llvm-project/mlir/lib/Dialect/SparseTensor/Transforms/SparseBufferRewriting.cpp
Longsheng Mou f047b735e9
[mlir][NFC] Use getDefiningOp<OpTy>() instead of dyn_cast<OpTy>(getDefiningOp()) (#150428)
This PR uses `val.getDefiningOp<OpTy>()` to replace `dyn_cast<OpTy>(val.getDefiningOp())` , `dyn_cast_or_null<OpTy>(val.getDefiningOp())` and `dyn_cast_if_present<OpTy>(val.getDefiningOp())`.
2025-07-25 10:35:51 +08:00

1437 lines
58 KiB
C++

//===- SparseBufferRewriting.cpp - Sparse buffer rewriting rules ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements rewriting rules that are specific to sparse tensor
// primitives with memref operands.
//
//===----------------------------------------------------------------------===//
#include "Utils/CodegenUtils.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Math/IR/Math.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
#include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
#include "mlir/Support/LLVM.h"
using namespace mlir;
using namespace mlir::sparse_tensor;
//===---------------------------------------------------------------------===//
// Helper methods for the actual rewriting rules.
//===---------------------------------------------------------------------===//
static constexpr uint64_t loIdx = 0;
static constexpr uint64_t hiIdx = 1;
static constexpr uint64_t xStartIdx = 2;
static constexpr const char kPartitionFuncNamePrefix[] = "_sparse_partition_";
static constexpr const char kBinarySearchFuncNamePrefix[] =
"_sparse_binary_search_";
static constexpr const char kHybridQuickSortFuncNamePrefix[] =
"_sparse_hybrid_qsort_";
static constexpr const char kSortStableFuncNamePrefix[] =
"_sparse_sort_stable_";
static constexpr const char kShiftDownFuncNamePrefix[] = "_sparse_shift_down_";
static constexpr const char kHeapSortFuncNamePrefix[] = "_sparse_heap_sort_";
static constexpr const char kQuickSortFuncNamePrefix[] = "_sparse_qsort_";
using FuncGeneratorType = function_ref<void(OpBuilder &, ModuleOp, func::FuncOp,
AffineMap, uint64_t, uint32_t)>;
/// Constructs a function name with this format to facilitate quick sort:
/// <namePrefix><xPerm>_<x type>_<y0 type>..._<yn type> for sort
/// <namePrefix><xPerm>_<x type>_coo_<ny>_<y0 type>..._<yn type> for sort_coo
static void getMangledSortHelperFuncName(llvm::raw_svector_ostream &nameOstream,
StringRef namePrefix, AffineMap xPerm,
uint64_t ny, ValueRange operands) {
nameOstream << namePrefix;
for (auto res : xPerm.getResults())
nameOstream << cast<AffineDimExpr>(res).getPosition() << "_";
nameOstream << getMemRefType(operands[xStartIdx]).getElementType();
nameOstream << "_coo_" << ny;
constexpr uint64_t yBufferOffset = 1;
for (Value v : operands.drop_front(xStartIdx + yBufferOffset))
nameOstream << "_" << getMemRefType(v).getElementType();
}
/// Looks up a function that is appropriate for the given operands being
/// sorted, and creates such a function if it doesn't exist yet. The
/// parameters `xPerm` and `ny` tell the number of x and y values provided
/// by the buffer in xStartIdx.
//
// All sorting function generators take (lo, hi, xs, ys) in `operands` as
// parameters for the sorting functions. Other parameters, such as the recursive
// call depth, are appended to the end of the parameter list as
// "trailing parameters".
static FlatSymbolRefAttr getMangledSortHelperFunc(
OpBuilder &builder, func::FuncOp insertPoint, TypeRange resultTypes,
StringRef namePrefix, AffineMap xPerm, uint64_t ny, ValueRange operands,
FuncGeneratorType createFunc, uint32_t nTrailingP = 0) {
SmallString<32> nameBuffer;
llvm::raw_svector_ostream nameOstream(nameBuffer);
getMangledSortHelperFuncName(nameOstream, namePrefix, xPerm, ny,
operands.drop_back(nTrailingP));
ModuleOp module = insertPoint->getParentOfType<ModuleOp>();
MLIRContext *context = module.getContext();
auto result = SymbolRefAttr::get(context, nameOstream.str());
auto func = module.lookupSymbol<func::FuncOp>(result.getAttr());
if (!func) {
// Create the function.
OpBuilder::InsertionGuard insertionGuard(builder);
builder.setInsertionPoint(insertPoint);
Location loc = insertPoint.getLoc();
func = func::FuncOp::create(
builder, loc, nameOstream.str(),
FunctionType::get(context, operands.getTypes(), resultTypes));
func.setPrivate();
createFunc(builder, module, func, xPerm, ny, nTrailingP);
}
return result;
}
/// Creates a code block to process each pair of (xs[i], xs[j]) for sorting.
/// The code to process the value pairs is generated by `bodyBuilder`.
static void forEachIJPairInXs(
OpBuilder &builder, Location loc, ValueRange args, AffineMap xPerm,
uint64_t ny,
function_ref<void(uint64_t, Value, Value, Value)> bodyBuilder) {
Value cstep = constantIndex(builder, loc, xPerm.getNumResults() + ny);
Value iOffset = arith::MulIOp::create(builder, loc, args[0], cstep);
Value jOffset = arith::MulIOp::create(builder, loc, args[1], cstep);
for (unsigned k = 0, e = xPerm.getNumResults(); k < e; k++) {
unsigned actualK = cast<AffineDimExpr>(xPerm.getResult(k)).getPosition();
Value ak = constantIndex(builder, loc, actualK);
Value i = arith::AddIOp::create(builder, loc, ak, iOffset);
Value j = arith::AddIOp::create(builder, loc, ak, jOffset);
Value buffer = args[xStartIdx];
bodyBuilder(k, i, j, buffer);
}
}
/// Creates a code block to process each pair of (xys[i], xys[j]) for sorting.
/// The code to process the value pairs is generated by `bodyBuilder`.
static void forEachIJPairInAllBuffers(
OpBuilder &builder, Location loc, ValueRange args, AffineMap xPerm,
uint64_t ny,
function_ref<void(uint64_t, Value, Value, Value)> bodyBuilder) {
// Create code for the first (xPerm + ny) buffers.
SmallVector<AffineExpr> exps(xPerm.getResults());
for (unsigned y = 0; y < ny; y++) {
exps.push_back(builder.getAffineDimExpr(y + xPerm.getNumResults()));
}
AffineMap xyPerm = AffineMap::get(exps.size(), 0, exps, builder.getContext());
assert(xyPerm.isPermutation());
forEachIJPairInXs(builder, loc, args, xyPerm, 0, bodyBuilder);
constexpr uint64_t numHandledBuffers = 1;
// Create code for the remaining buffers.
Value i = args[0];
Value j = args[1];
for (const auto &arg :
llvm::enumerate(args.drop_front(xStartIdx + numHandledBuffers))) {
bodyBuilder(arg.index() + xPerm.getNumResults() + ny, i, j, arg.value());
}
}
/// Creates a code block for swapping the values in index i and j for all the
/// buffers.
//
// The generated IR corresponds to this C like algorithm:
// swap(x0[i], x0[j]);
// swap(x1[i], x1[j]);
// ...
// swap(xn[i], xn[j]);
// swap(y0[i], y0[j]);
// ...
// swap(yn[i], yn[j]);
static void createSwap(OpBuilder &builder, Location loc, ValueRange args,
AffineMap xPerm, uint64_t ny) {
auto swapOnePair = [&](uint64_t unused, Value i, Value j, Value buffer) {
Value vi = memref::LoadOp::create(builder, loc, buffer, i);
Value vj = memref::LoadOp::create(builder, loc, buffer, j);
memref::StoreOp::create(builder, loc, vj, buffer, i);
memref::StoreOp::create(builder, loc, vi, buffer, j);
};
forEachIJPairInAllBuffers(builder, loc, args, xPerm, ny, swapOnePair);
}
/// Creates code to compare all the (xs[i], xs[j]) pairs. The method to compare
/// each pair is create via `compareBuilder`.
static Value createInlinedCompareImplementation(
OpBuilder &builder, Location loc, ValueRange args, AffineMap xPerm,
uint64_t ny,
function_ref<Value(OpBuilder &, Location, Value, Value, Value, bool, bool)>
compareBuilder) {
Value result;
auto bodyBuilder = [&](uint64_t k, Value i, Value j, Value buffer) {
bool isFirstDim = (k == 0);
bool isLastDim = (k == xPerm.getNumResults() - 1);
Value val =
compareBuilder(builder, loc, i, j, buffer, isFirstDim, isLastDim);
if (isFirstDim) {
result = val;
} else if (!isLastDim) {
OpBuilder::InsertionGuard insertionGuard(builder);
auto ifOp = cast<scf::IfOp>(val.getDefiningOp());
builder.setInsertionPointAfter(ifOp);
scf::YieldOp::create(builder, loc, ifOp.getResult(0));
}
};
forEachIJPairInXs(builder, loc, args, xPerm, ny, bodyBuilder);
builder.setInsertionPointAfterValue(result);
return result;
}
/// Generates code to compare whether x[i] is equal to x[j] and returns the
/// result of the comparison.
static Value createEqCompare(OpBuilder &builder, Location loc, Value i, Value j,
Value x, bool isFirstDim, bool isLastDim) {
Value vi = memref::LoadOp::create(builder, loc, x, i);
Value vj = memref::LoadOp::create(builder, loc, x, j);
Value res;
if (isLastDim) {
res = arith::CmpIOp::create(builder, loc, arith::CmpIPredicate::eq, vi, vj);
// For 1D, we create a compare without any control flow. Otherwise, we
// create YieldOp to return the result in the nested if-stmt.
if (!isFirstDim)
scf::YieldOp::create(builder, loc, res);
} else {
Value ne =
arith::CmpIOp::create(builder, loc, arith::CmpIPredicate::ne, vi, vj);
scf::IfOp ifOp = scf::IfOp::create(builder, loc, builder.getIntegerType(1),
ne, /*else=*/true);
// If (x[i] != x[j]).
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
Value f = constantI1(builder, loc, false);
scf::YieldOp::create(builder, loc, f);
// If (x[i] == x[j]). Set up the insertion point for the nested if-stmt that
// checks the remaining dimensions.
builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
res = ifOp.getResult(0);
}
return res;
}
/// Creates code to compare whether xs[i] is equal to xs[j].
//
// The generate IR corresponds to this C like algorithm:
// if (x0[i] != x0[j])
// return false;
// else
// if (x1[i] != x1[j])
// return false;
// else if (x2[2] != x2[j]))
// and so on ...
static Value createInlinedEqCompare(OpBuilder &builder, Location loc,
ValueRange args, AffineMap xPerm,
uint64_t ny, uint32_t nTrailingP = 0) {
// Compare functions don't use trailing parameters.
(void)nTrailingP;
assert(nTrailingP == 0);
return createInlinedCompareImplementation(builder, loc, args, xPerm, ny,
createEqCompare);
}
/// Generates code to compare whether x[i] is less than x[j] and returns the
/// result of the comparison.
static Value createLessThanCompare(OpBuilder &builder, Location loc, Value i,
Value j, Value x, bool isFirstDim,
bool isLastDim) {
Value vi = memref::LoadOp::create(builder, loc, x, i);
Value vj = memref::LoadOp::create(builder, loc, x, j);
Value res;
if (isLastDim) {
res =
arith::CmpIOp::create(builder, loc, arith::CmpIPredicate::ult, vi, vj);
// For 1D, we create a compare without any control flow. Otherwise, we
// create YieldOp to return the result in the nested if-stmt.
if (!isFirstDim)
scf::YieldOp::create(builder, loc, res);
} else {
Value ne =
arith::CmpIOp::create(builder, loc, arith::CmpIPredicate::ne, vi, vj);
scf::IfOp ifOp = scf::IfOp::create(builder, loc, builder.getIntegerType(1),
ne, /*else=*/true);
// If (x[i] != x[j]).
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
Value lt =
arith::CmpIOp::create(builder, loc, arith::CmpIPredicate::ult, vi, vj);
scf::YieldOp::create(builder, loc, lt);
// If (x[i] == x[j]). Set up the insertion point for the nested if-stmt that
// checks the remaining dimensions.
builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
res = ifOp.getResult(0);
}
return res;
}
/// Creates code to compare whether xs[i] is less than xs[j].
//
// The generate IR corresponds to this C like algorithm:
// if (x0[i] != x0[j])
// return x0[i] < x0[j];
// else if (x1[j] != x1[i])
// return x1[i] < x1[j];
// else
// and so on ...
static Value createInlinedLessThan(OpBuilder &builder, Location loc,
ValueRange args, AffineMap xPerm,
uint64_t ny, uint32_t nTrailingP = 0) {
// Compare functions don't use trailing parameters.
(void)nTrailingP;
assert(nTrailingP == 0);
return createInlinedCompareImplementation(builder, loc, args, xPerm, ny,
createLessThanCompare);
}
/// Creates a function to use a binary search to find the insertion point for
/// inserting xs[hi] to the sorted values xs[lo..hi).
//
// The generate IR corresponds to this C like algorithm:
// p = hi
// while (lo < hi)
// mid = (lo + hi) >> 1
// if (xs[p] < xs[mid])
// hi = mid
// else
// lo = mid - 1
// return lo;
//
static void createBinarySearchFunc(OpBuilder &builder, ModuleOp module,
func::FuncOp func, AffineMap xPerm,
uint64_t ny, uint32_t nTrailingP = 0) {
// Binary search doesn't use trailing parameters.
(void)nTrailingP;
assert(nTrailingP == 0);
OpBuilder::InsertionGuard insertionGuard(builder);
Block *entryBlock = func.addEntryBlock();
builder.setInsertionPointToStart(entryBlock);
Location loc = func.getLoc();
ValueRange args = entryBlock->getArguments();
Value p = args[hiIdx];
SmallVector<Type, 2> types(2, p.getType()); // Only two types.
scf::WhileOp whileOp = scf::WhileOp::create(
builder, loc, types, SmallVector<Value, 2>{args[loIdx], args[hiIdx]});
// The before-region of the WhileOp.
Block *before =
builder.createBlock(&whileOp.getBefore(), {}, types, {loc, loc});
builder.setInsertionPointToEnd(before);
Value cond1 =
arith::CmpIOp::create(builder, loc, arith::CmpIPredicate::ult,
before->getArgument(0), before->getArgument(1));
scf::ConditionOp::create(builder, loc, cond1, before->getArguments());
// The after-region of the WhileOp.
Block *after =
builder.createBlock(&whileOp.getAfter(), {}, types, {loc, loc});
builder.setInsertionPointToEnd(after);
Value lo = after->getArgument(0);
Value hi = after->getArgument(1);
// Compute mid = (lo + hi) >> 1.
Value c1 = constantIndex(builder, loc, 1);
Value mid = arith::ShRUIOp::create(
builder, loc, arith::AddIOp::create(builder, loc, lo, hi), c1);
Value midp1 = arith::AddIOp::create(builder, loc, mid, c1);
// Compare xs[p] < xs[mid].
SmallVector<Value> compareOperands{p, mid};
constexpr uint64_t numXBuffers = 1;
compareOperands.append(args.begin() + xStartIdx,
args.begin() + xStartIdx + numXBuffers);
Value cond2 = createInlinedLessThan(builder, loc, compareOperands, xPerm, ny);
// Update lo and hi for the WhileOp as follows:
// if (xs[p] < xs[mid]))
// hi = mid;
// else
// lo = mid + 1;
Value newLo = arith::SelectOp::create(builder, loc, cond2, lo, midp1);
Value newHi = arith::SelectOp::create(builder, loc, cond2, mid, hi);
scf::YieldOp::create(builder, loc, ValueRange{newLo, newHi});
builder.setInsertionPointAfter(whileOp);
func::ReturnOp::create(builder, loc, whileOp.getResult(0));
}
/// Creates code to advance i in a loop based on xs[p] as follows:
/// while (xs[i] < xs[p]) i += step (step > 0)
/// or
/// while (xs[i] > xs[p]) i += step (step < 0)
/// The routine returns i as well as a boolean value to indicate whether
/// xs[i] == xs[p].
static std::pair<Value, Value> createScanLoop(OpBuilder &builder,
ModuleOp module,
func::FuncOp func, ValueRange xs,
Value i, Value p, AffineMap xPerm,
uint64_t ny, int step) {
Location loc = func.getLoc();
scf::WhileOp whileOp =
scf::WhileOp::create(builder, loc, TypeRange{i.getType()}, ValueRange{i});
Block *before =
builder.createBlock(&whileOp.getBefore(), {}, {i.getType()}, {loc});
builder.setInsertionPointToEnd(before);
SmallVector<Value> compareOperands;
if (step > 0) {
compareOperands.push_back(before->getArgument(0));
compareOperands.push_back(p);
} else {
assert(step < 0);
compareOperands.push_back(p);
compareOperands.push_back(before->getArgument(0));
}
compareOperands.append(xs.begin(), xs.end());
Value cond = createInlinedLessThan(builder, loc, compareOperands, xPerm, ny);
scf::ConditionOp::create(builder, loc, cond, before->getArguments());
Block *after =
builder.createBlock(&whileOp.getAfter(), {}, {i.getType()}, {loc});
builder.setInsertionPointToEnd(after);
Value cs = constantIndex(builder, loc, step);
i = arith::AddIOp::create(builder, loc, after->getArgument(0), cs);
scf::YieldOp::create(builder, loc, ValueRange{i});
i = whileOp.getResult(0);
builder.setInsertionPointAfter(whileOp);
compareOperands[0] = i;
compareOperands[1] = p;
Value compareEq =
createInlinedEqCompare(builder, loc, compareOperands, xPerm, ny);
return std::make_pair(whileOp.getResult(0), compareEq);
}
/// Creates and returns an IfOp to compare two elements and swap the elements
/// if compareFunc(data[b], data[a]) returns true. The new insertion point is
/// right after the swap instructions.
static scf::IfOp createCompareThenSwap(OpBuilder &builder, Location loc,
AffineMap xPerm, uint64_t ny,
SmallVectorImpl<Value> &swapOperands,
SmallVectorImpl<Value> &compareOperands,
Value a, Value b) {
// Compare(data[b], data[a]).
compareOperands[0] = b;
compareOperands[1] = a;
Value cond = createInlinedLessThan(builder, loc, compareOperands, xPerm, ny);
scf::IfOp ifOp = scf::IfOp::create(builder, loc, cond, /*else=*/false);
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
swapOperands[0] = b;
swapOperands[1] = a;
createSwap(builder, loc, swapOperands, xPerm, ny);
return ifOp;
}
/// Creates code to insert the 3rd element to a list of two sorted elements.
static void createInsert3rd(OpBuilder &builder, Location loc, AffineMap xPerm,
uint64_t ny, SmallVectorImpl<Value> &swapOperands,
SmallVectorImpl<Value> &compareOperands, Value v0,
Value v1, Value v2) {
scf::IfOp ifOp = createCompareThenSwap(builder, loc, xPerm, ny, swapOperands,
compareOperands, v1, v2);
createCompareThenSwap(builder, loc, xPerm, ny, swapOperands, compareOperands,
v0, v1);
builder.setInsertionPointAfter(ifOp);
}
/// Creates code to sort 3 elements.
static void createSort3(OpBuilder &builder, Location loc, AffineMap xPerm,
uint64_t ny, SmallVectorImpl<Value> &swapOperands,
SmallVectorImpl<Value> &compareOperands, Value v0,
Value v1, Value v2) {
// Sort the first 2 elements.
scf::IfOp ifOp1 = createCompareThenSwap(builder, loc, xPerm, ny, swapOperands,
compareOperands, v0, v1);
builder.setInsertionPointAfter(ifOp1);
// Insert the 3th element.
createInsert3rd(builder, loc, xPerm, ny, swapOperands, compareOperands, v0,
v1, v2);
}
/// Creates code to sort 5 elements.
static void createSort5(OpBuilder &builder, Location loc, AffineMap xPerm,
uint64_t ny, SmallVectorImpl<Value> &swapOperands,
SmallVectorImpl<Value> &compareOperands, Value v0,
Value v1, Value v2, Value v3, Value v4) {
// Sort the first 3 elements.
createSort3(builder, loc, xPerm, ny, swapOperands, compareOperands, v0, v1,
v2);
auto insert4th = [&]() {
scf::IfOp ifOp = createCompareThenSwap(
builder, loc, xPerm, ny, swapOperands, compareOperands, v2, v3);
createInsert3rd(builder, loc, xPerm, ny, swapOperands, compareOperands, v0,
v1, v2);
builder.setInsertionPointAfter(ifOp);
};
// Insert the 4th element.
insert4th();
// Insert the 5th element.
scf::IfOp ifOp = createCompareThenSwap(builder, loc, xPerm, ny, swapOperands,
compareOperands, v3, v4);
insert4th();
builder.setInsertionPointAfter(ifOp);
}
/// Creates a code block to swap the values in indices lo, mi, and hi so that
/// data[lo], data[mi] and data[hi] are sorted in non-decreasing values. When
/// the number of values in range [lo, hi) is more than a threshold, we also
/// include the middle of [lo, mi) and [mi, hi) and sort a total of five values.
static void createChoosePivot(OpBuilder &builder, ModuleOp module,
func::FuncOp func, AffineMap xPerm, uint64_t ny,
Value lo, Value hi, Value mi, ValueRange args) {
SmallVector<Value> compareOperands{mi, lo};
constexpr uint64_t numXBuffers = 1;
compareOperands.append(args.begin() + xStartIdx,
args.begin() + xStartIdx + numXBuffers);
SmallVector<Value> swapOperands{mi, lo};
swapOperands.append(args.begin() + xStartIdx, args.end());
Location loc = func.getLoc();
Value c1 = constantIndex(builder, loc, 1);
Value hiP1 = arith::AddIOp::create(builder, loc, hi, c1);
Value len = arith::SubIOp::create(builder, loc, hiP1, lo);
Value lenThreshold = constantIndex(builder, loc, 1000);
Value lenCond = arith::CmpIOp::create(builder, loc, arith::CmpIPredicate::ult,
len, lenThreshold);
scf::IfOp lenIf = scf::IfOp::create(builder, loc, lenCond, /*else=*/true);
// When len < 1000, choose pivot from median of 3 values.
builder.setInsertionPointToStart(&lenIf.getThenRegion().front());
createSort3(builder, loc, xPerm, ny, swapOperands, compareOperands, lo, mi,
hi);
// When len >= 1000, choose pivot from median of 5 values.
builder.setInsertionPointToStart(&lenIf.getElseRegion().front());
Value miP1 = arith::AddIOp::create(builder, loc, hi, c1);
Value a = arith::AddIOp::create(builder, loc, lo, miP1);
// Value a is the middle between [loc, mi].
a = arith::ShRUIOp::create(builder, loc, a, c1);
Value b = arith::AddIOp::create(builder, loc, mi, hiP1);
// Value b is the middle between [mi, hi].
b = arith::ShRUIOp::create(builder, loc, b, c1);
createSort5(builder, loc, xPerm, ny, swapOperands, compareOperands, lo, a, mi,
b, hi);
builder.setInsertionPointAfter(lenIf);
}
/// Creates a function to perform quick sort partition on the values in the
/// range of index [lo, hi), assuming lo < hi.
//
// The generated IR corresponds to this C like algorithm:
// int partition(lo, hi, xs) {
// p = (lo+hi)/2 // pivot index
// i = lo
// j = hi-1
// while (true) do {
// while (xs[i] < xs[p]) i ++;
// i_eq = (xs[i] == xs[p]);
// while (xs[j] > xs[p]) j --;
// j_eq = (xs[j] == xs[p]);
//
// if (i >= j) return j + 1;
//
// if (i < j) {
// swap(xs[i], xs[j])
// if (i == p) {
// p = j;
// } else if (j == p) {
// p = i;
// }
// if (i_eq && j_eq) {
// ++i;
// --j;
// }
// }
// }
// }
static void createPartitionFunc(OpBuilder &builder, ModuleOp module,
func::FuncOp func, AffineMap xPerm, uint64_t ny,
uint32_t nTrailingP = 0) {
// Quick sort partition doesn't use trailing parameters.
(void)nTrailingP;
assert(nTrailingP == 0);
OpBuilder::InsertionGuard insertionGuard(builder);
Block *entryBlock = func.addEntryBlock();
builder.setInsertionPointToStart(entryBlock);
Location loc = func.getLoc();
ValueRange args = entryBlock->getArguments();
Value lo = args[loIdx];
Value hi = args[hiIdx];
Value sum = arith::AddIOp::create(builder, loc, lo, hi);
Value c1 = constantIndex(builder, loc, 1);
Value p = arith::ShRUIOp::create(builder, loc, sum, c1);
Value i = lo;
Value j = arith::SubIOp::create(builder, loc, hi, c1);
createChoosePivot(builder, module, func, xPerm, ny, i, j, p, args);
Value trueVal = constantI1(builder, loc, true); // The value for while (true)
SmallVector<Value, 4> operands{i, j, p, trueVal}; // Exactly four values.
SmallVector<Type, 4> types{i.getType(), j.getType(), p.getType(),
trueVal.getType()};
scf::WhileOp whileOp = scf::WhileOp::create(builder, loc, types, operands);
// The before-region of the WhileOp.
Block *before = builder.createBlock(&whileOp.getBefore(), {}, types,
{loc, loc, loc, loc});
builder.setInsertionPointToEnd(before);
scf::ConditionOp::create(builder, loc, before->getArgument(3),
before->getArguments());
// The after-region of the WhileOp.
Block *after =
builder.createBlock(&whileOp.getAfter(), {}, types, {loc, loc, loc, loc});
builder.setInsertionPointToEnd(after);
i = after->getArgument(0);
j = after->getArgument(1);
p = after->getArgument(2);
constexpr uint64_t numXBuffers = 1;
auto [iresult, iCompareEq] =
createScanLoop(builder, module, func, args.slice(xStartIdx, numXBuffers),
i, p, xPerm, ny, 1);
i = iresult;
auto [jresult, jCompareEq] =
createScanLoop(builder, module, func, args.slice(xStartIdx, numXBuffers),
j, p, xPerm, ny, -1);
j = jresult;
// If i < j:
Value cond =
arith::CmpIOp::create(builder, loc, arith::CmpIPredicate::ult, i, j);
scf::IfOp ifOp = scf::IfOp::create(builder, loc, types, cond, /*else=*/true);
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
SmallVector<Value> swapOperands{i, j};
swapOperands.append(args.begin() + xStartIdx, args.end());
createSwap(builder, loc, swapOperands, xPerm, ny);
// If the pivot is moved, update p with the new pivot.
Value icond =
arith::CmpIOp::create(builder, loc, arith::CmpIPredicate::eq, i, p);
scf::IfOp ifOpI = scf::IfOp::create(builder, loc, TypeRange{p.getType()},
icond, /*else=*/true);
builder.setInsertionPointToStart(&ifOpI.getThenRegion().front());
scf::YieldOp::create(builder, loc, ValueRange{j});
builder.setInsertionPointToStart(&ifOpI.getElseRegion().front());
Value jcond =
arith::CmpIOp::create(builder, loc, arith::CmpIPredicate::eq, j, p);
scf::IfOp ifOpJ = scf::IfOp::create(builder, loc, TypeRange{p.getType()},
jcond, /*else=*/true);
builder.setInsertionPointToStart(&ifOpJ.getThenRegion().front());
scf::YieldOp::create(builder, loc, ValueRange{i});
builder.setInsertionPointToStart(&ifOpJ.getElseRegion().front());
scf::YieldOp::create(builder, loc, ValueRange{p});
builder.setInsertionPointAfter(ifOpJ);
scf::YieldOp::create(builder, loc, ifOpJ.getResults());
builder.setInsertionPointAfter(ifOpI);
Value compareEqIJ =
arith::AndIOp::create(builder, loc, iCompareEq, jCompareEq);
scf::IfOp ifOp2 =
scf::IfOp::create(builder, loc, TypeRange{i.getType(), j.getType()},
compareEqIJ, /*else=*/true);
builder.setInsertionPointToStart(&ifOp2.getThenRegion().front());
Value i2 = arith::AddIOp::create(builder, loc, i, c1);
Value j2 = arith::SubIOp::create(builder, loc, j, c1);
scf::YieldOp::create(builder, loc, ValueRange{i2, j2});
builder.setInsertionPointToStart(&ifOp2.getElseRegion().front());
scf::YieldOp::create(builder, loc, ValueRange{i, j});
builder.setInsertionPointAfter(ifOp2);
scf::YieldOp::create(builder, loc,
ValueRange{ifOp2.getResult(0), ifOp2.getResult(1),
ifOpI.getResult(0),
/*cont=*/constantI1(builder, loc, true)});
// False branch for if i < j (i.e., i >= j):
builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
p = arith::AddIOp::create(builder, loc, j,
constantOne(builder, loc, j.getType()));
scf::YieldOp::create(
builder, loc,
ValueRange{i, j, p, /*cont=*/constantI1(builder, loc, false)});
// Return for the whileOp.
builder.setInsertionPointAfter(ifOp);
scf::YieldOp::create(builder, loc, ifOp.getResults());
// Return for the function.
builder.setInsertionPointAfter(whileOp);
func::ReturnOp::create(builder, loc, whileOp.getResult(2));
}
/// Computes (n-2)/n, assuming n has index type.
static Value createSubTwoDividedByTwo(OpBuilder &builder, Location loc,
Value n) {
Value i2 = constantIndex(builder, loc, 2);
Value res = arith::SubIOp::create(builder, loc, n, i2);
Value i1 = constantIndex(builder, loc, 1);
return arith::ShRUIOp::create(builder, loc, res, i1);
}
/// Creates a function to heapify the subtree with root `start` within the full
/// binary tree in the range of index [first, first + n).
//
// The generated IR corresponds to this C like algorithm:
// void shiftDown(first, start, n, data) {
// if (n >= 2) {
// child = start - first
// if ((n-2)/2 >= child) {
// // Left child exists.
// child = child * 2 + 1 // Initialize the bigger child to left child.
// childIndex = child + first
// if (child+1 < n && data[childIndex] < data[childIndex+1])
// // Right child exits and is bigger.
// childIndex++; child++;
// // Shift data[start] down to where it belongs in the subtree.
// while (data[start] < data[childIndex) {
// swap(data[start], data[childIndex])
// start = childIndex
// if ((n - 2)/2 >= child) {
// // Left child exists.
// child = 2*child + 1
// childIndex = child + 1
// if (child + 1) < n && data[childIndex] < data[childIndex+1]
// childIndex++; child++;
// }
// }
// }
// }
// }
//
static void createShiftDownFunc(OpBuilder &builder, ModuleOp module,
func::FuncOp func, AffineMap xPerm, uint64_t ny,
uint32_t nTrailingP) {
// The value n is passed in as a trailing parameter.
assert(nTrailingP == 1);
OpBuilder::InsertionGuard insertionGuard(builder);
Block *entryBlock = func.addEntryBlock();
builder.setInsertionPointToStart(entryBlock);
Location loc = func.getLoc();
Value n = entryBlock->getArguments().back();
ValueRange args = entryBlock->getArguments().drop_back();
Value first = args[loIdx];
Value start = args[hiIdx];
// If (n >= 2).
Value c2 = constantIndex(builder, loc, 2);
Value condN =
arith::CmpIOp::create(builder, loc, arith::CmpIPredicate::uge, n, c2);
scf::IfOp ifN = scf::IfOp::create(builder, loc, condN, /*else=*/false);
builder.setInsertionPointToStart(&ifN.getThenRegion().front());
Value child = arith::SubIOp::create(builder, loc, start, first);
// If ((n-2)/2 >= child).
Value t = createSubTwoDividedByTwo(builder, loc, n);
Value condNc =
arith::CmpIOp::create(builder, loc, arith::CmpIPredicate::uge, t, child);
scf::IfOp ifNc = scf::IfOp::create(builder, loc, condNc, /*else=*/false);
builder.setInsertionPointToStart(&ifNc.getThenRegion().front());
Value c1 = constantIndex(builder, loc, 1);
SmallVector<Value> compareOperands{start, start};
constexpr uint64_t numXBuffers = 1;
compareOperands.append(args.begin() + xStartIdx,
args.begin() + xStartIdx + numXBuffers);
// Generate code to inspect the children of 'r' and return the larger child
// as follows:
// child = r * 2 + 1 // Left child.
// childIndex = child + first
// if (child+1 < n && data[childIndex] < data[childIndex+1])
// childIndex ++; child ++ // Right child is bigger.
auto getLargerChild = [&](Value r) -> std::pair<Value, Value> {
Value lChild = arith::ShLIOp::create(builder, loc, r, c1);
lChild = arith::AddIOp::create(builder, loc, lChild, c1);
Value lChildIdx = arith::AddIOp::create(builder, loc, lChild, first);
Value rChild = arith::AddIOp::create(builder, loc, lChild, c1);
Value cond1 = arith::CmpIOp::create(builder, loc, arith::CmpIPredicate::ult,
rChild, n);
SmallVector<Type, 2> ifTypes(2, r.getType());
scf::IfOp if1 =
scf::IfOp::create(builder, loc, ifTypes, cond1, /*else=*/true);
builder.setInsertionPointToStart(&if1.getThenRegion().front());
Value rChildIdx = arith::AddIOp::create(builder, loc, rChild, first);
// Compare data[left] < data[right].
compareOperands[0] = lChildIdx;
compareOperands[1] = rChildIdx;
Value cond2 =
createInlinedLessThan(builder, loc, compareOperands, xPerm, ny);
scf::IfOp if2 =
scf::IfOp::create(builder, loc, ifTypes, cond2, /*else=*/true);
builder.setInsertionPointToStart(&if2.getThenRegion().front());
scf::YieldOp::create(builder, loc, ValueRange{rChild, rChildIdx});
builder.setInsertionPointToStart(&if2.getElseRegion().front());
scf::YieldOp::create(builder, loc, ValueRange{lChild, lChildIdx});
builder.setInsertionPointAfter(if2);
scf::YieldOp::create(builder, loc, if2.getResults());
builder.setInsertionPointToStart(&if1.getElseRegion().front());
scf::YieldOp::create(builder, loc, ValueRange{lChild, lChildIdx});
builder.setInsertionPointAfter(if1);
return std::make_pair(if1.getResult(0), if1.getResult(1));
};
Value childIdx;
std::tie(child, childIdx) = getLargerChild(child);
// While (data[start] < data[childIndex]).
SmallVector<Type, 3> types(3, child.getType());
scf::WhileOp whileOp = scf::WhileOp::create(
builder, loc, types, SmallVector<Value, 2>{start, child, childIdx});
// The before-region of the WhileOp.
SmallVector<Location, 3> locs(3, loc);
Block *before = builder.createBlock(&whileOp.getBefore(), {}, types, locs);
builder.setInsertionPointToEnd(before);
start = before->getArgument(0);
childIdx = before->getArgument(2);
compareOperands[0] = start;
compareOperands[1] = childIdx;
Value cond = createInlinedLessThan(builder, loc, compareOperands, xPerm, ny);
scf::ConditionOp::create(builder, loc, cond, before->getArguments());
// The after-region of the WhileOp.
Block *after = builder.createBlock(&whileOp.getAfter(), {}, types, locs);
start = after->getArgument(0);
child = after->getArgument(1);
childIdx = after->getArgument(2);
SmallVector<Value> swapOperands{start, childIdx};
swapOperands.append(args.begin() + xStartIdx, args.end());
createSwap(builder, loc, swapOperands, xPerm, ny);
start = childIdx;
Value cond2 =
arith::CmpIOp::create(builder, loc, arith::CmpIPredicate::uge, t, child);
scf::IfOp if2 = scf::IfOp::create(builder, loc,
TypeRange{child.getType(), child.getType()},
cond2, /*else=*/true);
builder.setInsertionPointToStart(&if2.getThenRegion().front());
auto [newChild, newChildIdx] = getLargerChild(child);
scf::YieldOp::create(builder, loc, ValueRange{newChild, newChildIdx});
builder.setInsertionPointToStart(&if2.getElseRegion().front());
scf::YieldOp::create(builder, loc, ValueRange{child, childIdx});
builder.setInsertionPointAfter(if2);
scf::YieldOp::create(builder, loc,
ValueRange{start, if2.getResult(0), if2.getResult(1)});
builder.setInsertionPointAfter(ifN);
func::ReturnOp::create(builder, loc);
}
/// Creates a function to perform heap sort on the values in the range of index
/// [lo, hi) with the assumption hi - lo >= 2.
//
// The generate IR corresponds to this C like algorithm:
// void heapSort(lo, hi, data) {
// n = hi - lo
// for i = (n-2)/2 downto 0
// shiftDown(lo, lo+i, n)
//
// for l = n downto 2
// swap(lo, lo+l-1)
// shiftdown(lo, lo, l-1)
// }
static void createHeapSortFunc(OpBuilder &builder, ModuleOp module,
func::FuncOp func, AffineMap xPerm, uint64_t ny,
uint32_t nTrailingP) {
// Heap sort function doesn't have trailing parameters.
(void)nTrailingP;
assert(nTrailingP == 0);
OpBuilder::InsertionGuard insertionGuard(builder);
Block *entryBlock = func.addEntryBlock();
builder.setInsertionPointToStart(entryBlock);
Location loc = func.getLoc();
ValueRange args = entryBlock->getArguments();
Value lo = args[loIdx];
Value hi = args[hiIdx];
Value n = arith::SubIOp::create(builder, loc, hi, lo);
// For i = (n-2)/2 downto 0.
Value c0 = constantIndex(builder, loc, 0);
Value c1 = constantIndex(builder, loc, 1);
Value s = createSubTwoDividedByTwo(builder, loc, n);
Value up = arith::AddIOp::create(builder, loc, s, c1);
scf::ForOp forI = scf::ForOp::create(builder, loc, c0, up, c1);
builder.setInsertionPointToStart(forI.getBody());
Value i = arith::SubIOp::create(builder, loc, s, forI.getInductionVar());
Value lopi = arith::AddIOp::create(builder, loc, lo, i);
SmallVector<Value> shiftDownOperands = {lo, lopi};
shiftDownOperands.append(args.begin() + xStartIdx, args.end());
shiftDownOperands.push_back(n);
FlatSymbolRefAttr shiftDownFunc = getMangledSortHelperFunc(
builder, func, TypeRange(), kShiftDownFuncNamePrefix, xPerm, ny,
shiftDownOperands, createShiftDownFunc, /*nTrailingP=*/1);
func::CallOp::create(builder, loc, shiftDownFunc, TypeRange(),
shiftDownOperands);
builder.setInsertionPointAfter(forI);
// For l = n downto 2.
up = arith::SubIOp::create(builder, loc, n, c1);
scf::ForOp forL = scf::ForOp::create(builder, loc, c0, up, c1);
builder.setInsertionPointToStart(forL.getBody());
Value l = arith::SubIOp::create(builder, loc, n, forL.getInductionVar());
Value loplm1 = arith::AddIOp::create(builder, loc, lo, l);
loplm1 = arith::SubIOp::create(builder, loc, loplm1, c1);
SmallVector<Value> swapOperands{lo, loplm1};
swapOperands.append(args.begin() + xStartIdx, args.end());
createSwap(builder, loc, swapOperands, xPerm, ny);
shiftDownOperands[1] = lo;
shiftDownOperands[shiftDownOperands.size() - 1] =
arith::SubIOp::create(builder, loc, l, c1);
func::CallOp::create(builder, loc, shiftDownFunc, TypeRange(),
shiftDownOperands);
builder.setInsertionPointAfter(forL);
func::ReturnOp::create(builder, loc);
}
/// A helper for generating code to perform quick sort. It partitions [lo, hi),
/// recursively calls quick sort to process the smaller partition and returns
/// the bigger partition to be processed by the enclosed while-loop.
static std::pair<Value, Value>
createQuickSort(OpBuilder &builder, ModuleOp module, func::FuncOp func,
ValueRange args, AffineMap xPerm, uint64_t ny,
uint32_t nTrailingP) {
MLIRContext *context = module.getContext();
Location loc = func.getLoc();
Value lo = args[loIdx];
Value hi = args[hiIdx];
SmallVector<Type, 2> types(2, lo.getType()); // Only two types.
FlatSymbolRefAttr partitionFunc = getMangledSortHelperFunc(
builder, func, {IndexType::get(context)}, kPartitionFuncNamePrefix, xPerm,
ny, args.drop_back(nTrailingP), createPartitionFunc);
Value p = builder
.create<func::CallOp>(loc, partitionFunc,
TypeRange{IndexType::get(context)},
args.drop_back(nTrailingP))
.getResult(0);
Value lenLow = arith::SubIOp::create(builder, loc, p, lo);
Value lenHigh = arith::SubIOp::create(builder, loc, hi, p);
// Partition already sorts array with len <= 2
Value c2 = constantIndex(builder, loc, 2);
Value len = arith::SubIOp::create(builder, loc, hi, lo);
Value lenGtTwo =
arith::CmpIOp::create(builder, loc, arith::CmpIPredicate::ugt, len, c2);
scf::IfOp ifLenGtTwo =
scf::IfOp::create(builder, loc, types, lenGtTwo, /*else=*/true);
builder.setInsertionPointToStart(&ifLenGtTwo.getElseRegion().front());
// Returns an empty range to mark the entire region is fully sorted.
scf::YieldOp::create(builder, loc, ValueRange{lo, lo});
// Else len > 2, need recursion.
builder.setInsertionPointToStart(&ifLenGtTwo.getThenRegion().front());
Value cond = arith::CmpIOp::create(builder, loc, arith::CmpIPredicate::ule,
lenLow, lenHigh);
Value c0 = constantIndex(builder, loc, 0);
scf::IfOp ifOp = scf::IfOp::create(builder, loc, types, cond, /*else=*/true);
auto mayRecursion = [&](Value low, Value high, Value len) {
Value cond =
arith::CmpIOp::create(builder, loc, arith::CmpIPredicate::ne, len, c0);
scf::IfOp ifOp = scf::IfOp::create(builder, loc, cond, /*else=*/false);
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
SmallVector<Value> operands{low, high};
operands.append(args.begin() + xStartIdx, args.end());
func::CallOp::create(builder, loc, func, operands);
builder.setInsertionPointAfter(ifOp);
};
// Recursively call quickSort to process the smaller partition and return
// the bigger partition to be processed by the enclosed while-loop.
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
mayRecursion(lo, p, lenLow);
scf::YieldOp::create(builder, loc, ValueRange{p, hi});
builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
mayRecursion(p, hi, lenHigh);
scf::YieldOp::create(builder, loc, ValueRange{lo, p});
builder.setInsertionPointAfter(ifOp);
scf::YieldOp::create(builder, loc, ifOp.getResults());
builder.setInsertionPointAfter(ifLenGtTwo);
return std::make_pair(ifLenGtTwo.getResult(0), ifLenGtTwo.getResult(1));
}
/// Creates a function to perform insertion sort on the values in the range of
/// index [lo, hi).
//
// The generate IR corresponds to this C like algorithm:
// void insertionSort(lo, hi, data) {
// for (i = lo+1; i < hi; i++) {
// d = data[i];
// p = binarySearch(lo, i-1, data)
// for (j = 0; j > i - p; j++)
// data[i-j] = data[i-j-1]
// data[p] = d
// }
// }
static void createSortStableFunc(OpBuilder &builder, ModuleOp module,
func::FuncOp func, AffineMap xPerm,
uint64_t ny, uint32_t nTrailingP) {
// Stable sort function doesn't use trailing parameters.
(void)nTrailingP;
assert(nTrailingP == 0);
OpBuilder::InsertionGuard insertionGuard(builder);
Block *entryBlock = func.addEntryBlock();
builder.setInsertionPointToStart(entryBlock);
MLIRContext *context = module.getContext();
Location loc = func.getLoc();
ValueRange args = entryBlock->getArguments();
Value c1 = constantIndex(builder, loc, 1);
Value lo = args[loIdx];
Value hi = args[hiIdx];
Value lop1 = arith::AddIOp::create(builder, loc, lo, c1);
// Start the outer for-stmt with induction variable i.
scf::ForOp forOpI = scf::ForOp::create(builder, loc, lop1, hi, c1);
builder.setInsertionPointToStart(forOpI.getBody());
Value i = forOpI.getInductionVar();
// Binary search to find the insertion point p.
SmallVector<Value> operands{lo, i};
operands.append(args.begin() + xStartIdx, args.end());
FlatSymbolRefAttr searchFunc = getMangledSortHelperFunc(
builder, func, {IndexType::get(context)}, kBinarySearchFuncNamePrefix,
xPerm, ny, operands, createBinarySearchFunc);
Value p = builder
.create<func::CallOp>(loc, searchFunc, TypeRange{c1.getType()},
operands)
.getResult(0);
// Move the value at data[i] to a temporary location.
operands[0] = operands[1] = i;
SmallVector<Value> d;
forEachIJPairInAllBuffers(
builder, loc, operands, xPerm, ny,
[&](uint64_t unused, Value i, Value unused2, Value buffer) {
d.push_back(memref::LoadOp::create(builder, loc, buffer, i));
});
// Start the inner for-stmt with induction variable j, for moving data[p..i)
// to data[p+1..i+1).
Value imp = arith::SubIOp::create(builder, loc, i, p);
Value c0 = constantIndex(builder, loc, 0);
scf::ForOp forOpJ = scf::ForOp::create(builder, loc, c0, imp, c1);
builder.setInsertionPointToStart(forOpJ.getBody());
Value j = forOpJ.getInductionVar();
Value imj = arith::SubIOp::create(builder, loc, i, j);
operands[1] = imj;
operands[0] = arith::SubIOp::create(builder, loc, imj, c1);
forEachIJPairInAllBuffers(
builder, loc, operands, xPerm, ny,
[&](uint64_t unused, Value imjm1, Value imj, Value buffer) {
Value t = memref::LoadOp::create(builder, loc, buffer, imjm1);
memref::StoreOp::create(builder, loc, t, buffer, imj);
});
// Store the value at data[i] to data[p].
builder.setInsertionPointAfter(forOpJ);
operands[0] = operands[1] = p;
forEachIJPairInAllBuffers(
builder, loc, operands, xPerm, ny,
[&](uint64_t k, Value p, Value usused, Value buffer) {
memref::StoreOp::create(builder, loc, d[k], buffer, p);
});
builder.setInsertionPointAfter(forOpI);
func::ReturnOp::create(builder, loc);
}
/// Creates a function to perform quick sort or a hybrid quick sort on the
/// values in the range of index [lo, hi).
//
//
// When nTrailingP == 0, the generated IR corresponds to this C like algorithm:
// void quickSort(lo, hi, data) {
// while (lo + 1 < hi) {
// p = partition(low, high, data);
// if (len(lo, p) < len(p+1, hi)) {
// quickSort(lo, p, data);
// lo = p+1;
// } else {
// quickSort(p + 1, hi, data);
// hi = p;
// }
// }
// }
//
// When nTrailingP == 1, the generated IR corresponds to this C like algorithm:
// void hybridQuickSort(lo, hi, data, depthLimit) {
// while (lo + 1 < hi) {
// len = hi - lo;
// if (len <= limit) {
// insertionSort(lo, hi, data);
// } else {
// depthLimit --;
// if (depthLimit <= 0) {
// heapSort(lo, hi, data);
// } else {
// p = partition(low, high, data);
// if (len(lo, p) < len(p+1, hi)) {
// quickSort(lo, p, data, depthLimit);
// lo = p+1;
// } else {
// quickSort(p + 1, hi, data, depthLimit);
// hi = p;
// }
// }
// }
// }
// }
//
static void createQuickSortFunc(OpBuilder &builder, ModuleOp module,
func::FuncOp func, AffineMap xPerm, uint64_t ny,
uint32_t nTrailingP) {
assert(nTrailingP == 1 || nTrailingP == 0);
bool isHybrid = (nTrailingP == 1);
OpBuilder::InsertionGuard insertionGuard(builder);
Block *entryBlock = func.addEntryBlock();
builder.setInsertionPointToStart(entryBlock);
Location loc = func.getLoc();
SmallVector<Value> args;
args.append(entryBlock->getArguments().begin(),
entryBlock->getArguments().end());
Value lo = args[loIdx];
Value hi = args[hiIdx];
SmallVector<Type, 2> types(2, lo.getType()); // Only two types.
scf::WhileOp whileOp =
scf::WhileOp::create(builder, loc, types, SmallVector<Value, 2>{lo, hi});
// The before-region of the WhileOp.
Block *before =
builder.createBlock(&whileOp.getBefore(), {}, types, {loc, loc});
builder.setInsertionPointToEnd(before);
lo = before->getArgument(0);
hi = before->getArgument(1);
Value loP1 =
arith::AddIOp::create(builder, loc, lo, constantIndex(builder, loc, 1));
Value needSort =
arith::CmpIOp::create(builder, loc, arith::CmpIPredicate::ult, loP1, hi);
scf::ConditionOp::create(builder, loc, needSort, before->getArguments());
// The after-region of the WhileOp.
Block *after =
builder.createBlock(&whileOp.getAfter(), {}, types, {loc, loc});
builder.setInsertionPointToEnd(after);
lo = after->getArgument(0);
hi = after->getArgument(1);
args[0] = lo;
args[1] = hi;
if (isHybrid) {
Value len = arith::SubIOp::create(builder, loc, hi, lo);
Value lenLimit = constantIndex(builder, loc, 30);
Value lenCond = arith::CmpIOp::create(
builder, loc, arith::CmpIPredicate::ule, len, lenLimit);
scf::IfOp lenIf =
scf::IfOp::create(builder, loc, types, lenCond, /*else=*/true);
// When len <= limit.
builder.setInsertionPointToStart(&lenIf.getThenRegion().front());
FlatSymbolRefAttr insertionSortFunc = getMangledSortHelperFunc(
builder, func, TypeRange(), kSortStableFuncNamePrefix, xPerm, ny,
ValueRange(args).drop_back(nTrailingP), createSortStableFunc);
func::CallOp::create(builder, loc, insertionSortFunc, TypeRange(),
ValueRange(args).drop_back(nTrailingP));
scf::YieldOp::create(builder, loc, ValueRange{lo, lo});
// When len > limit.
builder.setInsertionPointToStart(&lenIf.getElseRegion().front());
Value depthLimit = args.back();
depthLimit = arith::SubIOp::create(builder, loc, depthLimit,
constantI64(builder, loc, 1));
Value depthCond =
arith::CmpIOp::create(builder, loc, arith::CmpIPredicate::ule,
depthLimit, constantI64(builder, loc, 0));
scf::IfOp depthIf =
scf::IfOp::create(builder, loc, types, depthCond, /*else=*/true);
// When depth exceeds limit.
builder.setInsertionPointToStart(&depthIf.getThenRegion().front());
FlatSymbolRefAttr heapSortFunc = getMangledSortHelperFunc(
builder, func, TypeRange(), kHeapSortFuncNamePrefix, xPerm, ny,
ValueRange(args).drop_back(nTrailingP), createHeapSortFunc);
func::CallOp::create(builder, loc, heapSortFunc, TypeRange(),
ValueRange(args).drop_back(nTrailingP));
scf::YieldOp::create(builder, loc, ValueRange{lo, lo});
// When depth doesn't exceed limit.
builder.setInsertionPointToStart(&depthIf.getElseRegion().front());
args.back() = depthLimit;
std::tie(lo, hi) =
createQuickSort(builder, module, func, args, xPerm, ny, nTrailingP);
scf::YieldOp::create(builder, loc, ValueRange{lo, hi});
builder.setInsertionPointAfter(depthIf);
lo = depthIf.getResult(0);
hi = depthIf.getResult(1);
scf::YieldOp::create(builder, loc, ValueRange{lo, hi});
builder.setInsertionPointAfter(lenIf);
lo = lenIf.getResult(0);
hi = lenIf.getResult(1);
} else {
std::tie(lo, hi) =
createQuickSort(builder, module, func, args, xPerm, ny, nTrailingP);
}
// New [lo, hi) for the next while-loop iteration.
scf::YieldOp::create(builder, loc, ValueRange{lo, hi});
// After the while-loop.
builder.setInsertionPointAfter(whileOp);
func::ReturnOp::create(builder, loc);
}
/// Implements the rewriting for operator sort and sort_coo.
template <typename OpTy>
LogicalResult matchAndRewriteSortOp(OpTy op, ValueRange xys, AffineMap xPerm,
uint64_t ny, PatternRewriter &rewriter) {
Location loc = op.getLoc();
SmallVector<Value> operands{constantIndex(rewriter, loc, 0), op.getN()};
// Convert `values` to have dynamic shape and append them to `operands`.
for (Value v : xys) {
auto mtp = getMemRefType(v);
if (!mtp.isDynamicDim(0)) {
auto newMtp =
MemRefType::get({ShapedType::kDynamic}, mtp.getElementType());
v = memref::CastOp::create(rewriter, loc, newMtp, v);
}
operands.push_back(v);
}
auto insertPoint = op->template getParentOfType<func::FuncOp>();
if (!insertPoint)
return failure();
SmallString<32> funcName;
FuncGeneratorType funcGenerator;
uint32_t nTrailingP = 0;
switch (op.getAlgorithm()) {
case SparseTensorSortKind::HybridQuickSort: {
funcName = kHybridQuickSortFuncNamePrefix;
funcGenerator = createQuickSortFunc;
nTrailingP = 1;
// As a heuristics, set depthLimit = 2 * log2(n).
Value lo = operands[loIdx];
Value hi = operands[hiIdx];
Value len = arith::IndexCastOp::create(
rewriter, loc, rewriter.getI64Type(),
arith::SubIOp::create(rewriter, loc, hi, lo));
Value depthLimit = arith::SubIOp::create(
rewriter, loc, constantI64(rewriter, loc, 64),
math::CountLeadingZerosOp::create(rewriter, loc, len));
operands.push_back(depthLimit);
break;
}
case SparseTensorSortKind::QuickSort:
funcName = kQuickSortFuncNamePrefix;
funcGenerator = createQuickSortFunc;
break;
case SparseTensorSortKind::InsertionSortStable:
funcName = kSortStableFuncNamePrefix;
funcGenerator = createSortStableFunc;
break;
case SparseTensorSortKind::HeapSort:
funcName = kHeapSortFuncNamePrefix;
funcGenerator = createHeapSortFunc;
break;
}
FlatSymbolRefAttr func =
getMangledSortHelperFunc(rewriter, insertPoint, TypeRange(), funcName,
xPerm, ny, operands, funcGenerator, nTrailingP);
rewriter.replaceOpWithNewOp<func::CallOp>(op, func, TypeRange(), operands);
return success();
}
//===---------------------------------------------------------------------===//
// The actual sparse buffer rewriting rules.
//===---------------------------------------------------------------------===//
namespace {
/// Sparse rewriting rule for the push_back operator.
struct PushBackRewriter : OpRewritePattern<PushBackOp> {
public:
using OpRewritePattern<PushBackOp>::OpRewritePattern;
PushBackRewriter(MLIRContext *context, bool enableInit)
: OpRewritePattern(context), enableBufferInitialization(enableInit) {}
LogicalResult matchAndRewrite(PushBackOp op,
PatternRewriter &rewriter) const override {
// Rewrite push_back(buffer, value, n) to:
// new_size = size(buffer) + n
// if (new_size > capacity(buffer))
// while new_size > new_capacity
// new_capacity = new_capacity*2
// new_buffer = realloc(buffer, new_capacity)
// buffer = new_buffer
// subBuffer = subviewof(buffer)
// linalg.fill subBuffer value
//
// size(buffer) += n
//
// The capacity check is skipped when the attribute inbounds is presented.
Location loc = op->getLoc();
Value c0 = constantIndex(rewriter, loc, 0);
Value buffer = op.getInBuffer();
Value capacity = memref::DimOp::create(rewriter, loc, buffer, c0);
Value size = op.getCurSize();
Value value = op.getValue();
Value n = op.getN() ? op.getN() : constantIndex(rewriter, loc, 1);
Value newSize = arith::AddIOp::create(rewriter, loc, size, n);
auto nValue = n.getDefiningOp<arith::ConstantIndexOp>();
bool nIsOne = (nValue && nValue.value() == 1);
if (!op.getInbounds()) {
Value cond = arith::CmpIOp::create(
rewriter, loc, arith::CmpIPredicate::ugt, newSize, capacity);
Value c2 = constantIndex(rewriter, loc, 2);
auto bufferType =
MemRefType::get({ShapedType::kDynamic}, value.getType());
scf::IfOp ifOp = scf::IfOp::create(rewriter, loc, bufferType, cond,
/*else=*/true);
// True branch.
rewriter.setInsertionPointToStart(&ifOp.getThenRegion().front());
if (nIsOne) {
capacity = arith::MulIOp::create(rewriter, loc, capacity, c2);
} else {
// Use a do-while loop to calculate the new capacity as follows:
// do { new_capacity *= 2 } while (size > new_capacity)
scf::WhileOp whileOp =
scf::WhileOp::create(rewriter, loc, capacity.getType(), capacity);
// The before-region of the WhileOp.
Block *before = rewriter.createBlock(&whileOp.getBefore(), {},
{capacity.getType()}, {loc});
rewriter.setInsertionPointToEnd(before);
capacity =
arith::MulIOp::create(rewriter, loc, before->getArgument(0), c2);
cond = arith::CmpIOp::create(rewriter, loc, arith::CmpIPredicate::ugt,
newSize, capacity);
scf::ConditionOp::create(rewriter, loc, cond, ValueRange{capacity});
// The after-region of the WhileOp.
Block *after = rewriter.createBlock(&whileOp.getAfter(), {},
{capacity.getType()}, {loc});
rewriter.setInsertionPointToEnd(after);
scf::YieldOp::create(rewriter, loc, after->getArguments());
rewriter.setInsertionPointAfter(whileOp);
capacity = whileOp.getResult(0);
}
Value newBuffer = memref::ReallocOp::create(rewriter, loc, bufferType,
buffer, capacity);
if (enableBufferInitialization) {
Value fillSize =
arith::SubIOp::create(rewriter, loc, capacity, newSize);
Value fillValue = constantZero(rewriter, loc, value.getType());
Value subBuffer = memref::SubViewOp::create(
rewriter, loc, newBuffer, /*offset=*/ValueRange{newSize},
/*size=*/ValueRange{fillSize},
/*step=*/ValueRange{constantIndex(rewriter, loc, 1)});
linalg::FillOp::create(rewriter, loc, fillValue, subBuffer);
}
scf::YieldOp::create(rewriter, loc, newBuffer);
// False branch.
rewriter.setInsertionPointToStart(&ifOp.getElseRegion().front());
scf::YieldOp::create(rewriter, loc, buffer);
// Prepare for adding the value to the end of the buffer.
rewriter.setInsertionPointAfter(ifOp);
buffer = ifOp.getResult(0);
}
// Add the value to the end of the buffer.
if (nIsOne) {
memref::StoreOp::create(rewriter, loc, value, buffer, size);
} else {
Value subBuffer = memref::SubViewOp::create(
rewriter, loc, buffer, /*offset=*/ValueRange{size},
/*size=*/ValueRange{n},
/*step=*/ValueRange{constantIndex(rewriter, loc, 1)});
linalg::FillOp::create(rewriter, loc, value, subBuffer);
}
// Update the buffer size.
rewriter.replaceOp(op, {buffer, newSize});
return success();
}
private:
bool enableBufferInitialization;
};
/// Sparse rewriting rule for the sort_coo operator.
struct SortRewriter : public OpRewritePattern<SortOp> {
public:
using OpRewritePattern<SortOp>::OpRewritePattern;
LogicalResult matchAndRewrite(SortOp op,
PatternRewriter &rewriter) const override {
SmallVector<Value> xys;
xys.push_back(op.getXy());
xys.append(op.getYs().begin(), op.getYs().end());
auto xPerm = op.getPermMap();
uint64_t ny = 0;
if (auto nyAttr = op.getNyAttr())
ny = nyAttr.getInt();
return matchAndRewriteSortOp(op, xys, xPerm, ny, rewriter);
}
};
} // namespace
//===---------------------------------------------------------------------===//
// Methods that add patterns described in this file to a pattern list.
//===---------------------------------------------------------------------===//
void mlir::populateSparseBufferRewriting(RewritePatternSet &patterns,
bool enableBufferInitialization) {
patterns.add<PushBackRewriter>(patterns.getContext(),
enableBufferInitialization);
patterns.add<SortRewriter>(patterns.getContext());
}