llvm-project/clang/test/CodeGenCXX/member-function-pointers.cpp
Mark Seaborn edf0d38c9d Use ARM-style representation for C++ method pointers under PNaCl/Emscripten
Before this change, Clang uses the x86 representation for C++ method
pointers when generating code for PNaCl.  However, the resulting code
will assume that function pointers are 0 mod 2.  This assumption is
not safe for PNaCl, where function pointers could have any value
(especially in future sandboxing models).

So, switch to using the ARM representation for PNaCl code, which makes
no assumptions about the alignment of function pointers.

Since we're changing the "le32" target, this change also applies to
Emscripten.  The change is beneficial for Emscripten too.  Emscripten
has a workaround to make function pointers 0 mod 2.  This change would
allow the workaround to be removed.

See: https://code.google.com/p/nativeclient/issues/detail?id=3450
llvm-svn: 187051
2013-07-24 16:25:13 +00:00

293 lines
8.7 KiB
C++

// RUN: %clang_cc1 %s -emit-llvm -o - -triple=x86_64-unknown-unknown | FileCheck -check-prefix CODE-LP64 %s
// RUN: %clang_cc1 %s -emit-llvm -o - -triple=i386-unknown-unknown | FileCheck -check-prefix CODE-LP32 %s
// RUN: %clang_cc1 %s -emit-llvm -o - -triple=x86_64-unknown-unknown | FileCheck -check-prefix GLOBAL-LP64 %s
// RUN: %clang_cc1 %s -emit-llvm -o - -triple=i386-unknown-unknown | FileCheck -check-prefix GLOBAL-LP32 %s
// RUN: %clang_cc1 %s -emit-llvm -o - -triple=armv7-unknown-unknown | FileCheck -check-prefix GLOBAL-ARM %s
// PNaCl uses the same representation of method pointers as ARM.
// RUN: %clang_cc1 %s -emit-llvm -o - -triple=le32-unknown-nacl | FileCheck -check-prefix GLOBAL-ARM %s
struct A { int a; void f(); virtual void vf1(); virtual void vf2(); };
struct B { int b; virtual void g(); };
struct C : B, A { };
void (A::*pa)();
void (A::*volatile vpa)();
void (B::*pb)();
void (C::*pc)();
// GLOBAL-LP64: @pa2 = global { i64, i64 } { i64 ptrtoint (void (%struct.A*)* @_ZN1A1fEv to i64), i64 0 }, align 8
void (A::*pa2)() = &A::f;
// GLOBAL-LP64: @pa3 = global { i64, i64 } { i64 1, i64 0 }, align 8
// GLOBAL-LP32: @pa3 = global { i32, i32 } { i32 1, i32 0 }, align 4
void (A::*pa3)() = &A::vf1;
// GLOBAL-LP64: @pa4 = global { i64, i64 } { i64 9, i64 0 }, align 8
// GLOBAL-LP32: @pa4 = global { i32, i32 } { i32 5, i32 0 }, align 4
void (A::*pa4)() = &A::vf2;
// GLOBAL-LP64: @pc2 = global { i64, i64 } { i64 ptrtoint (void (%struct.A*)* @_ZN1A1fEv to i64), i64 16 }, align 8
void (C::*pc2)() = &C::f;
// GLOBAL-LP64: @pc3 = global { i64, i64 } { i64 1, i64 0 }, align 8
void (A::*pc3)() = &A::vf1;
void f() {
// CODE-LP64: store { i64, i64 } zeroinitializer, { i64, i64 }* @pa
pa = 0;
// Is this okay? What are LLVM's volatile semantics for structs?
// CODE-LP64: store volatile { i64, i64 } zeroinitializer, { i64, i64 }* @vpa
vpa = 0;
// CODE-LP64: [[TMP:%.*]] = load { i64, i64 }* @pa, align 8
// CODE-LP64: [[TMPADJ:%.*]] = extractvalue { i64, i64 } [[TMP]], 1
// CODE-LP64: [[ADJ:%.*]] = add nsw i64 [[TMPADJ]], 16
// CODE-LP64: [[RES:%.*]] = insertvalue { i64, i64 } [[TMP]], i64 [[ADJ]], 1
// CODE-LP64: store { i64, i64 } [[RES]], { i64, i64 }* @pc, align 8
pc = pa;
// CODE-LP64: [[TMP:%.*]] = load { i64, i64 }* @pc, align 8
// CODE-LP64: [[TMPADJ:%.*]] = extractvalue { i64, i64 } [[TMP]], 1
// CODE-LP64: [[ADJ:%.*]] = sub nsw i64 [[TMPADJ]], 16
// CODE-LP64: [[RES:%.*]] = insertvalue { i64, i64 } [[TMP]], i64 [[ADJ]], 1
// CODE-LP64: store { i64, i64 } [[RES]], { i64, i64 }* @pa, align 8
pa = static_cast<void (A::*)()>(pc);
}
void f2() {
// CODE-LP64: store { i64, i64 } { i64 ptrtoint (void (%struct.A*)* @_ZN1A1fEv to i64), i64 0 }
void (A::*pa2)() = &A::f;
// CODE-LP64: store { i64, i64 } { i64 1, i64 0 }
// CODE-LP32: store { i32, i32 } { i32 1, i32 0 }
void (A::*pa3)() = &A::vf1;
// CODE-LP64: store { i64, i64 } { i64 9, i64 0 }
// CODE-LP32: store { i32, i32 } { i32 5, i32 0 }
void (A::*pa4)() = &A::vf2;
}
void f3(A *a, A &ar) {
(a->*pa)();
(ar.*pa)();
}
bool f4() {
return pa;
}
// PR5177
namespace PR5177 {
struct A {
bool foo(int*) const;
} a;
struct B1 {
bool (A::*pmf)(int*) const;
const A* pa;
B1() : pmf(&A::foo), pa(&a) {}
bool operator()() const { return (pa->*pmf)(new int); }
};
void bar(B1 b2) { while (b2()) ; }
}
// PR5138
namespace PR5138 {
struct foo {
virtual void bar(foo *);
};
extern "C" {
void baz(foo *);
}
void (foo::*ptr1)(void *) = (void (foo::*)(void *))&foo::bar;
void (*ptr2)(void *) = (void (*)(void *))&baz;
void (foo::*ptr3)(void) = (void (foo::*)(void))&foo::bar;
}
// PR5593
namespace PR5593 {
struct A { };
bool f(void (A::*f)()) {
return f && f;
}
}
namespace PR5718 {
struct A { };
bool f(void (A::*f)(), void (A::*g)()) {
return f == g;
}
}
namespace BoolMemberPointer {
struct A { };
bool f(void (A::*f)()) {
return !f;
}
bool g(void (A::*f)()) {
if (!!f)
return true;
return false;
}
}
// PR5940
namespace PR5940 {
class foo {
public:
virtual void baz(void);
};
void foo::baz(void) {
void (foo::*ptr)(void) = &foo::baz;
}
}
namespace MemberPointerImpCast {
struct A {
int x;
};
struct B : public A {
};
void f(B* obj, void (A::*method)()) {
(obj->*method)();
}
}
// PR6258
namespace PR6258 {
struct A {
void f(bool);
};
void (A::*pf)(bool) = &A::f;
void f() {
void (A::*pf)(bool) = &A::f;
}
}
// PR7027
namespace PR7027 {
struct X { void test( ); };
void testX() { &X::test; }
}
namespace test7 {
struct A { void foo(); virtual void vfoo(); };
struct B { void foo(); virtual void vfoo(); };
struct C : A, B { void foo(); virtual void vfoo(); };
// GLOBAL-ARM: @_ZN5test74ptr0E = global {{.*}} { i32 ptrtoint ({{.*}}* @_ZN5test71A3fooEv to i32), i32 0 }
// GLOBAL-ARM: @_ZN5test74ptr1E = global {{.*}} { i32 ptrtoint ({{.*}}* @_ZN5test71B3fooEv to i32), i32 8 }
// GLOBAL-ARM: @_ZN5test74ptr2E = global {{.*}} { i32 ptrtoint ({{.*}}* @_ZN5test71C3fooEv to i32), i32 0 }
// GLOBAL-ARM: @_ZN5test74ptr3E = global {{.*}} { i32 0, i32 1 }
// GLOBAL-ARM: @_ZN5test74ptr4E = global {{.*}} { i32 0, i32 9 }
// GLOBAL-ARM: @_ZN5test74ptr5E = global {{.*}} { i32 0, i32 1 }
void (C::*ptr0)() = &A::foo;
void (C::*ptr1)() = &B::foo;
void (C::*ptr2)() = &C::foo;
void (C::*ptr3)() = &A::vfoo;
void (C::*ptr4)() = &B::vfoo;
void (C::*ptr5)() = &C::vfoo;
}
namespace test8 {
struct X { };
typedef int (X::*pmf)(int);
// CHECK: {{define.*_ZN5test81fEv}}
pmf f() {
// CHECK: {{ret.*zeroinitializer}}
return pmf();
}
}
namespace test9 {
struct A {
void foo();
};
struct B : A {
void foo();
};
typedef void (A::*fooptr)();
struct S {
fooptr p;
};
// CODE-LP64: define void @_ZN5test94testEv(
// CODE-LP64: alloca i32
// CODE-LP64-NEXT: ret void
void test() {
int x;
static S array[] = { (fooptr) &B::foo };
}
}
// rdar://problem/10815683 - Verify that we can emit reinterprets of
// member pointers as constant initializers. For added trickiness,
// we also add some non-trivial adjustments.
namespace test10 {
struct A {
int nonEmpty;
void foo();
};
struct B : public A {
virtual void requireNonZeroAdjustment();
};
struct C {
int nonEmpty;
};
struct D : public C {
virtual void requireNonZeroAdjustment();
};
// It's not that the offsets are doubled on ARM, it's that they're left-shifted by 1.
// GLOBAL-LP64: @_ZN6test101aE = global { i64, i64 } { i64 ptrtoint (void (%"struct.test10::A"*)* @_ZN6test101A3fooEv to i64), i64 0 }, align 8
// GLOBAL-LP32: @_ZN6test101aE = global { i32, i32 } { i32 ptrtoint (void (%"struct.test10::A"*)* @_ZN6test101A3fooEv to i32), i32 0 }, align 4
// GLOBAL-ARM: @_ZN6test101aE = global { i32, i32 } { i32 ptrtoint (void (%"struct.test10::A"*)* @_ZN6test101A3fooEv to i32), i32 0 }, align 4
void (A::*a)() = &A::foo;
// GLOBAL-LP64: @_ZN6test101bE = global { i64, i64 } { i64 ptrtoint (void (%"struct.test10::A"*)* @_ZN6test101A3fooEv to i64), i64 8 }, align 8
// GLOBAL-LP32: @_ZN6test101bE = global { i32, i32 } { i32 ptrtoint (void (%"struct.test10::A"*)* @_ZN6test101A3fooEv to i32), i32 4 }, align 4
// GLOBAL-ARM: @_ZN6test101bE = global { i32, i32 } { i32 ptrtoint (void (%"struct.test10::A"*)* @_ZN6test101A3fooEv to i32), i32 8 }, align 4
void (B::*b)() = (void (B::*)()) &A::foo;
// GLOBAL-LP64: @_ZN6test101cE = global { i64, i64 } { i64 ptrtoint (void (%"struct.test10::A"*)* @_ZN6test101A3fooEv to i64), i64 8 }, align 8
// GLOBAL-LP32: @_ZN6test101cE = global { i32, i32 } { i32 ptrtoint (void (%"struct.test10::A"*)* @_ZN6test101A3fooEv to i32), i32 4 }, align 4
// GLOBAL-ARM: @_ZN6test101cE = global { i32, i32 } { i32 ptrtoint (void (%"struct.test10::A"*)* @_ZN6test101A3fooEv to i32), i32 8 }, align 4
void (C::*c)() = (void (C::*)()) (void (B::*)()) &A::foo;
// GLOBAL-LP64: @_ZN6test101dE = global { i64, i64 } { i64 ptrtoint (void (%"struct.test10::A"*)* @_ZN6test101A3fooEv to i64), i64 16 }, align 8
// GLOBAL-LP32: @_ZN6test101dE = global { i32, i32 } { i32 ptrtoint (void (%"struct.test10::A"*)* @_ZN6test101A3fooEv to i32), i32 8 }, align 4
// GLOBAL-ARM: @_ZN6test101dE = global { i32, i32 } { i32 ptrtoint (void (%"struct.test10::A"*)* @_ZN6test101A3fooEv to i32), i32 16 }, align 4
void (D::*d)() = (void (C::*)()) (void (B::*)()) &A::foo;
}
namespace test11 {
struct A { virtual void a(); };
struct B : A {};
struct C : B { virtual void a(); };
void (C::*x)() = &C::a;
// GLOBAL-LP64: @_ZN6test111xE = global { i64, i64 } { i64 1, i64 0 }
// GLOBAL-LP32: @_ZN6test111xE = global { i32, i32 } { i32 1, i32 0 }
// GLOBAL-ARM: @_ZN6test111xE = global { i32, i32 } { i32 0, i32 1 }
}