testVectorTransferForwardingPatterns)
return applyVectorTransferForwardingPatterns(getFunction());
if (testGenericToVectorPattern)
return applyContractionToVectorPatterns(getFunction());
if (testAffineMinSCFCanonicalizationPatterns)
return applyAffineMinSCFCanonicalizationPatterns(getFunction());
}
namespace mlir {
void registerTestLinalgTransforms() {
PassRegistration<TestLinalgTransforms> testTransformPatternsPass(
"test-linalg-transform-patterns",
"Test Linalg transformation patterns by applying them greedily.");
}
} // namespace mlir