
Order ArrayRefs using std::lexicographical_compare, just like std::vector and SmallVector.
500 lines
17 KiB
C++
500 lines
17 KiB
C++
//===- llvm/unittest/ADT/ArrayRefTest.cpp - ArrayRef unit tests -----------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/Support/Allocator.h"
|
|
#include "gtest/gtest.h"
|
|
#include <limits>
|
|
#include <vector>
|
|
#if __has_include(<version>)
|
|
#include <version>
|
|
#endif
|
|
#ifdef __cpp_lib_span
|
|
#include <span>
|
|
#endif
|
|
|
|
using namespace llvm;
|
|
|
|
// Check that the ArrayRef-of-pointer converting constructor only allows adding
|
|
// cv qualifiers (not removing them, or otherwise changing the type)
|
|
static_assert(std::is_convertible_v<ArrayRef<int *>, ArrayRef<const int *>>,
|
|
"Adding const");
|
|
static_assert(std::is_convertible_v<ArrayRef<int *>, ArrayRef<volatile int *>>,
|
|
"Adding volatile");
|
|
static_assert(!std::is_convertible_v<ArrayRef<int *>, ArrayRef<float *>>,
|
|
"Changing pointer of one type to a pointer of another");
|
|
static_assert(!std::is_convertible_v<ArrayRef<const int *>, ArrayRef<int *>>,
|
|
"Removing const");
|
|
static_assert(!std::is_convertible_v<ArrayRef<volatile int *>, ArrayRef<int *>>,
|
|
"Removing volatile");
|
|
|
|
// Check that we can't accidentally assign a temporary location to an ArrayRef.
|
|
// (Unfortunately we can't make use of the same thing with constructors.)
|
|
static_assert(!std::is_assignable_v<ArrayRef<int *> &, int *>,
|
|
"Assigning from single prvalue element");
|
|
static_assert(!std::is_assignable_v<ArrayRef<int *> &, int *&&>,
|
|
"Assigning from single xvalue element");
|
|
static_assert(std::is_assignable_v<ArrayRef<int *> &, int *&>,
|
|
"Assigning from single lvalue element");
|
|
static_assert(
|
|
!std::is_assignable_v<ArrayRef<int *> &, std::initializer_list<int *>>,
|
|
"Assigning from an initializer list");
|
|
|
|
namespace {
|
|
|
|
TEST(ArrayRefTest, AllocatorCopy) {
|
|
BumpPtrAllocator Alloc;
|
|
static const uint16_t Words1[] = { 1, 4, 200, 37 };
|
|
ArrayRef<uint16_t> Array1 = ArrayRef(Words1, 4);
|
|
static const uint16_t Words2[] = { 11, 4003, 67, 64000, 13 };
|
|
ArrayRef<uint16_t> Array2 = ArrayRef(Words2, 5);
|
|
ArrayRef<uint16_t> Array1c = Array1.copy(Alloc);
|
|
ArrayRef<uint16_t> Array2c = Array2.copy(Alloc);
|
|
EXPECT_TRUE(Array1.equals(Array1c));
|
|
EXPECT_NE(Array1.data(), Array1c.data());
|
|
EXPECT_TRUE(Array2.equals(Array2c));
|
|
EXPECT_NE(Array2.data(), Array2c.data());
|
|
|
|
// Check that copy can cope with uninitialized memory.
|
|
struct NonAssignable {
|
|
const char *Ptr;
|
|
|
|
NonAssignable(const char *Ptr) : Ptr(Ptr) {}
|
|
NonAssignable(const NonAssignable &RHS) = default;
|
|
void operator=(const NonAssignable &RHS) { assert(RHS.Ptr != nullptr); }
|
|
bool operator==(const NonAssignable &RHS) const { return Ptr == RHS.Ptr; }
|
|
} Array3Src[] = {"hello", "world"};
|
|
ArrayRef<NonAssignable> Array3Copy = ArrayRef(Array3Src).copy(Alloc);
|
|
EXPECT_EQ(ArrayRef(Array3Src), Array3Copy);
|
|
EXPECT_NE(ArrayRef(Array3Src).data(), Array3Copy.data());
|
|
}
|
|
|
|
// This test is pure UB given the ArrayRef<> implementation.
|
|
// You are not allowed to produce non-null pointers given null base pointer.
|
|
TEST(ArrayRefTest, DISABLED_SizeTSizedOperations) {
|
|
ArrayRef<char> AR(nullptr, std::numeric_limits<ptrdiff_t>::max());
|
|
|
|
// Check that drop_back accepts size_t-sized numbers.
|
|
EXPECT_EQ(1U, AR.drop_back(AR.size() - 1).size());
|
|
|
|
// Check that drop_front accepts size_t-sized numbers.
|
|
EXPECT_EQ(1U, AR.drop_front(AR.size() - 1).size());
|
|
|
|
// Check that slice accepts size_t-sized numbers.
|
|
EXPECT_EQ(1U, AR.slice(AR.size() - 1).size());
|
|
EXPECT_EQ(AR.size() - 1, AR.slice(1, AR.size() - 1).size());
|
|
}
|
|
|
|
TEST(ArrayRefTest, DropBack) {
|
|
static const int TheNumbers[] = {4, 8, 15, 16, 23, 42};
|
|
ArrayRef<int> AR1(TheNumbers);
|
|
ArrayRef<int> AR2(TheNumbers, AR1.size() - 1);
|
|
EXPECT_TRUE(AR1.drop_back().equals(AR2));
|
|
}
|
|
|
|
TEST(ArrayRefTest, DropFront) {
|
|
static const int TheNumbers[] = {4, 8, 15, 16, 23, 42};
|
|
ArrayRef<int> AR1(TheNumbers);
|
|
ArrayRef<int> AR2(&TheNumbers[2], AR1.size() - 2);
|
|
EXPECT_TRUE(AR1.drop_front(2).equals(AR2));
|
|
}
|
|
|
|
TEST(ArrayRefTest, ConsumeFront) {
|
|
static const int TheNumbers[] = {4, 8, 15, 16, 23, 42};
|
|
ArrayRef<int> AR1(TheNumbers);
|
|
ArrayRef<int> AR2(&TheNumbers[2], AR1.size() - 2);
|
|
EXPECT_EQ(&AR1.consume_front(), &TheNumbers[0]);
|
|
EXPECT_EQ(&AR1.consume_front(), &TheNumbers[1]);
|
|
EXPECT_TRUE(AR1.equals(AR2));
|
|
}
|
|
|
|
TEST(ArrayRefTest, ConsumeBack) {
|
|
static const int TheNumbers[] = {4, 8, 15, 16, 23, 42};
|
|
ArrayRef<int> AR1(TheNumbers);
|
|
ArrayRef<int> AR2(TheNumbers, AR1.size() - 2);
|
|
EXPECT_EQ(&AR1.consume_back(), &TheNumbers[5]);
|
|
EXPECT_EQ(&AR1.consume_back(), &TheNumbers[4]);
|
|
EXPECT_TRUE(AR1.equals(AR2));
|
|
}
|
|
|
|
TEST(ArrayRefTest, MutableArryaRefConsumeFront) {
|
|
int TheNumbers[] = {4, 8, 15, 16, 23, 42};
|
|
MutableArrayRef<int> AR1(TheNumbers);
|
|
MutableArrayRef<int> AR2(&TheNumbers[2], AR1.size() - 2);
|
|
EXPECT_EQ(&AR1.consume_front(), &TheNumbers[0]);
|
|
EXPECT_EQ(&AR1.consume_front(), &TheNumbers[1]);
|
|
EXPECT_TRUE(AR1.equals(AR2));
|
|
|
|
AR1.consume_front() = 33;
|
|
EXPECT_EQ(TheNumbers[2], 33);
|
|
}
|
|
|
|
TEST(ArrayRefTest, MutableArryaRefConsumeBack) {
|
|
int TheNumbers[] = {4, 8, 15, 16, 23, 42};
|
|
MutableArrayRef<int> AR1(TheNumbers);
|
|
MutableArrayRef<int> AR2(TheNumbers, AR1.size() - 2);
|
|
EXPECT_EQ(&AR1.consume_back(), &TheNumbers[5]);
|
|
EXPECT_EQ(&AR1.consume_back(), &TheNumbers[4]);
|
|
EXPECT_TRUE(AR1.equals(AR2));
|
|
|
|
AR1.consume_back() = 33;
|
|
EXPECT_EQ(TheNumbers[3], 33);
|
|
}
|
|
|
|
TEST(ArrayRefTest, DropWhile) {
|
|
static const int TheNumbers[] = {1, 3, 5, 8, 10, 11};
|
|
ArrayRef<int> AR1(TheNumbers);
|
|
ArrayRef<int> Expected = AR1.drop_front(3);
|
|
EXPECT_EQ(Expected, AR1.drop_while([](const int &N) { return N % 2 == 1; }));
|
|
|
|
EXPECT_EQ(AR1, AR1.drop_while([](const int &N) { return N < 0; }));
|
|
EXPECT_EQ(ArrayRef<int>(),
|
|
AR1.drop_while([](const int &N) { return N > 0; }));
|
|
}
|
|
|
|
TEST(ArrayRefTest, DropUntil) {
|
|
static const int TheNumbers[] = {1, 3, 5, 8, 10, 11};
|
|
ArrayRef<int> AR1(TheNumbers);
|
|
ArrayRef<int> Expected = AR1.drop_front(3);
|
|
EXPECT_EQ(Expected, AR1.drop_until([](const int &N) { return N % 2 == 0; }));
|
|
|
|
EXPECT_EQ(ArrayRef<int>(),
|
|
AR1.drop_until([](const int &N) { return N < 0; }));
|
|
EXPECT_EQ(AR1, AR1.drop_until([](const int &N) { return N > 0; }));
|
|
}
|
|
|
|
TEST(ArrayRefTest, TakeBack) {
|
|
static const int TheNumbers[] = {4, 8, 15, 16, 23, 42};
|
|
ArrayRef<int> AR1(TheNumbers);
|
|
ArrayRef<int> AR2(AR1.end() - 1, 1);
|
|
EXPECT_TRUE(AR1.take_back().equals(AR2));
|
|
}
|
|
|
|
TEST(ArrayRefTest, TakeFront) {
|
|
static const int TheNumbers[] = {4, 8, 15, 16, 23, 42};
|
|
ArrayRef<int> AR1(TheNumbers);
|
|
ArrayRef<int> AR2(AR1.data(), 2);
|
|
EXPECT_TRUE(AR1.take_front(2).equals(AR2));
|
|
}
|
|
|
|
TEST(ArrayRefTest, TakeWhile) {
|
|
static const int TheNumbers[] = {1, 3, 5, 8, 10, 11};
|
|
ArrayRef<int> AR1(TheNumbers);
|
|
ArrayRef<int> Expected = AR1.take_front(3);
|
|
EXPECT_EQ(Expected, AR1.take_while([](const int &N) { return N % 2 == 1; }));
|
|
|
|
EXPECT_EQ(ArrayRef<int>(),
|
|
AR1.take_while([](const int &N) { return N < 0; }));
|
|
EXPECT_EQ(AR1, AR1.take_while([](const int &N) { return N > 0; }));
|
|
}
|
|
|
|
TEST(ArrayRefTest, TakeUntil) {
|
|
static const int TheNumbers[] = {1, 3, 5, 8, 10, 11};
|
|
ArrayRef<int> AR1(TheNumbers);
|
|
ArrayRef<int> Expected = AR1.take_front(3);
|
|
EXPECT_EQ(Expected, AR1.take_until([](const int &N) { return N % 2 == 0; }));
|
|
|
|
EXPECT_EQ(AR1, AR1.take_until([](const int &N) { return N < 0; }));
|
|
EXPECT_EQ(ArrayRef<int>(),
|
|
AR1.take_until([](const int &N) { return N > 0; }));
|
|
}
|
|
|
|
TEST(ArrayRefTest, Equals) {
|
|
static const int A1[] = {1, 2, 3, 4, 5, 6, 7, 8};
|
|
ArrayRef<int> AR1(A1);
|
|
EXPECT_TRUE(AR1.equals({1, 2, 3, 4, 5, 6, 7, 8}));
|
|
EXPECT_FALSE(AR1.equals({8, 1, 2, 4, 5, 6, 6, 7}));
|
|
EXPECT_FALSE(AR1.equals({2, 4, 5, 6, 6, 7, 8, 1}));
|
|
EXPECT_FALSE(AR1.equals({0, 1, 2, 4, 5, 6, 6, 7}));
|
|
EXPECT_FALSE(AR1.equals({1, 2, 42, 4, 5, 6, 7, 8}));
|
|
EXPECT_FALSE(AR1.equals({42, 2, 3, 4, 5, 6, 7, 8}));
|
|
EXPECT_FALSE(AR1.equals({1, 2, 3, 4, 5, 6, 7, 42}));
|
|
EXPECT_FALSE(AR1.equals({1, 2, 3, 4, 5, 6, 7}));
|
|
EXPECT_FALSE(AR1.equals({1, 2, 3, 4, 5, 6, 7, 8, 9}));
|
|
|
|
ArrayRef<int> AR1a = AR1.drop_back();
|
|
EXPECT_TRUE(AR1a.equals({1, 2, 3, 4, 5, 6, 7}));
|
|
EXPECT_FALSE(AR1a.equals({1, 2, 3, 4, 5, 6, 7, 8}));
|
|
|
|
ArrayRef<int> AR1b = AR1a.slice(2, 4);
|
|
EXPECT_TRUE(AR1b.equals({3, 4, 5, 6}));
|
|
EXPECT_FALSE(AR1b.equals({2, 3, 4, 5, 6}));
|
|
EXPECT_FALSE(AR1b.equals({3, 4, 5, 6, 7}));
|
|
}
|
|
|
|
TEST(ArrayRefTest, EmptyEquals) {
|
|
EXPECT_TRUE(ArrayRef<unsigned>() == ArrayRef<unsigned>());
|
|
}
|
|
|
|
TEST(ArrayRefTest, Compare) {
|
|
ArrayRef<char> Ban("Ban");
|
|
ArrayRef<char> Banana("Banana");
|
|
ArrayRef<char> Band("Band");
|
|
|
|
EXPECT_TRUE(Ban < Banana);
|
|
EXPECT_TRUE(Ban <= Banana);
|
|
EXPECT_FALSE(Ban > Banana);
|
|
EXPECT_FALSE(Ban >= Banana);
|
|
|
|
EXPECT_FALSE(Banana < Banana);
|
|
EXPECT_TRUE(Banana <= Banana);
|
|
EXPECT_FALSE(Banana > Banana);
|
|
EXPECT_TRUE(Banana >= Banana);
|
|
|
|
EXPECT_TRUE(Banana < Band);
|
|
EXPECT_TRUE(Banana <= Band);
|
|
EXPECT_FALSE(Banana > Band);
|
|
EXPECT_FALSE(Banana >= Band);
|
|
}
|
|
|
|
TEST(ArrayRefTest, ConstConvert) {
|
|
int buf[4];
|
|
for (int i = 0; i < 4; ++i)
|
|
buf[i] = i;
|
|
|
|
static int *A[] = {&buf[0], &buf[1], &buf[2], &buf[3]};
|
|
ArrayRef<const int *> a((ArrayRef<int *>(A)));
|
|
a = ArrayRef<int *>(A);
|
|
}
|
|
|
|
static std::vector<int> ReturnTest12() { return {1, 2}; }
|
|
static void ArgTest12(ArrayRef<int> A) {
|
|
EXPECT_EQ(2U, A.size());
|
|
EXPECT_EQ(1, A[0]);
|
|
EXPECT_EQ(2, A[1]);
|
|
}
|
|
|
|
TEST(ArrayRefTest, InitializerList) {
|
|
std::initializer_list<int> init_list = { 0, 1, 2, 3, 4 };
|
|
ArrayRef<int> A = init_list;
|
|
for (int i = 0; i < 5; ++i)
|
|
EXPECT_EQ(i, A[i]);
|
|
|
|
std::vector<int> B = ReturnTest12();
|
|
A = B;
|
|
EXPECT_EQ(1, A[0]);
|
|
EXPECT_EQ(2, A[1]);
|
|
|
|
ArgTest12({1, 2});
|
|
}
|
|
|
|
TEST(ArrayRefTest, EmptyInitializerList) {
|
|
ArrayRef<int> A = {};
|
|
EXPECT_TRUE(A.empty());
|
|
|
|
A = {};
|
|
EXPECT_TRUE(A.empty());
|
|
}
|
|
|
|
TEST(ArrayRefTest, ArrayRef) {
|
|
static const int A1[] = {1, 2, 3, 4, 5, 6, 7, 8};
|
|
|
|
// A copy is expected for non-const ArrayRef (thin copy)
|
|
ArrayRef<int> AR1(A1);
|
|
const ArrayRef<int> &AR1Ref = ArrayRef(AR1);
|
|
EXPECT_NE(&AR1, &AR1Ref);
|
|
EXPECT_TRUE(AR1.equals(AR1Ref));
|
|
|
|
// A copy is expected for non-const ArrayRef (thin copy)
|
|
const ArrayRef<int> AR2(A1);
|
|
const ArrayRef<int> &AR2Ref = ArrayRef(AR2);
|
|
EXPECT_NE(&AR2Ref, &AR2);
|
|
EXPECT_TRUE(AR2.equals(AR2Ref));
|
|
}
|
|
|
|
TEST(ArrayRefTest, OwningArrayRef) {
|
|
static const int A1[] = {0, 1};
|
|
OwningArrayRef<int> A{ArrayRef(A1)};
|
|
OwningArrayRef<int> B(std::move(A));
|
|
EXPECT_EQ(A.data(), nullptr);
|
|
}
|
|
|
|
TEST(ArrayRefTest, ArrayRefFromStdArray) {
|
|
std::array<int, 5> A1{{42, -5, 0, 1000000, -1000000}};
|
|
ArrayRef<int> A2 = ArrayRef(A1);
|
|
|
|
EXPECT_EQ(A1.size(), A2.size());
|
|
for (std::size_t i = 0; i < A1.size(); ++i) {
|
|
EXPECT_EQ(A1[i], A2[i]);
|
|
}
|
|
}
|
|
|
|
struct TestRandomAccessIterator {
|
|
using iterator_category = std::random_access_iterator_tag;
|
|
};
|
|
|
|
static_assert(!std::is_constructible_v<
|
|
ArrayRef<int>, iterator_range<TestRandomAccessIterator>>,
|
|
"cannot construct from iterator range with non-pointer iterator");
|
|
static_assert(!std::is_constructible_v<ArrayRef<int>, iterator_range<int>>,
|
|
"cannot construct from iterator range with non-pointer iterator");
|
|
|
|
class TestBase {};
|
|
|
|
class TestDerived : public TestBase {};
|
|
|
|
static_assert(
|
|
!std::is_constructible_v<ArrayRef<TestDerived>, iterator_range<TestBase *>>,
|
|
"cannot construct ArrayRef with derived type");
|
|
static_assert(
|
|
!std::is_constructible_v<ArrayRef<TestBase>, iterator_range<TestDerived *>>,
|
|
"cannot construct ArrayRef base type");
|
|
static_assert(!std::is_constructible_v<ArrayRef<TestBase *>,
|
|
iterator_range<TestDerived **>>,
|
|
"cannot construct ArrayRef pointer of base type");
|
|
|
|
static_assert(
|
|
!std::is_constructible_v<ArrayRef<int>, iterator_range<const int *>>,
|
|
"cannot construct ArrayRef with non-const elements from const iterator "
|
|
"range");
|
|
static_assert(
|
|
std::is_constructible_v<ArrayRef<char *>, iterator_range<char **>>,
|
|
"should be able to construct ArrayRef from iterator_range over pointers");
|
|
static_assert(
|
|
!std::is_constructible_v<ArrayRef<char *>, iterator_range<char *const *>>,
|
|
"should be able to construct ArrayRef from iterator_range over pointers");
|
|
|
|
TEST(ArrayRefTest, ArrayRefFromIteratorRange) {
|
|
int A1[] = {42, -5, 0, 1000000, -1000000, 0};
|
|
ArrayRef<int> A2 = make_range(&A1[0], &A1[5]);
|
|
|
|
EXPECT_EQ(5ull, A2.size());
|
|
for (std::size_t i = 0; i < A2.size(); ++i)
|
|
EXPECT_EQ(A1[i], A2[i]);
|
|
|
|
ArrayRef<const int> A3 = make_range(&A1[0], &A1[5]);
|
|
EXPECT_EQ(5ull, A3.size());
|
|
for (std::size_t i = 0; i < A3.size(); ++i)
|
|
EXPECT_EQ(A1[i], A3[i]);
|
|
}
|
|
|
|
TEST(ArrayRefTest, ArrayRefFromIteratorConstRange) {
|
|
const int A1[] = {42, -5, 0, 1000000, -1000000, 0};
|
|
ArrayRef<const int> A2 = make_range(&A1[0], &A1[5]);
|
|
|
|
EXPECT_EQ(5ull, A2.size());
|
|
for (std::size_t i = 0; i < A2.size(); ++i)
|
|
EXPECT_EQ(A1[i], A2[i]);
|
|
}
|
|
|
|
static_assert(std::is_trivially_copyable_v<ArrayRef<int>>,
|
|
"trivially copyable");
|
|
|
|
TEST(ArrayRefTest, MutableArrayRefDeductionGuides) {
|
|
// Single element
|
|
{
|
|
int x = 0;
|
|
auto aref = MutableArrayRef(x);
|
|
static_assert(std::is_same_v<MutableArrayRef<int>, decltype(aref)>);
|
|
EXPECT_EQ(aref.data(), &x);
|
|
EXPECT_EQ(aref.size(), 1u);
|
|
|
|
// Make sure it's mutable still
|
|
aref[0] = 1;
|
|
EXPECT_EQ(x, 1);
|
|
}
|
|
|
|
// Pointer + length
|
|
{
|
|
int x[] = {0, 1, 2, 3};
|
|
auto aref = MutableArrayRef(&x[0], 4);
|
|
static_assert(std::is_same_v<MutableArrayRef<int>, decltype(aref)>);
|
|
EXPECT_EQ(aref.data(), &x[0]);
|
|
EXPECT_EQ(aref.size(), 4u);
|
|
}
|
|
|
|
// // Pointer + pointer
|
|
{
|
|
int x[] = {0, 1, 2, 3};
|
|
auto aref = MutableArrayRef(std::begin(x), std::end(x));
|
|
static_assert(std::is_same_v<MutableArrayRef<int>, decltype(aref)>);
|
|
EXPECT_EQ(aref.data(), &x[0]);
|
|
EXPECT_EQ(aref.size(), 4u);
|
|
}
|
|
|
|
// SmallVector
|
|
{
|
|
SmallVector<int> sv1;
|
|
SmallVectorImpl<int> &sv2 = sv1;
|
|
sv1.resize(5);
|
|
auto aref1 = MutableArrayRef(sv1);
|
|
auto aref2 = MutableArrayRef(sv2);
|
|
static_assert(std::is_same_v<MutableArrayRef<int>, decltype(aref1)>);
|
|
static_assert(std::is_same_v<MutableArrayRef<int>, decltype(aref2)>);
|
|
EXPECT_EQ(aref1.data(), sv1.data());
|
|
EXPECT_EQ(aref1.size(), sv1.size());
|
|
EXPECT_EQ(aref2.data(), sv2.data());
|
|
EXPECT_EQ(aref2.size(), sv2.size());
|
|
}
|
|
|
|
// std::vector
|
|
{
|
|
std::vector<int> x(5);
|
|
auto aref = MutableArrayRef(x);
|
|
static_assert(std::is_same_v<MutableArrayRef<int>, decltype(aref)>);
|
|
EXPECT_EQ(aref.data(), x.data());
|
|
EXPECT_EQ(aref.size(), x.size());
|
|
}
|
|
|
|
// std::array
|
|
{
|
|
std::array<int, 5> x{};
|
|
auto aref = MutableArrayRef(x);
|
|
static_assert(std::is_same_v<MutableArrayRef<int>, decltype(aref)>);
|
|
EXPECT_EQ(aref.data(), x.data());
|
|
EXPECT_EQ(aref.size(), x.size());
|
|
}
|
|
|
|
// MutableArrayRef
|
|
{
|
|
MutableArrayRef<int> x{};
|
|
auto aref = MutableArrayRef(x);
|
|
static_assert(std::is_same_v<MutableArrayRef<int>, decltype(aref)>);
|
|
EXPECT_EQ(aref.data(), x.data());
|
|
EXPECT_EQ(aref.size(), x.size());
|
|
|
|
const MutableArrayRef<int> y{};
|
|
auto aref2 = MutableArrayRef(y);
|
|
static_assert(std::is_same_v<MutableArrayRef<int>, decltype(aref2)>);
|
|
EXPECT_EQ(aref2.data(), y.data());
|
|
EXPECT_EQ(aref2.size(), y.size());
|
|
}
|
|
|
|
// C-style array
|
|
{
|
|
int x[] = {0, 1, 2, 3};
|
|
auto aref = MutableArrayRef(x);
|
|
static_assert(std::is_same_v<MutableArrayRef<int>, decltype(aref)>);
|
|
EXPECT_EQ(aref.data(), &x[0]);
|
|
EXPECT_EQ(aref.size(), 4u);
|
|
}
|
|
}
|
|
|
|
#ifdef __cpp_lib_span
|
|
static_assert(std::is_constructible_v<ArrayRef<int>, std::span<const int>>,
|
|
"should be able to construct ArrayRef from const std::span");
|
|
static_assert(std::is_constructible_v<std::span<const int>, ArrayRef<int>>,
|
|
"should be able to construct const std::span from ArrayRef");
|
|
static_assert(std::is_constructible_v<ArrayRef<int>, std::span<int>>,
|
|
"should be able to construct ArrayRef from mutable std::span");
|
|
static_assert(!std::is_constructible_v<std::span<int>, ArrayRef<int>>,
|
|
"cannot construct mutable std::span from ArrayRef");
|
|
|
|
static_assert(
|
|
!std::is_constructible_v<MutableArrayRef<int>, std::span<const int>>,
|
|
"cannot construct MutableArrayRef from const std::span");
|
|
static_assert(
|
|
std::is_constructible_v<std::span<const int>, MutableArrayRef<int>>,
|
|
"should be able to construct const std::span from MutableArrayRef");
|
|
static_assert(
|
|
std::is_constructible_v<MutableArrayRef<int>, std::span<int>>,
|
|
"should be able to construct MutableArrayRef from mutable std::span");
|
|
#endif
|
|
|
|
} // end anonymous namespace
|