llvm-project/llvm/unittests/ADT/TrieRawHashMapTest.cpp
Steven Wu b510cdb895
[ADT] Add TrieRawHashMap (#69528)
Implement TrieRawHashMap can be used to store object with its associated
hash. User needs to supply a strong hashing function to guarantee the
uniqueness of the hash of the objects to be inserted. A hash collision
is not supported and will lead to error or failed to insert.

TrieRawHashMap is thread-safe and lock-free and can be used as
foundation data structure to implement a content addressible storage.
TrieRawHashMap owns the data stored in it and is designed to be:
* Fast to lookup.
* Fast to "insert" if the data has already been inserted.
* Can be used without lock and doesn't require any knowledge of the
participating threads or extra coordination between threads.

It is not currently designed to be used to insert unique new data with
high contention, due to the limitation on the memory allocator.
2024-10-29 10:29:39 -07:00

347 lines
12 KiB
C++

//===- TrieRawHashMapTest.cpp ---------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/TrieRawHashMap.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/SHA1.h"
#include "gtest/gtest.h"
using namespace llvm;
namespace llvm {
class TrieRawHashMapTestHelper {
public:
TrieRawHashMapTestHelper() = default;
void setTrie(ThreadSafeTrieRawHashMapBase *T) { Trie = T; }
ThreadSafeTrieRawHashMapBase::PointerBase getRoot() const {
return Trie->getRoot();
}
unsigned getStartBit(ThreadSafeTrieRawHashMapBase::PointerBase P) const {
return Trie->getStartBit(P);
}
unsigned getNumBits(ThreadSafeTrieRawHashMapBase::PointerBase P) const {
return Trie->getNumBits(P);
}
unsigned getNumSlotUsed(ThreadSafeTrieRawHashMapBase::PointerBase P) const {
return Trie->getNumSlotUsed(P);
}
unsigned getNumTries() const { return Trie->getNumTries(); }
std::string
getTriePrefixAsString(ThreadSafeTrieRawHashMapBase::PointerBase P) const {
return Trie->getTriePrefixAsString(P);
}
ThreadSafeTrieRawHashMapBase::PointerBase
getNextTrie(ThreadSafeTrieRawHashMapBase::PointerBase P) const {
return Trie->getNextTrie(P);
}
private:
ThreadSafeTrieRawHashMapBase *Trie = nullptr;
};
} // namespace llvm
namespace {
template <typename DataType, size_t HashSize = sizeof(uint64_t)>
class SimpleTrieHashMapTest : public TrieRawHashMapTestHelper,
public ::testing::Test {
public:
using NumType = DataType;
using HashType = std::array<uint8_t, HashSize>;
using TrieType = ThreadSafeTrieRawHashMap<DataType, sizeof(HashType)>;
TrieType &createTrie(size_t RootBits, size_t SubtrieBits) {
auto &Ret = Trie.emplace(RootBits, SubtrieBits);
TrieRawHashMapTestHelper::setTrie(&Ret);
return Ret;
}
void destroyTrie() { Trie.reset(); }
~SimpleTrieHashMapTest() { destroyTrie(); }
// Use the number itself as hash to test the pathological case.
static HashType hash(uint64_t Num) {
uint64_t HashN =
llvm::support::endian::byte_swap(Num, llvm::endianness::big);
HashType Hash;
memcpy(&Hash[0], &HashN, sizeof(HashType));
return Hash;
};
private:
std::optional<TrieType> Trie;
};
using SmallNodeTrieTest = SimpleTrieHashMapTest<uint64_t>;
TEST_F(SmallNodeTrieTest, TrieAllocation) {
NumType Numbers[] = {
0x0, std::numeric_limits<NumType>::max(), 0x1, 0x2,
0x3, std::numeric_limits<NumType>::max() - 1u,
};
unsigned ExpectedTries[] = {
1, // Allocate Root.
1, // Both on the root.
64, // 0 and 1 sinks all the way down.
64, // no new allocation needed.
65, // need a new node between 2 and 3.
65 + 63, // 63 new allocation to sink two big numbers all the way.
};
const char *ExpectedPrefix[] = {
"", // Root.
"", // Root.
"00000000000000[0000000]",
"00000000000000[0000000]",
"00000000000000[0000001]",
"ffffffffffffff[1111111]",
};
// Use root and subtrie sizes of 1 so this gets sunk quite deep.
auto &Trie = createTrie(/*RootBits=*/1, /*SubtrieBits=*/1);
for (unsigned I = 0; I < 6; ++I) {
// Lookup first to exercise hint code for deep tries.
TrieType::pointer Lookup = Trie.find(hash(Numbers[I]));
EXPECT_FALSE(Lookup);
Trie.insert(Lookup, TrieType::value_type(hash(Numbers[I]), Numbers[I]));
EXPECT_EQ(getNumTries(), ExpectedTries[I]);
EXPECT_EQ(getTriePrefixAsString(getNextTrie(getRoot())), ExpectedPrefix[I]);
}
}
TEST_F(SmallNodeTrieTest, TrieStructure) {
NumType Numbers[] = {
// Three numbers that will nest deeply to test (1) sinking subtries and
// (2) deep, non-trivial hints.
std::numeric_limits<NumType>::max(),
std::numeric_limits<NumType>::max() - 2u,
std::numeric_limits<NumType>::max() - 3u,
// One number to stay at the top-level.
0x37,
};
// Use root and subtrie sizes of 1 so this gets sunk quite deep.
auto &Trie = createTrie(/*RootBits=*/1, /*SubtrieBits=*/1);
for (NumType N : Numbers) {
// Lookup first to exercise hint code for deep tries.
TrieType::pointer Lookup = Trie.find(hash(N));
EXPECT_FALSE(Lookup);
Trie.insert(Lookup, TrieType::value_type(hash(N), N));
}
for (NumType N : Numbers) {
TrieType::pointer Lookup = Trie.find(hash(N));
EXPECT_TRUE(Lookup);
if (!Lookup)
continue;
EXPECT_EQ(hash(N), Lookup->Hash);
EXPECT_EQ(N, Lookup->Data);
// Confirm a subsequent insertion fails to overwrite by trying to insert a
// bad value.
auto Result = Trie.insert(Lookup, TrieType::value_type(hash(N), N - 1));
EXPECT_EQ(N, Result->Data);
}
// Check the trie so we can confirm the structure is correct. Each subtrie
// should have 2 slots. The root's index=0 should have the content for
// 0x37 directly, and index=1 should be a linked-list of subtries, finally
// ending with content for (max-2) and (max-3).
//
// Note: This structure is not exhaustive (too expensive to update tests),
// but it does test that the dump format is somewhat readable and that the
// basic structure is correct.
//
// Note: This test requires that the trie reads bytes starting from index 0
// of the array of uint8_t, and then reads each byte's bits from high to low.
// Check the Trie.
// We should allocated a total of 64 SubTries for 64 bit hash.
ASSERT_EQ(getNumTries(), 64u);
// Check the root trie. Two slots and both are used.
ASSERT_EQ(getNumSlotUsed(getRoot()), 2u);
// Check last subtrie.
// Last allocated trie is the next node in the allocation chain.
auto LastAlloctedSubTrie = getNextTrie(getRoot());
ASSERT_EQ(getTriePrefixAsString(LastAlloctedSubTrie),
"ffffffffffffff[1111110]");
ASSERT_EQ(getStartBit(LastAlloctedSubTrie), 63u);
ASSERT_EQ(getNumBits(LastAlloctedSubTrie), 1u);
ASSERT_EQ(getNumSlotUsed(LastAlloctedSubTrie), 2u);
}
TEST_F(SmallNodeTrieTest, TrieStructureSmallFinalSubtrie) {
NumType Numbers[] = {
// Three numbers that will nest deeply to test (1) sinking subtries and
// (2) deep, non-trivial hints.
std::numeric_limits<NumType>::max(),
std::numeric_limits<NumType>::max() - 2u,
std::numeric_limits<NumType>::max() - 3u,
// One number to stay at the top-level.
0x37,
};
// Use subtrie size of 5 to avoid hitting 64 evenly, making the final subtrie
// small.
auto &Trie = createTrie(/*RootBits=*/8, /*SubtrieBits=*/5);
for (NumType N : Numbers) {
// Lookup first to exercise hint code for deep tries.
TrieType::pointer Lookup = Trie.find(hash(N));
EXPECT_FALSE(Lookup);
Trie.insert(Lookup, TrieType::value_type(hash(N), N));
}
for (NumType N : Numbers) {
TrieType::pointer Lookup = Trie.find(hash(N));
ASSERT_TRUE(Lookup);
EXPECT_EQ(hash(N), Lookup->Hash);
EXPECT_EQ(N, Lookup->Data);
// Confirm a subsequent insertion fails to overwrite by trying to insert a
// bad value.
auto Result = Trie.insert(Lookup, TrieType::value_type(hash(N), N - 1));
EXPECT_EQ(N, Result->Data);
}
// Check the trie so we can confirm the structure is correct. The root
// should have 2^8=256 slots, most subtries should have 2^5=32 slots, and the
// deepest subtrie should have 2^1=2 slots (since (64-8)mod(5)=1).
// should have 2 slots. The root's index=0 should have the content for
// 0x37 directly, and index=1 should be a linked-list of subtries, finally
// ending with content for (max-2) and (max-3).
//
// Note: This structure is not exhaustive (too expensive to update tests),
// but it does test that the dump format is somewhat readable and that the
// basic structure is correct.
//
// Note: This test requires that the trie reads bytes starting from index 0
// of the array of uint8_t, and then reads each byte's bits from high to low.
// Check the Trie.
// 64 bit hash = 8 + 5 * 11 + 1, so 1 root, 11 8bit subtrie and 1 last level
// subtrie, 13 total.
ASSERT_EQ(getNumTries(), 13u);
// Check the root trie. Two slots and both are used.
ASSERT_EQ(getNumSlotUsed(getRoot()), 2u);
// Check last subtrie.
// Last allocated trie is the next node in the allocation chain.
auto LastAlloctedSubTrie = getNextTrie(getRoot());
ASSERT_EQ(getTriePrefixAsString(LastAlloctedSubTrie),
"ffffffffffffff[1111110]");
ASSERT_EQ(getStartBit(LastAlloctedSubTrie), 63u);
ASSERT_EQ(getNumBits(LastAlloctedSubTrie), 1u);
ASSERT_EQ(getNumSlotUsed(LastAlloctedSubTrie), 2u);
}
TEST_F(SmallNodeTrieTest, TrieDestructionLoop) {
// Test destroying large Trie. Make sure there is no recursion that can
// overflow the stack.
// Limit the tries to 2 slots (1 bit) to generate subtries at a higher rate.
auto &Trie = createTrie(/*NumRootBits=*/1, /*NumSubtrieBits=*/1);
// Fill them up. Pick a MaxN high enough to cause a stack overflow in debug
// builds.
static constexpr uint64_t MaxN = 100000;
for (uint64_t N = 0; N != MaxN; ++N) {
HashType Hash = hash(N);
Trie.insert(TrieType::pointer(), TrieType::value_type(Hash, NumType{N}));
}
// Destroy tries. If destruction is recursive and MaxN is high enough, these
// will both fail.
destroyTrie();
}
struct NumWithDestructorT {
uint64_t Num;
llvm::function_ref<void()> DestructorCallback;
~NumWithDestructorT() { DestructorCallback(); }
};
using NodeWithDestructorTrieTest = SimpleTrieHashMapTest<NumWithDestructorT>;
TEST_F(NodeWithDestructorTrieTest, TrieDestructionLoop) {
// Test destroying large Trie. Make sure there is no recursion that can
// overflow the stack.
// Limit the tries to 2 slots (1 bit) to generate subtries at a higher rate.
auto &Trie = createTrie(/*NumRootBits=*/1, /*NumSubtrieBits=*/1);
// Fill them up. Pick a MaxN high enough to cause a stack overflow in debug
// builds.
static constexpr uint64_t MaxN = 100000;
uint64_t DestructorCalled = 0;
auto DtorCallback = [&DestructorCalled]() { ++DestructorCalled; };
for (uint64_t N = 0; N != MaxN; ++N) {
HashType Hash = hash(N);
Trie.insert(TrieType::pointer(),
TrieType::value_type(Hash, NumType{N, DtorCallback}));
}
// Reset the count after all the temporaries get destroyed.
DestructorCalled = 0;
// Destroy tries. If destruction is recursive and MaxN is high enough, these
// will both fail.
destroyTrie();
// Count the number of destructor calls during `destroyTrie()`.
ASSERT_EQ(DestructorCalled, MaxN);
}
using NumStrNodeTrieTest = SimpleTrieHashMapTest<std::string>;
TEST_F(NumStrNodeTrieTest, TrieInsertLazy) {
for (unsigned RootBits : {2, 3, 6, 10}) {
for (unsigned SubtrieBits : {2, 3, 4}) {
auto &Trie = createTrie(RootBits, SubtrieBits);
for (int I = 0, E = 1000; I != E; ++I) {
TrieType::pointer Lookup;
HashType H = hash(I);
if (I & 1)
Lookup = Trie.find(H);
auto insertNum = [&](uint64_t Num) {
std::string S = Twine(I).str();
auto Hash = hash(Num);
return Trie.insertLazy(
Hash, [&](TrieType::LazyValueConstructor C) { C(std::move(S)); });
};
auto S1 = insertNum(I);
// The address of the Data should be the same.
EXPECT_EQ(&S1->Data, &insertNum(I)->Data);
auto insertStr = [&](std::string S) {
int Num = std::stoi(S);
return insertNum(Num);
};
std::string S2 = S1->Data;
// The address of the Data should be the same.
EXPECT_EQ(&S1->Data, &insertStr(S2)->Data);
}
for (int I = 0, E = 1000; I != E; ++I) {
std::string S = Twine(I).str();
TrieType::pointer Lookup = Trie.find(hash(I));
EXPECT_TRUE(Lookup);
if (!Lookup)
continue;
EXPECT_EQ(S, Lookup->Data);
}
}
}
}
} // end anonymous namespace