llvm-project/llvm/lib/Object/ArchiveWriter.cpp
pcc c675a9be63
Object: Don't error out on malformed bitcode files.
An error reading a bitcode file most likely indicates that the file
was created by a compiler from the future. Normally we don't try to
implement forwards compatibility for bitcode files, but when creating
an archive we can implement best-effort forwards compatibility by
treating the file as a blob and not creating symbol index entries for
it. lld and mold ignore the archive symbol index, so provided that
you use one of these linkers, LTO will work as long as lld or the
gold plugin is newer than the compiler. We only ignore errors if the
archive format is one that is supported by a linker that is known to
ignore the index, otherwise there's no chance of this working so we
may as well error out. We print a warning on read failure so that
users of linkers that rely on the symbol index can diagnose the issue.

This is the same behavior as GNU ar when the linker plugin returns
an error when reading the input file. If the bitcode file is actually
malformed, it will be diagnosed at link time.

Reviewers: MaskRay, dwblaikie, jh7370

Reviewed By: MaskRay, dwblaikie, jh7370

Pull Request: https://github.com/llvm/llvm-project/pull/96848
2024-07-18 16:05:53 -07:00

1356 lines
51 KiB
C++

//===- ArchiveWriter.cpp - ar File Format implementation --------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the writeArchive function.
//
//===----------------------------------------------------------------------===//
#include "llvm/Object/ArchiveWriter.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/BinaryFormat/Magic.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/Object/Archive.h"
#include "llvm/Object/COFF.h"
#include "llvm/Object/COFFImportFile.h"
#include "llvm/Object/Error.h"
#include "llvm/Object/IRObjectFile.h"
#include "llvm/Object/MachO.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Object/SymbolicFile.h"
#include "llvm/Object/XCOFFObjectFile.h"
#include "llvm/Support/Alignment.h"
#include "llvm/Support/EndianStream.h"
#include "llvm/Support/Errc.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/SmallVectorMemoryBuffer.h"
#include "llvm/Support/raw_ostream.h"
#include <cerrno>
#include <map>
#if !defined(_MSC_VER) && !defined(__MINGW32__)
#include <unistd.h>
#else
#include <io.h>
#endif
using namespace llvm;
using namespace llvm::object;
struct SymMap {
bool UseECMap = false;
std::map<std::string, uint16_t> Map;
std::map<std::string, uint16_t> ECMap;
};
NewArchiveMember::NewArchiveMember(MemoryBufferRef BufRef)
: Buf(MemoryBuffer::getMemBuffer(BufRef, false)),
MemberName(BufRef.getBufferIdentifier()) {}
object::Archive::Kind NewArchiveMember::detectKindFromObject() const {
auto MemBufferRef = this->Buf->getMemBufferRef();
Expected<std::unique_ptr<object::ObjectFile>> OptionalObject =
object::ObjectFile::createObjectFile(MemBufferRef);
if (OptionalObject) {
if (isa<object::MachOObjectFile>(**OptionalObject))
return object::Archive::K_DARWIN;
if (isa<object::XCOFFObjectFile>(**OptionalObject))
return object::Archive::K_AIXBIG;
if (isa<object::COFFObjectFile>(**OptionalObject) ||
isa<object::COFFImportFile>(**OptionalObject))
return object::Archive::K_COFF;
return object::Archive::K_GNU;
}
// Squelch the error in case we had a non-object file.
consumeError(OptionalObject.takeError());
// If we're adding a bitcode file to the archive, detect the Archive kind
// based on the target triple.
LLVMContext Context;
if (identify_magic(MemBufferRef.getBuffer()) == file_magic::bitcode) {
if (auto ObjOrErr = object::SymbolicFile::createSymbolicFile(
MemBufferRef, file_magic::bitcode, &Context)) {
auto &IRObject = cast<object::IRObjectFile>(**ObjOrErr);
auto TargetTriple = Triple(IRObject.getTargetTriple());
return object::Archive::getDefaultKindForTriple(TargetTriple);
} else {
// Squelch the error in case this was not a SymbolicFile.
consumeError(ObjOrErr.takeError());
}
}
return object::Archive::getDefaultKind();
}
Expected<NewArchiveMember>
NewArchiveMember::getOldMember(const object::Archive::Child &OldMember,
bool Deterministic) {
Expected<llvm::MemoryBufferRef> BufOrErr = OldMember.getMemoryBufferRef();
if (!BufOrErr)
return BufOrErr.takeError();
NewArchiveMember M;
M.Buf = MemoryBuffer::getMemBuffer(*BufOrErr, false);
M.MemberName = M.Buf->getBufferIdentifier();
if (!Deterministic) {
auto ModTimeOrErr = OldMember.getLastModified();
if (!ModTimeOrErr)
return ModTimeOrErr.takeError();
M.ModTime = ModTimeOrErr.get();
Expected<unsigned> UIDOrErr = OldMember.getUID();
if (!UIDOrErr)
return UIDOrErr.takeError();
M.UID = UIDOrErr.get();
Expected<unsigned> GIDOrErr = OldMember.getGID();
if (!GIDOrErr)
return GIDOrErr.takeError();
M.GID = GIDOrErr.get();
Expected<sys::fs::perms> AccessModeOrErr = OldMember.getAccessMode();
if (!AccessModeOrErr)
return AccessModeOrErr.takeError();
M.Perms = AccessModeOrErr.get();
}
return std::move(M);
}
Expected<NewArchiveMember> NewArchiveMember::getFile(StringRef FileName,
bool Deterministic) {
sys::fs::file_status Status;
auto FDOrErr = sys::fs::openNativeFileForRead(FileName);
if (!FDOrErr)
return FDOrErr.takeError();
sys::fs::file_t FD = *FDOrErr;
assert(FD != sys::fs::kInvalidFile);
if (auto EC = sys::fs::status(FD, Status))
return errorCodeToError(EC);
// Opening a directory doesn't make sense. Let it fail.
// Linux cannot open directories with open(2), although
// cygwin and *bsd can.
if (Status.type() == sys::fs::file_type::directory_file)
return errorCodeToError(make_error_code(errc::is_a_directory));
ErrorOr<std::unique_ptr<MemoryBuffer>> MemberBufferOrErr =
MemoryBuffer::getOpenFile(FD, FileName, Status.getSize(), false);
if (!MemberBufferOrErr)
return errorCodeToError(MemberBufferOrErr.getError());
if (auto EC = sys::fs::closeFile(FD))
return errorCodeToError(EC);
NewArchiveMember M;
M.Buf = std::move(*MemberBufferOrErr);
M.MemberName = M.Buf->getBufferIdentifier();
if (!Deterministic) {
M.ModTime = std::chrono::time_point_cast<std::chrono::seconds>(
Status.getLastModificationTime());
M.UID = Status.getUser();
M.GID = Status.getGroup();
M.Perms = Status.permissions();
}
return std::move(M);
}
template <typename T>
static void printWithSpacePadding(raw_ostream &OS, T Data, unsigned Size) {
uint64_t OldPos = OS.tell();
OS << Data;
unsigned SizeSoFar = OS.tell() - OldPos;
assert(SizeSoFar <= Size && "Data doesn't fit in Size");
OS.indent(Size - SizeSoFar);
}
static bool isDarwin(object::Archive::Kind Kind) {
return Kind == object::Archive::K_DARWIN ||
Kind == object::Archive::K_DARWIN64;
}
static bool isAIXBigArchive(object::Archive::Kind Kind) {
return Kind == object::Archive::K_AIXBIG;
}
static bool isCOFFArchive(object::Archive::Kind Kind) {
return Kind == object::Archive::K_COFF;
}
static bool isBSDLike(object::Archive::Kind Kind) {
switch (Kind) {
case object::Archive::K_GNU:
case object::Archive::K_GNU64:
case object::Archive::K_AIXBIG:
case object::Archive::K_COFF:
return false;
case object::Archive::K_BSD:
case object::Archive::K_DARWIN:
case object::Archive::K_DARWIN64:
return true;
}
llvm_unreachable("not supported for writting");
}
template <class T>
static void print(raw_ostream &Out, object::Archive::Kind Kind, T Val) {
support::endian::write(Out, Val,
isBSDLike(Kind) ? llvm::endianness::little
: llvm::endianness::big);
}
template <class T> static void printLE(raw_ostream &Out, T Val) {
support::endian::write(Out, Val, llvm::endianness::little);
}
static void printRestOfMemberHeader(
raw_ostream &Out, const sys::TimePoint<std::chrono::seconds> &ModTime,
unsigned UID, unsigned GID, unsigned Perms, uint64_t Size) {
printWithSpacePadding(Out, sys::toTimeT(ModTime), 12);
// The format has only 6 chars for uid and gid. Truncate if the provided
// values don't fit.
printWithSpacePadding(Out, UID % 1000000, 6);
printWithSpacePadding(Out, GID % 1000000, 6);
printWithSpacePadding(Out, format("%o", Perms), 8);
printWithSpacePadding(Out, Size, 10);
Out << "`\n";
}
static void
printGNUSmallMemberHeader(raw_ostream &Out, StringRef Name,
const sys::TimePoint<std::chrono::seconds> &ModTime,
unsigned UID, unsigned GID, unsigned Perms,
uint64_t Size) {
printWithSpacePadding(Out, Twine(Name) + "/", 16);
printRestOfMemberHeader(Out, ModTime, UID, GID, Perms, Size);
}
static void
printBSDMemberHeader(raw_ostream &Out, uint64_t Pos, StringRef Name,
const sys::TimePoint<std::chrono::seconds> &ModTime,
unsigned UID, unsigned GID, unsigned Perms, uint64_t Size) {
uint64_t PosAfterHeader = Pos + 60 + Name.size();
// Pad so that even 64 bit object files are aligned.
unsigned Pad = offsetToAlignment(PosAfterHeader, Align(8));
unsigned NameWithPadding = Name.size() + Pad;
printWithSpacePadding(Out, Twine("#1/") + Twine(NameWithPadding), 16);
printRestOfMemberHeader(Out, ModTime, UID, GID, Perms,
NameWithPadding + Size);
Out << Name;
while (Pad--)
Out.write(uint8_t(0));
}
static void
printBigArchiveMemberHeader(raw_ostream &Out, StringRef Name,
const sys::TimePoint<std::chrono::seconds> &ModTime,
unsigned UID, unsigned GID, unsigned Perms,
uint64_t Size, uint64_t PrevOffset,
uint64_t NextOffset) {
unsigned NameLen = Name.size();
printWithSpacePadding(Out, Size, 20); // File member size
printWithSpacePadding(Out, NextOffset, 20); // Next member header offset
printWithSpacePadding(Out, PrevOffset, 20); // Previous member header offset
printWithSpacePadding(Out, sys::toTimeT(ModTime), 12); // File member date
// The big archive format has 12 chars for uid and gid.
printWithSpacePadding(Out, UID % 1000000000000, 12); // UID
printWithSpacePadding(Out, GID % 1000000000000, 12); // GID
printWithSpacePadding(Out, format("%o", Perms), 12); // Permission
printWithSpacePadding(Out, NameLen, 4); // Name length
if (NameLen) {
printWithSpacePadding(Out, Name, NameLen); // Name
if (NameLen % 2)
Out.write(uint8_t(0)); // Null byte padding
}
Out << "`\n"; // Terminator
}
static bool useStringTable(bool Thin, StringRef Name) {
return Thin || Name.size() >= 16 || Name.contains('/');
}
static bool is64BitKind(object::Archive::Kind Kind) {
switch (Kind) {
case object::Archive::K_GNU:
case object::Archive::K_BSD:
case object::Archive::K_DARWIN:
case object::Archive::K_COFF:
return false;
case object::Archive::K_AIXBIG:
case object::Archive::K_DARWIN64:
case object::Archive::K_GNU64:
return true;
}
llvm_unreachable("not supported for writting");
}
static void
printMemberHeader(raw_ostream &Out, uint64_t Pos, raw_ostream &StringTable,
StringMap<uint64_t> &MemberNames, object::Archive::Kind Kind,
bool Thin, const NewArchiveMember &M,
sys::TimePoint<std::chrono::seconds> ModTime, uint64_t Size) {
if (isBSDLike(Kind))
return printBSDMemberHeader(Out, Pos, M.MemberName, ModTime, M.UID, M.GID,
M.Perms, Size);
if (!useStringTable(Thin, M.MemberName))
return printGNUSmallMemberHeader(Out, M.MemberName, ModTime, M.UID, M.GID,
M.Perms, Size);
Out << '/';
uint64_t NamePos;
if (Thin) {
NamePos = StringTable.tell();
StringTable << M.MemberName << "/\n";
} else {
auto Insertion = MemberNames.insert({M.MemberName, uint64_t(0)});
if (Insertion.second) {
Insertion.first->second = StringTable.tell();
StringTable << M.MemberName;
if (isCOFFArchive(Kind))
StringTable << '\0';
else
StringTable << "/\n";
}
NamePos = Insertion.first->second;
}
printWithSpacePadding(Out, NamePos, 15);
printRestOfMemberHeader(Out, ModTime, M.UID, M.GID, M.Perms, Size);
}
namespace {
struct MemberData {
std::vector<unsigned> Symbols;
std::string Header;
StringRef Data;
StringRef Padding;
uint64_t PreHeadPadSize = 0;
std::unique_ptr<SymbolicFile> SymFile = nullptr;
};
} // namespace
static MemberData computeStringTable(StringRef Names) {
unsigned Size = Names.size();
unsigned Pad = offsetToAlignment(Size, Align(2));
std::string Header;
raw_string_ostream Out(Header);
printWithSpacePadding(Out, "//", 48);
printWithSpacePadding(Out, Size + Pad, 10);
Out << "`\n";
Out.flush();
return {{}, std::move(Header), Names, Pad ? "\n" : ""};
}
static sys::TimePoint<std::chrono::seconds> now(bool Deterministic) {
using namespace std::chrono;
if (!Deterministic)
return time_point_cast<seconds>(system_clock::now());
return sys::TimePoint<seconds>();
}
static bool isArchiveSymbol(const object::BasicSymbolRef &S) {
Expected<uint32_t> SymFlagsOrErr = S.getFlags();
if (!SymFlagsOrErr)
// TODO: Actually report errors helpfully.
report_fatal_error(SymFlagsOrErr.takeError());
if (*SymFlagsOrErr & object::SymbolRef::SF_FormatSpecific)
return false;
if (!(*SymFlagsOrErr & object::SymbolRef::SF_Global))
return false;
if (*SymFlagsOrErr & object::SymbolRef::SF_Undefined)
return false;
return true;
}
static void printNBits(raw_ostream &Out, object::Archive::Kind Kind,
uint64_t Val) {
if (is64BitKind(Kind))
print<uint64_t>(Out, Kind, Val);
else
print<uint32_t>(Out, Kind, Val);
}
static uint64_t computeSymbolTableSize(object::Archive::Kind Kind,
uint64_t NumSyms, uint64_t OffsetSize,
uint64_t StringTableSize,
uint32_t *Padding = nullptr) {
assert((OffsetSize == 4 || OffsetSize == 8) && "Unsupported OffsetSize");
uint64_t Size = OffsetSize; // Number of entries
if (isBSDLike(Kind))
Size += NumSyms * OffsetSize * 2; // Table
else
Size += NumSyms * OffsetSize; // Table
if (isBSDLike(Kind))
Size += OffsetSize; // byte count
Size += StringTableSize;
// ld64 expects the members to be 8-byte aligned for 64-bit content and at
// least 4-byte aligned for 32-bit content. Opt for the larger encoding
// uniformly.
// We do this for all bsd formats because it simplifies aligning members.
// For the big archive format, the symbol table is the last member, so there
// is no need to align.
uint32_t Pad = isAIXBigArchive(Kind)
? 0
: offsetToAlignment(Size, Align(isBSDLike(Kind) ? 8 : 2));
Size += Pad;
if (Padding)
*Padding = Pad;
return Size;
}
static uint64_t computeSymbolMapSize(uint64_t NumObj, SymMap &SymMap,
uint32_t *Padding = nullptr) {
uint64_t Size = sizeof(uint32_t) * 2; // Number of symbols and objects entries
Size += NumObj * sizeof(uint32_t); // Offset table
for (auto S : SymMap.Map)
Size += sizeof(uint16_t) + S.first.length() + 1;
uint32_t Pad = offsetToAlignment(Size, Align(2));
Size += Pad;
if (Padding)
*Padding = Pad;
return Size;
}
static uint64_t computeECSymbolsSize(SymMap &SymMap,
uint32_t *Padding = nullptr) {
uint64_t Size = sizeof(uint32_t); // Number of symbols
for (auto S : SymMap.ECMap)
Size += sizeof(uint16_t) + S.first.length() + 1;
uint32_t Pad = offsetToAlignment(Size, Align(2));
Size += Pad;
if (Padding)
*Padding = Pad;
return Size;
}
static void writeSymbolTableHeader(raw_ostream &Out, object::Archive::Kind Kind,
bool Deterministic, uint64_t Size,
uint64_t PrevMemberOffset = 0,
uint64_t NextMemberOffset = 0) {
if (isBSDLike(Kind)) {
const char *Name = is64BitKind(Kind) ? "__.SYMDEF_64" : "__.SYMDEF";
printBSDMemberHeader(Out, Out.tell(), Name, now(Deterministic), 0, 0, 0,
Size);
} else if (isAIXBigArchive(Kind)) {
printBigArchiveMemberHeader(Out, "", now(Deterministic), 0, 0, 0, Size,
PrevMemberOffset, NextMemberOffset);
} else {
const char *Name = is64BitKind(Kind) ? "/SYM64" : "";
printGNUSmallMemberHeader(Out, Name, now(Deterministic), 0, 0, 0, Size);
}
}
static uint64_t computeHeadersSize(object::Archive::Kind Kind,
uint64_t NumMembers,
uint64_t StringMemberSize, uint64_t NumSyms,
uint64_t SymNamesSize, SymMap *SymMap) {
uint32_t OffsetSize = is64BitKind(Kind) ? 8 : 4;
uint64_t SymtabSize =
computeSymbolTableSize(Kind, NumSyms, OffsetSize, SymNamesSize);
auto computeSymbolTableHeaderSize = [=] {
SmallString<0> TmpBuf;
raw_svector_ostream Tmp(TmpBuf);
writeSymbolTableHeader(Tmp, Kind, true, SymtabSize);
return TmpBuf.size();
};
uint32_t HeaderSize = computeSymbolTableHeaderSize();
uint64_t Size = strlen("!<arch>\n") + HeaderSize + SymtabSize;
if (SymMap) {
Size += HeaderSize + computeSymbolMapSize(NumMembers, *SymMap);
if (SymMap->ECMap.size())
Size += HeaderSize + computeECSymbolsSize(*SymMap);
}
return Size + StringMemberSize;
}
static Expected<std::unique_ptr<SymbolicFile>>
getSymbolicFile(MemoryBufferRef Buf, LLVMContext &Context,
object::Archive::Kind Kind, function_ref<void(Error)> Warn) {
const file_magic Type = identify_magic(Buf.getBuffer());
// Don't attempt to read non-symbolic file types.
if (!object::SymbolicFile::isSymbolicFile(Type, &Context))
return nullptr;
if (Type == file_magic::bitcode) {
auto ObjOrErr = object::SymbolicFile::createSymbolicFile(
Buf, file_magic::bitcode, &Context);
// An error reading a bitcode file most likely indicates that the file
// was created by a compiler from the future. Normally we don't try to
// implement forwards compatibility for bitcode files, but when creating an
// archive we can implement best-effort forwards compatibility by treating
// the file as a blob and not creating symbol index entries for it. lld and
// mold ignore the archive symbol index, so provided that you use one of
// these linkers, LTO will work as long as lld or the gold plugin is newer
// than the compiler. We only ignore errors if the archive format is one
// that is supported by a linker that is known to ignore the index,
// otherwise there's no chance of this working so we may as well error out.
// We print a warning on read failure so that users of linkers that rely on
// the symbol index can diagnose the issue.
//
// This is the same behavior as GNU ar when the linker plugin returns an
// error when reading the input file. If the bitcode file is actually
// malformed, it will be diagnosed at link time.
if (!ObjOrErr) {
switch (Kind) {
case object::Archive::K_BSD:
case object::Archive::K_GNU:
case object::Archive::K_GNU64:
Warn(ObjOrErr.takeError());
return nullptr;
case object::Archive::K_AIXBIG:
case object::Archive::K_COFF:
case object::Archive::K_DARWIN:
case object::Archive::K_DARWIN64:
return ObjOrErr.takeError();
}
}
return std::move(*ObjOrErr);
} else {
auto ObjOrErr = object::SymbolicFile::createSymbolicFile(Buf);
if (!ObjOrErr)
return ObjOrErr.takeError();
return std::move(*ObjOrErr);
}
}
static bool is64BitSymbolicFile(const SymbolicFile *SymObj) {
return SymObj != nullptr ? SymObj->is64Bit() : false;
}
// Log2 of PAGESIZE(4096) on an AIX system.
static const uint32_t Log2OfAIXPageSize = 12;
// In the AIX big archive format, since the data content follows the member file
// name, if the name ends on an odd byte, an extra byte will be added for
// padding. This ensures that the data within the member file starts at an even
// byte.
static const uint32_t MinBigArchiveMemDataAlign = 2;
template <typename AuxiliaryHeader>
uint16_t getAuxMaxAlignment(uint16_t AuxHeaderSize, AuxiliaryHeader *AuxHeader,
uint16_t Log2OfMaxAlign) {
// If the member doesn't have an auxiliary header, it isn't a loadable object
// and so it just needs aligning at the minimum value.
if (AuxHeader == nullptr)
return MinBigArchiveMemDataAlign;
// If the auxiliary header does not have both MaxAlignOfData and
// MaxAlignOfText field, it is not a loadable shared object file, so align at
// the minimum value. The 'ModuleType' member is located right after
// 'MaxAlignOfData' in the AuxiliaryHeader.
if (AuxHeaderSize < offsetof(AuxiliaryHeader, ModuleType))
return MinBigArchiveMemDataAlign;
// If the XCOFF object file does not have a loader section, it is not
// loadable, so align at the minimum value.
if (AuxHeader->SecNumOfLoader == 0)
return MinBigArchiveMemDataAlign;
// The content of the loadable member file needs to be aligned at MAX(maximum
// alignment of .text, maximum alignment of .data) if there are both fields.
// If the desired alignment is > PAGESIZE, 32-bit members are aligned on a
// word boundary, while 64-bit members are aligned on a PAGESIZE(2^12=4096)
// boundary.
uint16_t Log2OfAlign =
std::max(AuxHeader->MaxAlignOfText, AuxHeader->MaxAlignOfData);
return 1 << (Log2OfAlign > Log2OfAIXPageSize ? Log2OfMaxAlign : Log2OfAlign);
}
// AIX big archives may contain shared object members. The AIX OS requires these
// members to be aligned if they are 64-bit and recommends it for 32-bit
// members. This ensures that when these members are loaded they are aligned in
// memory.
static uint32_t getMemberAlignment(SymbolicFile *SymObj) {
XCOFFObjectFile *XCOFFObj = dyn_cast_or_null<XCOFFObjectFile>(SymObj);
if (!XCOFFObj)
return MinBigArchiveMemDataAlign;
// If the desired alignment is > PAGESIZE, 32-bit members are aligned on a
// word boundary, while 64-bit members are aligned on a PAGESIZE boundary.
return XCOFFObj->is64Bit()
? getAuxMaxAlignment(XCOFFObj->fileHeader64()->AuxHeaderSize,
XCOFFObj->auxiliaryHeader64(),
Log2OfAIXPageSize)
: getAuxMaxAlignment(XCOFFObj->fileHeader32()->AuxHeaderSize,
XCOFFObj->auxiliaryHeader32(), 2);
}
static void writeSymbolTable(raw_ostream &Out, object::Archive::Kind Kind,
bool Deterministic, ArrayRef<MemberData> Members,
StringRef StringTable, uint64_t MembersOffset,
unsigned NumSyms, uint64_t PrevMemberOffset = 0,
uint64_t NextMemberOffset = 0,
bool Is64Bit = false) {
// We don't write a symbol table on an archive with no members -- except on
// Darwin, where the linker will abort unless the archive has a symbol table.
if (StringTable.empty() && !isDarwin(Kind) && !isCOFFArchive(Kind))
return;
uint64_t OffsetSize = is64BitKind(Kind) ? 8 : 4;
uint32_t Pad;
uint64_t Size = computeSymbolTableSize(Kind, NumSyms, OffsetSize,
StringTable.size(), &Pad);
writeSymbolTableHeader(Out, Kind, Deterministic, Size, PrevMemberOffset,
NextMemberOffset);
if (isBSDLike(Kind))
printNBits(Out, Kind, NumSyms * 2 * OffsetSize);
else
printNBits(Out, Kind, NumSyms);
uint64_t Pos = MembersOffset;
for (const MemberData &M : Members) {
if (isAIXBigArchive(Kind)) {
Pos += M.PreHeadPadSize;
if (is64BitSymbolicFile(M.SymFile.get()) != Is64Bit) {
Pos += M.Header.size() + M.Data.size() + M.Padding.size();
continue;
}
}
for (unsigned StringOffset : M.Symbols) {
if (isBSDLike(Kind))
printNBits(Out, Kind, StringOffset);
printNBits(Out, Kind, Pos); // member offset
}
Pos += M.Header.size() + M.Data.size() + M.Padding.size();
}
if (isBSDLike(Kind))
// byte count of the string table
printNBits(Out, Kind, StringTable.size());
Out << StringTable;
while (Pad--)
Out.write(uint8_t(0));
}
static void writeSymbolMap(raw_ostream &Out, object::Archive::Kind Kind,
bool Deterministic, ArrayRef<MemberData> Members,
SymMap &SymMap, uint64_t MembersOffset) {
uint32_t Pad;
uint64_t Size = computeSymbolMapSize(Members.size(), SymMap, &Pad);
writeSymbolTableHeader(Out, Kind, Deterministic, Size, 0);
uint32_t Pos = MembersOffset;
printLE<uint32_t>(Out, Members.size());
for (const MemberData &M : Members) {
printLE(Out, Pos); // member offset
Pos += M.Header.size() + M.Data.size() + M.Padding.size();
}
printLE<uint32_t>(Out, SymMap.Map.size());
for (auto S : SymMap.Map)
printLE(Out, S.second);
for (auto S : SymMap.Map)
Out << S.first << '\0';
while (Pad--)
Out.write(uint8_t(0));
}
static void writeECSymbols(raw_ostream &Out, object::Archive::Kind Kind,
bool Deterministic, ArrayRef<MemberData> Members,
SymMap &SymMap) {
uint32_t Pad;
uint64_t Size = computeECSymbolsSize(SymMap, &Pad);
printGNUSmallMemberHeader(Out, "/<ECSYMBOLS>", now(Deterministic), 0, 0, 0,
Size);
printLE<uint32_t>(Out, SymMap.ECMap.size());
for (auto S : SymMap.ECMap)
printLE(Out, S.second);
for (auto S : SymMap.ECMap)
Out << S.first << '\0';
while (Pad--)
Out.write(uint8_t(0));
}
static bool isECObject(object::SymbolicFile &Obj) {
if (Obj.isCOFF())
return cast<llvm::object::COFFObjectFile>(&Obj)->getMachine() !=
COFF::IMAGE_FILE_MACHINE_ARM64;
if (Obj.isCOFFImportFile())
return cast<llvm::object::COFFImportFile>(&Obj)->getMachine() !=
COFF::IMAGE_FILE_MACHINE_ARM64;
if (Obj.isIR()) {
Expected<std::string> TripleStr =
getBitcodeTargetTriple(Obj.getMemoryBufferRef());
if (!TripleStr)
return false;
Triple T(*TripleStr);
return T.isWindowsArm64EC() || T.getArch() == Triple::x86_64;
}
return false;
}
static bool isAnyArm64COFF(object::SymbolicFile &Obj) {
if (Obj.isCOFF())
return COFF::isAnyArm64(cast<COFFObjectFile>(&Obj)->getMachine());
if (Obj.isCOFFImportFile())
return COFF::isAnyArm64(cast<COFFImportFile>(&Obj)->getMachine());
if (Obj.isIR()) {
Expected<std::string> TripleStr =
getBitcodeTargetTriple(Obj.getMemoryBufferRef());
if (!TripleStr)
return false;
Triple T(*TripleStr);
return T.isOSWindows() && T.getArch() == Triple::aarch64;
}
return false;
}
bool isImportDescriptor(StringRef Name) {
return Name.starts_with(ImportDescriptorPrefix) ||
Name == StringRef{NullImportDescriptorSymbolName} ||
(Name.starts_with(NullThunkDataPrefix) &&
Name.ends_with(NullThunkDataSuffix));
}
static Expected<std::vector<unsigned>> getSymbols(SymbolicFile *Obj,
uint16_t Index,
raw_ostream &SymNames,
SymMap *SymMap) {
std::vector<unsigned> Ret;
if (Obj == nullptr)
return Ret;
std::map<std::string, uint16_t> *Map = nullptr;
if (SymMap)
Map = SymMap->UseECMap && isECObject(*Obj) ? &SymMap->ECMap : &SymMap->Map;
for (const object::BasicSymbolRef &S : Obj->symbols()) {
if (!isArchiveSymbol(S))
continue;
if (Map) {
std::string Name;
raw_string_ostream NameStream(Name);
if (Error E = S.printName(NameStream))
return std::move(E);
if (Map->find(Name) != Map->end())
continue; // ignore duplicated symbol
(*Map)[Name] = Index;
if (Map == &SymMap->Map) {
Ret.push_back(SymNames.tell());
SymNames << Name << '\0';
// If EC is enabled, then the import descriptors are NOT put into EC
// objects so we need to copy them to the EC map manually.
if (SymMap->UseECMap && isImportDescriptor(Name))
SymMap->ECMap[Name] = Index;
}
} else {
Ret.push_back(SymNames.tell());
if (Error E = S.printName(SymNames))
return std::move(E);
SymNames << '\0';
}
}
return Ret;
}
static Expected<std::vector<MemberData>>
computeMemberData(raw_ostream &StringTable, raw_ostream &SymNames,
object::Archive::Kind Kind, bool Thin, bool Deterministic,
SymtabWritingMode NeedSymbols, SymMap *SymMap,
LLVMContext &Context, ArrayRef<NewArchiveMember> NewMembers,
std::optional<bool> IsEC, function_ref<void(Error)> Warn) {
static char PaddingData[8] = {'\n', '\n', '\n', '\n', '\n', '\n', '\n', '\n'};
uint64_t MemHeadPadSize = 0;
uint64_t Pos =
isAIXBigArchive(Kind) ? sizeof(object::BigArchive::FixLenHdr) : 0;
std::vector<MemberData> Ret;
bool HasObject = false;
// Deduplicate long member names in the string table and reuse earlier name
// offsets. This especially saves space for COFF Import libraries where all
// members have the same name.
StringMap<uint64_t> MemberNames;
// UniqueTimestamps is a special case to improve debugging on Darwin:
//
// The Darwin linker does not link debug info into the final
// binary. Instead, it emits entries of type N_OSO in the output
// binary's symbol table, containing references to the linked-in
// object files. Using that reference, the debugger can read the
// debug data directly from the object files. Alternatively, an
// invocation of 'dsymutil' will link the debug data from the object
// files into a dSYM bundle, which can be loaded by the debugger,
// instead of the object files.
//
// For an object file, the N_OSO entries contain the absolute path
// path to the file, and the file's timestamp. For an object
// included in an archive, the path is formatted like
// "/absolute/path/to/archive.a(member.o)", and the timestamp is the
// archive member's timestamp, rather than the archive's timestamp.
//
// However, this doesn't always uniquely identify an object within
// an archive -- an archive file can have multiple entries with the
// same filename. (This will happen commonly if the original object
// files started in different directories.) The only way they get
// distinguished, then, is via the timestamp. But this process is
// unable to find the correct object file in the archive when there
// are two files of the same name and timestamp.
//
// Additionally, timestamp==0 is treated specially, and causes the
// timestamp to be ignored as a match criteria.
//
// That will "usually" work out okay when creating an archive not in
// deterministic timestamp mode, because the objects will probably
// have been created at different timestamps.
//
// To ameliorate this problem, in deterministic archive mode (which
// is the default), on Darwin we will emit a unique non-zero
// timestamp for each entry with a duplicated name. This is still
// deterministic: the only thing affecting that timestamp is the
// order of the files in the resultant archive.
//
// See also the functions that handle the lookup:
// in lldb: ObjectContainerBSDArchive::Archive::FindObject()
// in llvm/tools/dsymutil: BinaryHolder::GetArchiveMemberBuffers().
bool UniqueTimestamps = Deterministic && isDarwin(Kind);
std::map<StringRef, unsigned> FilenameCount;
if (UniqueTimestamps) {
for (const NewArchiveMember &M : NewMembers)
FilenameCount[M.MemberName]++;
for (auto &Entry : FilenameCount)
Entry.second = Entry.second > 1 ? 1 : 0;
}
std::vector<std::unique_ptr<SymbolicFile>> SymFiles;
if (NeedSymbols != SymtabWritingMode::NoSymtab || isAIXBigArchive(Kind)) {
for (const NewArchiveMember &M : NewMembers) {
Expected<std::unique_ptr<SymbolicFile>> SymFileOrErr = getSymbolicFile(
M.Buf->getMemBufferRef(), Context, Kind, [&](Error Err) {
Warn(createFileError(M.MemberName, std::move(Err)));
});
if (!SymFileOrErr)
return createFileError(M.MemberName, SymFileOrErr.takeError());
SymFiles.push_back(std::move(*SymFileOrErr));
}
}
if (SymMap) {
if (IsEC) {
SymMap->UseECMap = *IsEC;
} else {
// When IsEC is not specified by the caller, use it when we have both
// any ARM64 object (ARM64 or ARM64EC) and any EC object (ARM64EC or
// AMD64). This may be a single ARM64EC object, but may also be separate
// ARM64 and AMD64 objects.
bool HaveArm64 = false, HaveEC = false;
for (std::unique_ptr<SymbolicFile> &SymFile : SymFiles) {
if (!SymFile)
continue;
if (!HaveArm64)
HaveArm64 = isAnyArm64COFF(*SymFile);
if (!HaveEC)
HaveEC = isECObject(*SymFile);
if (HaveArm64 && HaveEC) {
SymMap->UseECMap = true;
break;
}
}
}
}
// The big archive format needs to know the offset of the previous member
// header.
uint64_t PrevOffset = 0;
uint64_t NextMemHeadPadSize = 0;
for (uint32_t Index = 0; Index < NewMembers.size(); ++Index) {
const NewArchiveMember *M = &NewMembers[Index];
std::string Header;
raw_string_ostream Out(Header);
MemoryBufferRef Buf = M->Buf->getMemBufferRef();
StringRef Data = Thin ? "" : Buf.getBuffer();
// ld64 expects the members to be 8-byte aligned for 64-bit content and at
// least 4-byte aligned for 32-bit content. Opt for the larger encoding
// uniformly. This matches the behaviour with cctools and ensures that ld64
// is happy with archives that we generate.
unsigned MemberPadding =
isDarwin(Kind) ? offsetToAlignment(Data.size(), Align(8)) : 0;
unsigned TailPadding =
offsetToAlignment(Data.size() + MemberPadding, Align(2));
StringRef Padding = StringRef(PaddingData, MemberPadding + TailPadding);
sys::TimePoint<std::chrono::seconds> ModTime;
if (UniqueTimestamps)
// Increment timestamp for each file of a given name.
ModTime = sys::toTimePoint(FilenameCount[M->MemberName]++);
else
ModTime = M->ModTime;
uint64_t Size = Buf.getBufferSize() + MemberPadding;
if (Size > object::Archive::MaxMemberSize) {
std::string StringMsg =
"File " + M->MemberName.str() + " exceeds size limit";
return make_error<object::GenericBinaryError>(
std::move(StringMsg), object::object_error::parse_failed);
}
std::unique_ptr<SymbolicFile> CurSymFile;
if (!SymFiles.empty())
CurSymFile = std::move(SymFiles[Index]);
// In the big archive file format, we need to calculate and include the next
// member offset and previous member offset in the file member header.
if (isAIXBigArchive(Kind)) {
uint64_t OffsetToMemData = Pos + sizeof(object::BigArMemHdrType) +
alignTo(M->MemberName.size(), 2);
if (M == NewMembers.begin())
NextMemHeadPadSize =
alignToPowerOf2(OffsetToMemData,
getMemberAlignment(CurSymFile.get())) -
OffsetToMemData;
MemHeadPadSize = NextMemHeadPadSize;
Pos += MemHeadPadSize;
uint64_t NextOffset = Pos + sizeof(object::BigArMemHdrType) +
alignTo(M->MemberName.size(), 2) + alignTo(Size, 2);
// If there is another member file after this, we need to calculate the
// padding before the header.
if (Index + 1 != SymFiles.size()) {
uint64_t OffsetToNextMemData =
NextOffset + sizeof(object::BigArMemHdrType) +
alignTo(NewMembers[Index + 1].MemberName.size(), 2);
NextMemHeadPadSize =
alignToPowerOf2(OffsetToNextMemData,
getMemberAlignment(SymFiles[Index + 1].get())) -
OffsetToNextMemData;
NextOffset += NextMemHeadPadSize;
}
printBigArchiveMemberHeader(Out, M->MemberName, ModTime, M->UID, M->GID,
M->Perms, Size, PrevOffset, NextOffset);
PrevOffset = Pos;
} else {
printMemberHeader(Out, Pos, StringTable, MemberNames, Kind, Thin, *M,
ModTime, Size);
}
Out.flush();
std::vector<unsigned> Symbols;
if (NeedSymbols != SymtabWritingMode::NoSymtab) {
Expected<std::vector<unsigned>> SymbolsOrErr =
getSymbols(CurSymFile.get(), Index + 1, SymNames, SymMap);
if (!SymbolsOrErr)
return createFileError(M->MemberName, SymbolsOrErr.takeError());
Symbols = std::move(*SymbolsOrErr);
if (CurSymFile)
HasObject = true;
}
Pos += Header.size() + Data.size() + Padding.size();
Ret.push_back({std::move(Symbols), std::move(Header), Data, Padding,
MemHeadPadSize, std::move(CurSymFile)});
}
// If there are no symbols, emit an empty symbol table, to satisfy Solaris
// tools, older versions of which expect a symbol table in a non-empty
// archive, regardless of whether there are any symbols in it.
if (HasObject && SymNames.tell() == 0 && !isCOFFArchive(Kind))
SymNames << '\0' << '\0' << '\0';
return std::move(Ret);
}
namespace llvm {
static ErrorOr<SmallString<128>> canonicalizePath(StringRef P) {
SmallString<128> Ret = P;
std::error_code Err = sys::fs::make_absolute(Ret);
if (Err)
return Err;
sys::path::remove_dots(Ret, /*removedotdot*/ true);
return Ret;
}
// Compute the relative path from From to To.
Expected<std::string> computeArchiveRelativePath(StringRef From, StringRef To) {
ErrorOr<SmallString<128>> PathToOrErr = canonicalizePath(To);
ErrorOr<SmallString<128>> DirFromOrErr = canonicalizePath(From);
if (!PathToOrErr || !DirFromOrErr)
return errorCodeToError(errnoAsErrorCode());
const SmallString<128> &PathTo = *PathToOrErr;
const SmallString<128> &DirFrom = sys::path::parent_path(*DirFromOrErr);
// Can't construct a relative path between different roots
if (sys::path::root_name(PathTo) != sys::path::root_name(DirFrom))
return sys::path::convert_to_slash(PathTo);
// Skip common prefixes
auto FromTo =
std::mismatch(sys::path::begin(DirFrom), sys::path::end(DirFrom),
sys::path::begin(PathTo));
auto FromI = FromTo.first;
auto ToI = FromTo.second;
// Construct relative path
SmallString<128> Relative;
for (auto FromE = sys::path::end(DirFrom); FromI != FromE; ++FromI)
sys::path::append(Relative, sys::path::Style::posix, "..");
for (auto ToE = sys::path::end(PathTo); ToI != ToE; ++ToI)
sys::path::append(Relative, sys::path::Style::posix, *ToI);
return std::string(Relative);
}
Error writeArchiveToStream(raw_ostream &Out,
ArrayRef<NewArchiveMember> NewMembers,
SymtabWritingMode WriteSymtab,
object::Archive::Kind Kind, bool Deterministic,
bool Thin, std::optional<bool> IsEC,
function_ref<void(Error)> Warn) {
assert((!Thin || !isBSDLike(Kind)) && "Only the gnu format has a thin mode");
SmallString<0> SymNamesBuf;
raw_svector_ostream SymNames(SymNamesBuf);
SmallString<0> StringTableBuf;
raw_svector_ostream StringTable(StringTableBuf);
SymMap SymMap;
bool ShouldWriteSymtab = WriteSymtab != SymtabWritingMode::NoSymtab;
// COFF symbol map uses 16-bit indexes, so we can't use it if there are too
// many members. COFF format also requires symbol table presence, so use
// GNU format when NoSymtab is requested.
if (isCOFFArchive(Kind) && (NewMembers.size() > 0xfffe || !ShouldWriteSymtab))
Kind = object::Archive::K_GNU;
// In the scenario when LLVMContext is populated SymbolicFile will contain a
// reference to it, thus SymbolicFile should be destroyed first.
LLVMContext Context;
Expected<std::vector<MemberData>> DataOrErr = computeMemberData(
StringTable, SymNames, Kind, Thin, Deterministic, WriteSymtab,
isCOFFArchive(Kind) ? &SymMap : nullptr, Context, NewMembers, IsEC, Warn);
if (Error E = DataOrErr.takeError())
return E;
std::vector<MemberData> &Data = *DataOrErr;
uint64_t StringTableSize = 0;
MemberData StringTableMember;
if (!StringTableBuf.empty() && !isAIXBigArchive(Kind)) {
StringTableMember = computeStringTable(StringTableBuf);
StringTableSize = StringTableMember.Header.size() +
StringTableMember.Data.size() +
StringTableMember.Padding.size();
}
// We would like to detect if we need to switch to a 64-bit symbol table.
uint64_t LastMemberEndOffset = 0;
uint64_t LastMemberHeaderOffset = 0;
uint64_t NumSyms = 0;
uint64_t NumSyms32 = 0; // Store symbol number of 32-bit member files.
for (const auto &M : Data) {
// Record the start of the member's offset
LastMemberEndOffset += M.PreHeadPadSize;
LastMemberHeaderOffset = LastMemberEndOffset;
// Account for the size of each part associated with the member.
LastMemberEndOffset += M.Header.size() + M.Data.size() + M.Padding.size();
NumSyms += M.Symbols.size();
// AIX big archive files may contain two global symbol tables. The
// first global symbol table locates 32-bit file members that define global
// symbols; the second global symbol table does the same for 64-bit file
// members. As a big archive can have both 32-bit and 64-bit file members,
// we need to know the number of symbols in each symbol table individually.
if (isAIXBigArchive(Kind) && ShouldWriteSymtab) {
if (!is64BitSymbolicFile(M.SymFile.get()))
NumSyms32 += M.Symbols.size();
}
}
std::optional<uint64_t> HeadersSize;
// The symbol table is put at the end of the big archive file. The symbol
// table is at the start of the archive file for other archive formats.
if (ShouldWriteSymtab && !is64BitKind(Kind)) {
// We assume 32-bit offsets to see if 32-bit symbols are possible or not.
HeadersSize = computeHeadersSize(Kind, Data.size(), StringTableSize,
NumSyms, SymNamesBuf.size(),
isCOFFArchive(Kind) ? &SymMap : nullptr);
// The SYM64 format is used when an archive's member offsets are larger than
// 32-bits can hold. The need for this shift in format is detected by
// writeArchive. To test this we need to generate a file with a member that
// has an offset larger than 32-bits but this demands a very slow test. To
// speed the test up we use this environment variable to pretend like the
// cutoff happens before 32-bits and instead happens at some much smaller
// value.
uint64_t Sym64Threshold = 1ULL << 32;
const char *Sym64Env = std::getenv("SYM64_THRESHOLD");
if (Sym64Env)
StringRef(Sym64Env).getAsInteger(10, Sym64Threshold);
// If LastMemberHeaderOffset isn't going to fit in a 32-bit varible we need
// to switch to 64-bit. Note that the file can be larger than 4GB as long as
// the last member starts before the 4GB offset.
if (*HeadersSize + LastMemberHeaderOffset >= Sym64Threshold) {
if (Kind == object::Archive::K_DARWIN)
Kind = object::Archive::K_DARWIN64;
else
Kind = object::Archive::K_GNU64;
HeadersSize.reset();
}
}
if (Thin)
Out << "!<thin>\n";
else if (isAIXBigArchive(Kind))
Out << "<bigaf>\n";
else
Out << "!<arch>\n";
if (!isAIXBigArchive(Kind)) {
if (ShouldWriteSymtab) {
if (!HeadersSize)
HeadersSize = computeHeadersSize(
Kind, Data.size(), StringTableSize, NumSyms, SymNamesBuf.size(),
isCOFFArchive(Kind) ? &SymMap : nullptr);
writeSymbolTable(Out, Kind, Deterministic, Data, SymNamesBuf,
*HeadersSize, NumSyms);
if (isCOFFArchive(Kind))
writeSymbolMap(Out, Kind, Deterministic, Data, SymMap, *HeadersSize);
}
if (StringTableSize)
Out << StringTableMember.Header << StringTableMember.Data
<< StringTableMember.Padding;
if (ShouldWriteSymtab && SymMap.ECMap.size())
writeECSymbols(Out, Kind, Deterministic, Data, SymMap);
for (const MemberData &M : Data)
Out << M.Header << M.Data << M.Padding;
} else {
HeadersSize = sizeof(object::BigArchive::FixLenHdr);
LastMemberEndOffset += *HeadersSize;
LastMemberHeaderOffset += *HeadersSize;
// For the big archive (AIX) format, compute a table of member names and
// offsets, used in the member table.
uint64_t MemberTableNameStrTblSize = 0;
std::vector<size_t> MemberOffsets;
std::vector<StringRef> MemberNames;
// Loop across object to find offset and names.
uint64_t MemberEndOffset = sizeof(object::BigArchive::FixLenHdr);
for (size_t I = 0, Size = NewMembers.size(); I != Size; ++I) {
const NewArchiveMember &Member = NewMembers[I];
MemberTableNameStrTblSize += Member.MemberName.size() + 1;
MemberEndOffset += Data[I].PreHeadPadSize;
MemberOffsets.push_back(MemberEndOffset);
MemberNames.push_back(Member.MemberName);
// File member name ended with "`\n". The length is included in
// BigArMemHdrType.
MemberEndOffset += sizeof(object::BigArMemHdrType) +
alignTo(Data[I].Data.size(), 2) +
alignTo(Member.MemberName.size(), 2);
}
// AIX member table size.
uint64_t MemberTableSize = 20 + // Number of members field
20 * MemberOffsets.size() +
MemberTableNameStrTblSize;
SmallString<0> SymNamesBuf32;
SmallString<0> SymNamesBuf64;
raw_svector_ostream SymNames32(SymNamesBuf32);
raw_svector_ostream SymNames64(SymNamesBuf64);
if (ShouldWriteSymtab && NumSyms)
// Generate the symbol names for the members.
for (const auto &M : Data) {
Expected<std::vector<unsigned>> SymbolsOrErr = getSymbols(
M.SymFile.get(), 0,
is64BitSymbolicFile(M.SymFile.get()) ? SymNames64 : SymNames32,
nullptr);
if (!SymbolsOrErr)
return SymbolsOrErr.takeError();
}
uint64_t MemberTableEndOffset =
LastMemberEndOffset +
alignTo(sizeof(object::BigArMemHdrType) + MemberTableSize, 2);
// In AIX OS, The 'GlobSymOffset' field in the fixed-length header contains
// the offset to the 32-bit global symbol table, and the 'GlobSym64Offset'
// contains the offset to the 64-bit global symbol table.
uint64_t GlobalSymbolOffset =
(ShouldWriteSymtab &&
(WriteSymtab != SymtabWritingMode::BigArchive64) && NumSyms32 > 0)
? MemberTableEndOffset
: 0;
uint64_t GlobalSymbolOffset64 = 0;
uint64_t NumSyms64 = NumSyms - NumSyms32;
if (ShouldWriteSymtab && (WriteSymtab != SymtabWritingMode::BigArchive32) &&
NumSyms64 > 0) {
if (GlobalSymbolOffset == 0)
GlobalSymbolOffset64 = MemberTableEndOffset;
else
// If there is a global symbol table for 32-bit members,
// the 64-bit global symbol table is after the 32-bit one.
GlobalSymbolOffset64 =
GlobalSymbolOffset + sizeof(object::BigArMemHdrType) +
(NumSyms32 + 1) * 8 + alignTo(SymNamesBuf32.size(), 2);
}
// Fixed Sized Header.
printWithSpacePadding(Out, NewMembers.size() ? LastMemberEndOffset : 0,
20); // Offset to member table
// If there are no file members in the archive, there will be no global
// symbol table.
printWithSpacePadding(Out, GlobalSymbolOffset, 20);
printWithSpacePadding(Out, GlobalSymbolOffset64, 20);
printWithSpacePadding(Out,
NewMembers.size()
? sizeof(object::BigArchive::FixLenHdr) +
Data[0].PreHeadPadSize
: 0,
20); // Offset to first archive member
printWithSpacePadding(Out, NewMembers.size() ? LastMemberHeaderOffset : 0,
20); // Offset to last archive member
printWithSpacePadding(
Out, 0,
20); // Offset to first member of free list - Not supported yet
for (const MemberData &M : Data) {
Out << std::string(M.PreHeadPadSize, '\0');
Out << M.Header << M.Data;
if (M.Data.size() % 2)
Out << '\0';
}
if (NewMembers.size()) {
// Member table.
printBigArchiveMemberHeader(Out, "", sys::toTimePoint(0), 0, 0, 0,
MemberTableSize, LastMemberHeaderOffset,
GlobalSymbolOffset ? GlobalSymbolOffset
: GlobalSymbolOffset64);
printWithSpacePadding(Out, MemberOffsets.size(), 20); // Number of members
for (uint64_t MemberOffset : MemberOffsets)
printWithSpacePadding(Out, MemberOffset,
20); // Offset to member file header.
for (StringRef MemberName : MemberNames)
Out << MemberName << '\0'; // Member file name, null byte padding.
if (MemberTableNameStrTblSize % 2)
Out << '\0'; // Name table must be tail padded to an even number of
// bytes.
if (ShouldWriteSymtab) {
// Write global symbol table for 32-bit file members.
if (GlobalSymbolOffset) {
writeSymbolTable(Out, Kind, Deterministic, Data, SymNamesBuf32,
*HeadersSize, NumSyms32, LastMemberEndOffset,
GlobalSymbolOffset64);
// Add padding between the symbol tables, if needed.
if (GlobalSymbolOffset64 && (SymNamesBuf32.size() % 2))
Out << '\0';
}
// Write global symbol table for 64-bit file members.
if (GlobalSymbolOffset64)
writeSymbolTable(Out, Kind, Deterministic, Data, SymNamesBuf64,
*HeadersSize, NumSyms64,
GlobalSymbolOffset ? GlobalSymbolOffset
: LastMemberEndOffset,
0, true);
}
}
}
Out.flush();
return Error::success();
}
void warnToStderr(Error Err) {
llvm::logAllUnhandledErrors(std::move(Err), llvm::errs(), "warning: ");
}
Error writeArchive(StringRef ArcName, ArrayRef<NewArchiveMember> NewMembers,
SymtabWritingMode WriteSymtab, object::Archive::Kind Kind,
bool Deterministic, bool Thin,
std::unique_ptr<MemoryBuffer> OldArchiveBuf,
std::optional<bool> IsEC, function_ref<void(Error)> Warn) {
Expected<sys::fs::TempFile> Temp =
sys::fs::TempFile::create(ArcName + ".temp-archive-%%%%%%%.a");
if (!Temp)
return Temp.takeError();
raw_fd_ostream Out(Temp->FD, false);
if (Error E = writeArchiveToStream(Out, NewMembers, WriteSymtab, Kind,
Deterministic, Thin, IsEC, Warn)) {
if (Error DiscardError = Temp->discard())
return joinErrors(std::move(E), std::move(DiscardError));
return E;
}
// At this point, we no longer need whatever backing memory
// was used to generate the NewMembers. On Windows, this buffer
// could be a mapped view of the file we want to replace (if
// we're updating an existing archive, say). In that case, the
// rename would still succeed, but it would leave behind a
// temporary file (actually the original file renamed) because
// a file cannot be deleted while there's a handle open on it,
// only renamed. So by freeing this buffer, this ensures that
// the last open handle on the destination file, if any, is
// closed before we attempt to rename.
OldArchiveBuf.reset();
return Temp->keep(ArcName);
}
Expected<std::unique_ptr<MemoryBuffer>>
writeArchiveToBuffer(ArrayRef<NewArchiveMember> NewMembers,
SymtabWritingMode WriteSymtab, object::Archive::Kind Kind,
bool Deterministic, bool Thin,
function_ref<void(Error)> Warn) {
SmallVector<char, 0> ArchiveBufferVector;
raw_svector_ostream ArchiveStream(ArchiveBufferVector);
if (Error E =
writeArchiveToStream(ArchiveStream, NewMembers, WriteSymtab, Kind,
Deterministic, Thin, std::nullopt, Warn))
return std::move(E);
return std::make_unique<SmallVectorMemoryBuffer>(
std::move(ArchiveBufferVector), /*RequiresNullTerminator=*/false);
}
} // namespace llvm