Louis Dionne 24e88b0e6b
[libc++] Add remaining benchmarks from [alg.modifying.operations] (#127354)
This patch adds benchmarks for all the remaining algorithms in
[alg.modifying.operations] that we didn't already have a benchmark for.
2025-03-17 15:11:13 -04:00

172 lines
7.0 KiB
C++

//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// UNSUPPORTED: c++03, c++11, c++14, c++17
#include <algorithm>
#include <cstddef>
#include <deque>
#include <iterator>
#include <list>
#include <string>
#include <vector>
#include "benchmark/benchmark.h"
#include "../../GenerateInput.h"
int main(int argc, char** argv) {
auto std_unique = [](auto first, auto last) { return std::unique(first, last); };
auto std_unique_pred = [](auto first, auto last) {
return std::unique(first, last, [](auto a, auto b) {
benchmark::DoNotOptimize(a);
benchmark::DoNotOptimize(b);
return a == b;
});
};
auto ranges_unique_pred = [](auto first, auto last) {
return std::ranges::unique(first, last, [](auto a, auto b) {
benchmark::DoNotOptimize(a);
benchmark::DoNotOptimize(b);
return a == b;
});
};
// Create a sequence of the form xxxxxxxxxxyyyyyyyyyy and unique the
// adjacent equal elements.
//
// We perform this benchmark in a batch because we need to restore the
// state of the container after the operation.
{
auto bm = []<class Container>(std::string name, auto unique) {
benchmark::RegisterBenchmark(
name,
[unique](auto& st) {
std::size_t const size = st.range(0);
constexpr std::size_t BatchSize = 10;
using ValueType = typename Container::value_type;
Container c[BatchSize];
ValueType x = Generate<ValueType>::random();
ValueType y = random_different_from({x});
auto populate = [&](Container& cont) {
auto half = cont.size() / 2;
std::fill_n(std::fill_n(cont.begin(), half, x), half, y);
};
for (std::size_t i = 0; i != BatchSize; ++i) {
c[i] = Container(size);
populate(c[i]);
}
while (st.KeepRunningBatch(BatchSize)) {
for (std::size_t i = 0; i != BatchSize; ++i) {
benchmark::DoNotOptimize(c[i]);
auto result = unique(c[i].begin(), c[i].end());
benchmark::DoNotOptimize(result);
}
st.PauseTiming();
for (std::size_t i = 0; i != BatchSize; ++i) {
populate(c[i]);
}
st.ResumeTiming();
}
})
->Arg(32)
->Arg(50) // non power-of-two
->Arg(1024)
->Arg(8192);
};
// {std,ranges}::unique(it, it)
bm.operator()<std::vector<int>>("std::unique(vector<int>) (contiguous)", std_unique);
bm.operator()<std::deque<int>>("std::unique(deque<int>) (contiguous)", std_unique);
bm.operator()<std::list<int>>("std::unique(list<int>) (contiguous)", std_unique);
bm.operator()<std::vector<int>>("rng::unique(vector<int>) (contiguous)", std::ranges::unique);
bm.operator()<std::deque<int>>("rng::unique(deque<int>) (contiguous)", std::ranges::unique);
bm.operator()<std::list<int>>("rng::unique(list<int>) (contiguous)", std::ranges::unique);
// {std,ranges}::unique(it, it, pred)
bm.operator()<std::vector<int>>("std::unique(vector<int>, pred) (contiguous)", std_unique_pred);
bm.operator()<std::deque<int>>("std::unique(deque<int>, pred) (contiguous)", std_unique_pred);
bm.operator()<std::list<int>>("std::unique(list<int>, pred) (contiguous)", std_unique_pred);
bm.operator()<std::vector<int>>("rng::unique(vector<int>, pred) (contiguous)", ranges_unique_pred);
bm.operator()<std::deque<int>>("rng::unique(deque<int>, pred) (contiguous)", ranges_unique_pred);
bm.operator()<std::list<int>>("rng::unique(list<int>, pred) (contiguous)", ranges_unique_pred);
}
// Create a sequence of the form xxyyxxyyxxyyxxyyxxyy and unique
// adjacent equal elements.
//
// We perform this benchmark in a batch because we need to restore the
// state of the container after the operation.
{
auto bm = []<class Container>(std::string name, auto unique) {
benchmark::RegisterBenchmark(
name,
[unique](auto& st) {
std::size_t const size = st.range(0);
constexpr std::size_t BatchSize = 10;
using ValueType = typename Container::value_type;
Container c[BatchSize];
ValueType x = Generate<ValueType>::random();
ValueType y = random_different_from({x});
auto populate = [&](Container& cont) {
assert(cont.size() % 4 == 0);
auto out = cont.begin();
for (std::size_t i = 0; i != cont.size(); i += 4) {
*out++ = x;
*out++ = x;
*out++ = y;
*out++ = y;
}
};
for (std::size_t i = 0; i != BatchSize; ++i) {
c[i] = Container(size);
populate(c[i]);
}
while (st.KeepRunningBatch(BatchSize)) {
for (std::size_t i = 0; i != BatchSize; ++i) {
benchmark::DoNotOptimize(c[i]);
auto result = unique(c[i].begin(), c[i].end());
benchmark::DoNotOptimize(result);
}
st.PauseTiming();
for (std::size_t i = 0; i != BatchSize; ++i) {
populate(c[i]);
}
st.ResumeTiming();
}
})
->Arg(32)
->Arg(50) // non power-of-two
->Arg(1024)
->Arg(8192);
};
// {std,ranges}::unique(it, it)
bm.operator()<std::vector<int>>("std::unique(vector<int>) (sprinkled)", std_unique);
bm.operator()<std::deque<int>>("std::unique(deque<int>) (sprinkled)", std_unique);
bm.operator()<std::list<int>>("std::unique(list<int>) (sprinkled)", std_unique);
bm.operator()<std::vector<int>>("rng::unique(vector<int>) (sprinkled)", std::ranges::unique);
bm.operator()<std::deque<int>>("rng::unique(deque<int>) (sprinkled)", std::ranges::unique);
bm.operator()<std::list<int>>("rng::unique(list<int>) (sprinkled)", std::ranges::unique);
// {std,ranges}::unique(it, it, pred)
bm.operator()<std::vector<int>>("std::unique(vector<int>, pred) (sprinkled)", std_unique_pred);
bm.operator()<std::deque<int>>("std::unique(deque<int>, pred) (sprinkled)", std_unique_pred);
bm.operator()<std::list<int>>("std::unique(list<int>, pred) (sprinkled)", std_unique_pred);
bm.operator()<std::vector<int>>("rng::unique(vector<int>, pred) (sprinkled)", ranges_unique_pred);
bm.operator()<std::deque<int>>("rng::unique(deque<int>, pred) (sprinkled)", ranges_unique_pred);
bm.operator()<std::list<int>>("rng::unique(list<int>, pred) (sprinkled)", ranges_unique_pred);
}
benchmark::Initialize(&argc, argv);
benchmark::RunSpecifiedBenchmarks();
benchmark::Shutdown();
return 0;
}