llvm-project/mlir/lib/Dialect/Vector/Transforms/VectorDropLeadUnitDim.cpp
Lei Zhang eca7698a97 [mlir][vector] NFC: Expose castAwayContractionLeadingOneDim
This commit exposes the transformation behind the pattern.
It is useful for more targeted application on a specific op
for once.

Reviewed By: kuhar

Differential Revision: https://reviews.llvm.org/D148758
2023-04-21 09:41:14 -07:00

458 lines
18 KiB
C++

//===- VectorDropLeadUnitDim.cpp - Conversion within the Vector dialect ---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Utils/StructuredOpsUtils.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/Dialect/Vector/Transforms/VectorRewritePatterns.h"
#include "mlir/Dialect/Vector/Utils/VectorUtils.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/ImplicitLocOpBuilder.h"
#include "mlir/IR/TypeUtilities.h"
#define DEBUG_TYPE "vector-drop-unit-dim"
using namespace mlir;
using namespace mlir::vector;
// Trims leading one dimensions from `oldType` and returns the result type.
// Returns `vector<1xT>` if `oldType` only has one element.
static VectorType trimLeadingOneDims(VectorType oldType) {
ArrayRef<int64_t> oldShape = oldType.getShape();
ArrayRef<int64_t> newShape =
oldShape.drop_while([](int64_t dim) { return dim == 1; });
// Make sure we have at least 1 dimension per vector type requirements.
if (newShape.empty())
newShape = oldShape.take_back();
return VectorType::get(newShape, oldType.getElementType());
}
/// Return a smallVector of size `rank` containing all zeros.
static SmallVector<int64_t> splatZero(int64_t rank) {
return SmallVector<int64_t>(rank, 0);
}
namespace {
// Casts away leading one dimensions in vector.extract_strided_slice's vector
// input by inserting vector.broadcast.
struct CastAwayExtractStridedSliceLeadingOneDim
: public OpRewritePattern<vector::ExtractStridedSliceOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(vector::ExtractStridedSliceOp extractOp,
PatternRewriter &rewriter) const override {
// vector.extract_strided_slice requires the input and output vector to have
// the same rank. Here we drop leading one dimensions from the input vector
// type to make sure we don't cause mismatch.
VectorType oldSrcType = extractOp.getSourceVectorType();
VectorType newSrcType = trimLeadingOneDims(oldSrcType);
if (newSrcType.getRank() == oldSrcType.getRank())
return failure();
int64_t dropCount = oldSrcType.getRank() - newSrcType.getRank();
VectorType oldDstType = extractOp.getType();
VectorType newDstType =
VectorType::get(oldDstType.getShape().drop_front(dropCount),
oldDstType.getElementType());
Location loc = extractOp.getLoc();
Value newSrcVector = rewriter.create<vector::ExtractOp>(
loc, extractOp.getVector(), splatZero(dropCount));
// The offsets/sizes/strides attribute can have a less number of elements
// than the input vector's rank: it is meant for the leading dimensions.
auto newOffsets = rewriter.getArrayAttr(
extractOp.getOffsets().getValue().drop_front(dropCount));
auto newSizes = rewriter.getArrayAttr(
extractOp.getSizes().getValue().drop_front(dropCount));
auto newStrides = rewriter.getArrayAttr(
extractOp.getStrides().getValue().drop_front(dropCount));
auto newExtractOp = rewriter.create<vector::ExtractStridedSliceOp>(
loc, newDstType, newSrcVector, newOffsets, newSizes, newStrides);
rewriter.replaceOpWithNewOp<vector::BroadcastOp>(extractOp, oldDstType,
newExtractOp);
return success();
}
};
// Casts away leading one dimensions in vector.insert_strided_slice's vector
// inputs by inserting vector.broadcast.
struct CastAwayInsertStridedSliceLeadingOneDim
: public OpRewritePattern<vector::InsertStridedSliceOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(vector::InsertStridedSliceOp insertOp,
PatternRewriter &rewriter) const override {
VectorType oldSrcType = insertOp.getSourceVectorType();
VectorType newSrcType = trimLeadingOneDims(oldSrcType);
VectorType oldDstType = insertOp.getDestVectorType();
VectorType newDstType = trimLeadingOneDims(oldDstType);
int64_t srcDropCount = oldSrcType.getRank() - newSrcType.getRank();
int64_t dstDropCount = oldDstType.getRank() - newDstType.getRank();
if (srcDropCount == 0 && dstDropCount == 0)
return failure();
// Trim leading one dimensions from both operands.
Location loc = insertOp.getLoc();
Value newSrcVector = rewriter.create<vector::ExtractOp>(
loc, insertOp.getSource(), splatZero(srcDropCount));
Value newDstVector = rewriter.create<vector::ExtractOp>(
loc, insertOp.getDest(), splatZero(dstDropCount));
auto newOffsets = rewriter.getArrayAttr(
insertOp.getOffsets().getValue().take_back(newDstType.getRank()));
auto newStrides = rewriter.getArrayAttr(
insertOp.getStrides().getValue().take_back(newSrcType.getRank()));
auto newInsertOp = rewriter.create<vector::InsertStridedSliceOp>(
loc, newDstType, newSrcVector, newDstVector, newOffsets, newStrides);
rewriter.replaceOpWithNewOp<vector::BroadcastOp>(insertOp, oldDstType,
newInsertOp);
return success();
}
};
// Casts away leading one dimensions in vector.insert's vector inputs by
// inserting vector.broadcast.
struct CastAwayInsertLeadingOneDim : public OpRewritePattern<vector::InsertOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(vector::InsertOp insertOp,
PatternRewriter &rewriter) const override {
Type oldSrcType = insertOp.getSourceType();
Type newSrcType = oldSrcType;
int64_t oldSrcRank = 0, newSrcRank = 0;
if (auto type = oldSrcType.dyn_cast<VectorType>()) {
newSrcType = trimLeadingOneDims(type);
oldSrcRank = type.getRank();
newSrcRank = newSrcType.cast<VectorType>().getRank();
}
VectorType oldDstType = insertOp.getDestVectorType();
VectorType newDstType = trimLeadingOneDims(oldDstType);
int64_t srcDropCount = oldSrcRank - newSrcRank;
int64_t dstDropCount = oldDstType.getRank() - newDstType.getRank();
if (srcDropCount == 0 && dstDropCount == 0)
return failure();
// Trim leading one dimensions from both operands.
Location loc = insertOp.getLoc();
Value newSrcVector = insertOp.getSource();
if (oldSrcRank != 0) {
newSrcVector = rewriter.create<vector::ExtractOp>(
loc, insertOp.getSource(), splatZero(srcDropCount));
}
Value newDstVector = rewriter.create<vector::ExtractOp>(
loc, insertOp.getDest(), splatZero(dstDropCount));
// New position rank needs to be computed in two steps: (1) if destination
// type has leading unit dims, we also trim the position array accordingly,
// then (2) if source type also has leading unit dims, we need to append
// zeroes to the position array accordingly.
unsigned oldPosRank = insertOp.getPosition().getValue().size();
unsigned newPosRank = std::max<int64_t>(0, oldPosRank - dstDropCount);
SmallVector<Attribute> newPositions = llvm::to_vector(
insertOp.getPosition().getValue().take_back(newPosRank));
newPositions.resize(newDstType.getRank() - newSrcRank,
rewriter.getI64IntegerAttr(0));
auto newInsertOp = rewriter.create<vector::InsertOp>(
loc, newDstType, newSrcVector, newDstVector,
rewriter.getArrayAttr(newPositions));
rewriter.replaceOpWithNewOp<vector::BroadcastOp>(insertOp, oldDstType,
newInsertOp);
return success();
}
};
// Turns vector.transfer_read on vector with leading 1 dimensions into
// vector.shape_cast followed by vector.transfer_read on vector without leading
// 1 dimensions.
struct CastAwayTransferReadLeadingOneDim
: public OpRewritePattern<vector::TransferReadOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(vector::TransferReadOp read,
PatternRewriter &rewriter) const override {
// TODO: support 0-d corner case.
if (read.getTransferRank() == 0)
return failure();
if (read.getMask())
return failure();
auto shapedType = read.getSource().getType().cast<ShapedType>();
if (shapedType.getElementType() != read.getVectorType().getElementType())
return failure();
VectorType oldType = read.getVectorType();
VectorType newType = trimLeadingOneDims(oldType);
if (newType == oldType)
return failure();
AffineMap oldMap = read.getPermutationMap();
ArrayRef<AffineExpr> newResults =
oldMap.getResults().take_back(newType.getRank());
AffineMap newMap =
AffineMap::get(oldMap.getNumDims(), oldMap.getNumSymbols(), newResults,
rewriter.getContext());
ArrayAttr inBoundsAttr;
if (read.getInBounds())
inBoundsAttr = rewriter.getArrayAttr(
read.getInBoundsAttr().getValue().take_back(newType.getRank()));
auto newRead = rewriter.create<vector::TransferReadOp>(
read.getLoc(), newType, read.getSource(), read.getIndices(),
AffineMapAttr::get(newMap), read.getPadding(), /*mask=*/Value(),
inBoundsAttr);
rewriter.replaceOpWithNewOp<vector::BroadcastOp>(read, oldType, newRead);
return success();
}
};
// Turns vector.transfer_write on vector with leading 1 dimensions into
// vector.shape_cast followed by vector.transfer_write on vector without leading
// 1 dimensions.
struct CastAwayTransferWriteLeadingOneDim
: public OpRewritePattern<vector::TransferWriteOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(vector::TransferWriteOp write,
PatternRewriter &rewriter) const override {
// TODO: support 0-d corner case.
if (write.getTransferRank() == 0)
return failure();
if (write.getMask())
return failure();
auto shapedType = write.getSource().getType().dyn_cast<ShapedType>();
if (shapedType.getElementType() != write.getVectorType().getElementType())
return failure();
VectorType oldType = write.getVectorType();
VectorType newType = trimLeadingOneDims(oldType);
if (newType == oldType)
return failure();
int64_t dropDim = oldType.getRank() - newType.getRank();
AffineMap oldMap = write.getPermutationMap();
ArrayRef<AffineExpr> newResults =
oldMap.getResults().take_back(newType.getRank());
AffineMap newMap =
AffineMap::get(oldMap.getNumDims(), oldMap.getNumSymbols(), newResults,
rewriter.getContext());
ArrayAttr inBoundsAttr;
if (write.getInBounds())
inBoundsAttr = rewriter.getArrayAttr(
write.getInBoundsAttr().getValue().take_back(newType.getRank()));
auto newVector = rewriter.create<vector::ExtractOp>(
write.getLoc(), write.getVector(), splatZero(dropDim));
rewriter.replaceOpWithNewOp<vector::TransferWriteOp>(
write, newVector, write.getSource(), write.getIndices(),
AffineMapAttr::get(newMap), inBoundsAttr);
return success();
}
};
} // namespace
LogicalResult
mlir::vector::castAwayContractionLeadingOneDim(vector::ContractionOp contractOp,
RewriterBase &rewriter) {
VectorType oldAccType = contractOp.getAccType().dyn_cast<VectorType>();
if (oldAccType == nullptr)
return failure();
if (oldAccType.getRank() < 2)
return failure();
if (oldAccType.getShape()[0] != 1)
return failure();
// currently we support only dropping one dim but the pattern can be applied
// greedily to drop more.
int64_t dropDim = 1;
auto oldIndexingMaps = contractOp.getIndexingMapsArray();
SmallVector<AffineMap> newIndexingMaps;
auto oldIteratorTypes = contractOp.getIteratorTypes();
SmallVector<Attribute> newIteratorTypes;
int64_t dimToDrop = oldIndexingMaps[2].getDimPosition(0);
if (!isParallelIterator(oldIteratorTypes[dimToDrop]))
// only parallel type iterators can be dropped.
return failure();
for (const auto &it : llvm::enumerate(oldIteratorTypes)) {
int64_t currDim = it.index();
if (currDim == dimToDrop)
continue;
newIteratorTypes.push_back(it.value());
}
SmallVector<Value> operands = {contractOp.getLhs(), contractOp.getRhs(),
contractOp.getAcc()};
SmallVector<Value> newOperands;
for (const auto &it : llvm::enumerate(oldIndexingMaps)) {
// Check if the dim to be dropped exists as a leading dim in the operand
// if it does then we use vector.extract to drop it.
bool validExtract = false;
SmallVector<AffineExpr> results;
auto map = it.value();
int64_t orginalZeroDim = it.value().getDimPosition(0);
if (orginalZeroDim != dimToDrop) {
// There are two reasons to be in this path, 1. We need to
// tranpose the operand to make the dim to be dropped
// leading. 2. The dim to be dropped does not exist and in
// that case we dont want to add a unit tranpose but we must
// check all the indices to make sure this is the case.
bool tranposeNeeded = false;
SmallVector<int64_t> perm;
SmallVector<AffineExpr> transposeResults;
for (int64_t i = 0, e = map.getNumResults(); i < e; ++i) {
int64_t currDim = map.getDimPosition(i);
if (currDim == dimToDrop) {
tranposeNeeded = true;
perm.insert(perm.begin(), i);
auto targetExpr = rewriter.getAffineDimExpr(currDim);
transposeResults.insert(transposeResults.begin(), targetExpr);
} else {
perm.push_back(i);
auto targetExpr = rewriter.getAffineDimExpr(currDim);
transposeResults.push_back(targetExpr);
}
}
// Do the tranpose now if needed so that we can drop the
// correct dim using extract later.
if (tranposeNeeded) {
map = AffineMap::get(map.getNumDims(), 0, transposeResults,
contractOp.getContext());
operands[it.index()] = rewriter.create<vector::TransposeOp>(
contractOp.getLoc(), operands[it.index()], perm);
}
}
// We have taken care to have the dim to be dropped be
// the leading dim. If its still not leading that means it
// does not exist in this operand and hence we do not need
// an extract.
if (map.getDimPosition(0) == dimToDrop)
validExtract = true;
for (int64_t i = 0, e = map.getNumResults(); i < e; ++i) {
int64_t currDim = map.getDimPosition(i);
if (currDim == dimToDrop)
// This is the dim we are dropping.
continue;
auto targetExpr = rewriter.getAffineDimExpr(
currDim < dimToDrop ? currDim : currDim - 1);
results.push_back(targetExpr);
}
newIndexingMaps.push_back(AffineMap::get(map.getNumDims() - 1, 0, results,
contractOp.getContext()));
// Extract if its a valid extraction, otherwise use the operand
// without extraction.
newOperands.push_back(
validExtract ? rewriter.create<vector::ExtractOp>(contractOp.getLoc(),
operands[it.index()],
splatZero(dropDim))
: operands[it.index()]);
}
auto newContractOp = rewriter.create<vector::ContractionOp>(
contractOp.getLoc(), newOperands[0], newOperands[1], newOperands[2],
rewriter.getAffineMapArrayAttr(newIndexingMaps),
rewriter.getArrayAttr(newIteratorTypes), contractOp.getKind());
rewriter.replaceOpWithNewOp<vector::BroadcastOp>(
contractOp, contractOp->getResultTypes()[0], newContractOp);
return success();
}
namespace {
/// Turns vector.contract on vector with leading 1 dimensions into
/// vector.extract followed by vector.contract on vector without leading
/// 1 dimensions. Also performs tranpose of lhs and rhs operands if required
/// prior to extract.
struct CastAwayContractionLeadingOneDim
: public OpRewritePattern<vector::ContractionOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(vector::ContractionOp contractOp,
PatternRewriter &rewriter) const override {
return castAwayContractionLeadingOneDim(contractOp, rewriter);
}
};
class CastAwayElementwiseLeadingOneDim : public RewritePattern {
public:
CastAwayElementwiseLeadingOneDim(MLIRContext *context,
PatternBenefit benefit = 1)
: RewritePattern(MatchAnyOpTypeTag(), benefit, context) {}
LogicalResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const override {
if (!OpTrait::hasElementwiseMappableTraits(op) || op->getNumResults() != 1)
return failure();
auto vecType = op->getResultTypes()[0].dyn_cast<VectorType>();
if (!vecType)
return failure();
VectorType newVecType = trimLeadingOneDims(vecType);
if (newVecType == vecType)
return failure();
int64_t dropDim = vecType.getRank() - newVecType.getRank();
SmallVector<Value, 4> newOperands;
for (Value operand : op->getOperands()) {
if (auto opVecType = operand.getType().dyn_cast<VectorType>()) {
newOperands.push_back(rewriter.create<vector::ExtractOp>(
op->getLoc(), operand, splatZero(dropDim)));
} else {
newOperands.push_back(operand);
}
}
Operation *newOp =
rewriter.create(op->getLoc(), op->getName().getIdentifier(),
newOperands, newVecType, op->getAttrs());
rewriter.replaceOpWithNewOp<vector::BroadcastOp>(op, vecType,
newOp->getResult(0));
return success();
}
};
} // namespace
void mlir::vector::populateCastAwayVectorLeadingOneDimPatterns(
RewritePatternSet &patterns, PatternBenefit benefit) {
patterns
.add<CastAwayExtractStridedSliceLeadingOneDim,
CastAwayInsertStridedSliceLeadingOneDim, CastAwayInsertLeadingOneDim,
CastAwayTransferReadLeadingOneDim,
CastAwayTransferWriteLeadingOneDim, CastAwayElementwiseLeadingOneDim,
CastAwayContractionLeadingOneDim>(patterns.getContext(), benefit);
populateShapeCastFoldingPatterns(patterns, benefit);
}