llvm-project/clang/lib/CodeGen/CGHLSLRuntime.cpp
Chris Bieneman 4c7218e770 [HLSL] Remove unused frontend-generated ID
As @python3kgae pointed out we're going to want to assign these IDs
after optimization so that we can remove unused resrouces. This patch
just removes the unused ID value from the frontend metadata, clang code
generation, and updates associated test cases.

Reviewed By: python3kgae

Differential Revision: https://reviews.llvm.org/D136271
2022-10-21 12:41:09 -05:00

460 lines
17 KiB
C++

//===----- CGHLSLRuntime.cpp - Interface to HLSL Runtimes -----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This provides an abstract class for HLSL code generation. Concrete
// subclasses of this implement code generation for specific HLSL
// runtime libraries.
//
//===----------------------------------------------------------------------===//
#include "CGHLSLRuntime.h"
#include "CGDebugInfo.h"
#include "CodeGenModule.h"
#include "clang/AST/Decl.h"
#include "clang/Basic/TargetOptions.h"
#include "llvm/IR/IntrinsicsDirectX.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/FormatVariadic.h"
using namespace clang;
using namespace CodeGen;
using namespace clang::hlsl;
using namespace llvm;
namespace {
void addDxilValVersion(StringRef ValVersionStr, llvm::Module &M) {
// The validation of ValVersionStr is done at HLSLToolChain::TranslateArgs.
// Assume ValVersionStr is legal here.
VersionTuple Version;
if (Version.tryParse(ValVersionStr) || Version.getBuild() ||
Version.getSubminor() || !Version.getMinor()) {
return;
}
uint64_t Major = Version.getMajor();
uint64_t Minor = *Version.getMinor();
auto &Ctx = M.getContext();
IRBuilder<> B(M.getContext());
MDNode *Val = MDNode::get(Ctx, {ConstantAsMetadata::get(B.getInt32(Major)),
ConstantAsMetadata::get(B.getInt32(Minor))});
StringRef DXILValKey = "dx.valver";
auto *DXILValMD = M.getOrInsertNamedMetadata(DXILValKey);
DXILValMD->addOperand(Val);
}
void addDisableOptimizations(llvm::Module &M) {
StringRef Key = "dx.disable_optimizations";
M.addModuleFlag(llvm::Module::ModFlagBehavior::Override, Key, 1);
}
// cbuffer will be translated into global variable in special address space.
// If translate into C,
// cbuffer A {
// float a;
// float b;
// }
// float foo() { return a + b; }
//
// will be translated into
//
// struct A {
// float a;
// float b;
// } cbuffer_A __attribute__((address_space(4)));
// float foo() { return cbuffer_A.a + cbuffer_A.b; }
//
// layoutBuffer will create the struct A type.
// replaceBuffer will replace use of global variable a and b with cbuffer_A.a
// and cbuffer_A.b.
//
void layoutBuffer(CGHLSLRuntime::Buffer &Buf, const DataLayout &DL) {
if (Buf.Constants.empty())
return;
std::vector<llvm::Type *> EltTys;
for (auto &Const : Buf.Constants) {
GlobalVariable *GV = Const.first;
Const.second = EltTys.size();
llvm::Type *Ty = GV->getValueType();
EltTys.emplace_back(Ty);
}
Buf.LayoutStruct = llvm::StructType::get(EltTys[0]->getContext(), EltTys);
}
GlobalVariable *replaceBuffer(CGHLSLRuntime::Buffer &Buf) {
// Create global variable for CB.
GlobalVariable *CBGV = new GlobalVariable(
Buf.LayoutStruct, /*isConstant*/ true,
GlobalValue::LinkageTypes::ExternalLinkage, nullptr,
llvm::formatv("{0}{1}", Buf.Name, Buf.IsCBuffer ? ".cb." : ".tb."),
GlobalValue::NotThreadLocal);
IRBuilder<> B(CBGV->getContext());
Value *ZeroIdx = B.getInt32(0);
// Replace Const use with CB use.
for (auto &[GV, Offset] : Buf.Constants) {
Value *GEP =
B.CreateGEP(Buf.LayoutStruct, CBGV, {ZeroIdx, B.getInt32(Offset)});
assert(Buf.LayoutStruct->getElementType(Offset) == GV->getValueType() &&
"constant type mismatch");
// Replace.
GV->replaceAllUsesWith(GEP);
// Erase GV.
GV->removeDeadConstantUsers();
GV->eraseFromParent();
}
return CBGV;
}
} // namespace
void CGHLSLRuntime::addConstant(VarDecl *D, Buffer &CB) {
if (D->getStorageClass() == SC_Static) {
// For static inside cbuffer, take as global static.
// Don't add to cbuffer.
CGM.EmitGlobal(D);
return;
}
auto *GV = cast<GlobalVariable>(CGM.GetAddrOfGlobalVar(D));
// Add debug info for constVal.
if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
if (CGM.getCodeGenOpts().getDebugInfo() >=
codegenoptions::DebugInfoKind::LimitedDebugInfo)
DI->EmitGlobalVariable(cast<GlobalVariable>(GV), D);
// FIXME: support packoffset.
// See https://github.com/llvm/llvm-project/issues/57914.
uint32_t Offset = 0;
bool HasUserOffset = false;
unsigned LowerBound = HasUserOffset ? Offset : UINT_MAX;
CB.Constants.emplace_back(std::make_pair(GV, LowerBound));
}
void CGHLSLRuntime::addBufferDecls(const DeclContext *DC, Buffer &CB) {
for (Decl *it : DC->decls()) {
if (auto *ConstDecl = dyn_cast<VarDecl>(it)) {
addConstant(ConstDecl, CB);
} else if (isa<CXXRecordDecl, EmptyDecl>(it)) {
// Nothing to do for this declaration.
} else if (isa<FunctionDecl>(it)) {
// A function within an cbuffer is effectively a top-level function,
// as it only refers to globally scoped declarations.
CGM.EmitTopLevelDecl(it);
}
}
}
void CGHLSLRuntime::addBuffer(const HLSLBufferDecl *D) {
Buffers.emplace_back(Buffer(D));
addBufferDecls(D, Buffers.back());
}
void CGHLSLRuntime::finishCodeGen() {
auto &TargetOpts = CGM.getTarget().getTargetOpts();
llvm::Module &M = CGM.getModule();
Triple T(M.getTargetTriple());
if (T.getArch() == Triple::ArchType::dxil)
addDxilValVersion(TargetOpts.DxilValidatorVersion, M);
generateGlobalCtorDtorCalls();
if (CGM.getCodeGenOpts().OptimizationLevel == 0)
addDisableOptimizations(M);
const DataLayout &DL = M.getDataLayout();
for (auto &Buf : Buffers) {
layoutBuffer(Buf, DL);
GlobalVariable *GV = replaceBuffer(Buf);
M.getGlobalList().push_back(GV);
llvm::hlsl::ResourceClass RC = Buf.IsCBuffer
? llvm::hlsl::ResourceClass::CBuffer
: llvm::hlsl::ResourceClass::SRV;
llvm::hlsl::ResourceKind RK = Buf.IsCBuffer
? llvm::hlsl::ResourceKind::CBuffer
: llvm::hlsl::ResourceKind::TBuffer;
std::string TyName =
Buf.Name.str() + (Buf.IsCBuffer ? ".cb." : ".tb.") + "ty";
addBufferResourceAnnotation(GV, TyName, RC, RK, Buf.Binding);
}
}
CGHLSLRuntime::Buffer::Buffer(const HLSLBufferDecl *D)
: Name(D->getName()), IsCBuffer(D->isCBuffer()),
Binding(D->getAttr<HLSLResourceBindingAttr>()) {}
void CGHLSLRuntime::addBufferResourceAnnotation(llvm::GlobalVariable *GV,
llvm::StringRef TyName,
llvm::hlsl::ResourceClass RC,
llvm::hlsl::ResourceKind RK,
BufferResBinding &Binding) {
llvm::Module &M = CGM.getModule();
NamedMDNode *ResourceMD = nullptr;
switch (RC) {
case llvm::hlsl::ResourceClass::UAV:
ResourceMD = M.getOrInsertNamedMetadata("hlsl.uavs");
break;
case llvm::hlsl::ResourceClass::SRV:
ResourceMD = M.getOrInsertNamedMetadata("hlsl.srvs");
break;
case llvm::hlsl::ResourceClass::CBuffer:
ResourceMD = M.getOrInsertNamedMetadata("hlsl.cbufs");
break;
default:
assert(false && "Unsupported buffer type!");
return;
}
assert(ResourceMD != nullptr &&
"ResourceMD must have been set by the switch above.");
llvm::hlsl::FrontendResource Res(
GV, TyName, RK, Binding.Reg.value_or(UINT_MAX), Binding.Space);
ResourceMD->addOperand(Res.getMetadata());
}
static llvm::hlsl::ResourceKind
castResourceShapeToResourceKind(HLSLResourceAttr::ResourceKind RK) {
switch (RK) {
case HLSLResourceAttr::ResourceKind::Texture1D:
return llvm::hlsl::ResourceKind::Texture1D;
case HLSLResourceAttr::ResourceKind::Texture2D:
return llvm::hlsl::ResourceKind::Texture2D;
case HLSLResourceAttr::ResourceKind::Texture2DMS:
return llvm::hlsl::ResourceKind::Texture2DMS;
case HLSLResourceAttr::ResourceKind::Texture3D:
return llvm::hlsl::ResourceKind::Texture3D;
case HLSLResourceAttr::ResourceKind::TextureCube:
return llvm::hlsl::ResourceKind::TextureCube;
case HLSLResourceAttr::ResourceKind::Texture1DArray:
return llvm::hlsl::ResourceKind::Texture1DArray;
case HLSLResourceAttr::ResourceKind::Texture2DArray:
return llvm::hlsl::ResourceKind::Texture2DArray;
case HLSLResourceAttr::ResourceKind::Texture2DMSArray:
return llvm::hlsl::ResourceKind::Texture2DMSArray;
case HLSLResourceAttr::ResourceKind::TextureCubeArray:
return llvm::hlsl::ResourceKind::TextureCubeArray;
case HLSLResourceAttr::ResourceKind::TypedBuffer:
return llvm::hlsl::ResourceKind::TypedBuffer;
case HLSLResourceAttr::ResourceKind::RawBuffer:
return llvm::hlsl::ResourceKind::RawBuffer;
case HLSLResourceAttr::ResourceKind::StructuredBuffer:
return llvm::hlsl::ResourceKind::StructuredBuffer;
case HLSLResourceAttr::ResourceKind::CBufferKind:
return llvm::hlsl::ResourceKind::CBuffer;
case HLSLResourceAttr::ResourceKind::SamplerKind:
return llvm::hlsl::ResourceKind::Sampler;
case HLSLResourceAttr::ResourceKind::TBuffer:
return llvm::hlsl::ResourceKind::TBuffer;
case HLSLResourceAttr::ResourceKind::RTAccelerationStructure:
return llvm::hlsl::ResourceKind::RTAccelerationStructure;
case HLSLResourceAttr::ResourceKind::FeedbackTexture2D:
return llvm::hlsl::ResourceKind::FeedbackTexture2D;
case HLSLResourceAttr::ResourceKind::FeedbackTexture2DArray:
return llvm::hlsl::ResourceKind::FeedbackTexture2DArray;
}
// Make sure to update HLSLResourceAttr::ResourceKind when add new Kind to
// hlsl::ResourceKind. Assume FeedbackTexture2DArray is the last enum for
// HLSLResourceAttr::ResourceKind.
static_assert(
static_cast<uint32_t>(
HLSLResourceAttr::ResourceKind::FeedbackTexture2DArray) ==
(static_cast<uint32_t>(llvm::hlsl::ResourceKind::NumEntries) - 2));
llvm_unreachable("all switch cases should be covered");
}
void CGHLSLRuntime::annotateHLSLResource(const VarDecl *D, GlobalVariable *GV) {
const Type *Ty = D->getType()->getPointeeOrArrayElementType();
if (!Ty)
return;
const auto *RD = Ty->getAsCXXRecordDecl();
if (!RD)
return;
const auto *Attr = RD->getAttr<HLSLResourceAttr>();
if (!Attr)
return;
HLSLResourceAttr::ResourceClass RC = Attr->getResourceType();
llvm::hlsl::ResourceKind RK =
castResourceShapeToResourceKind(Attr->getResourceShape());
QualType QT(Ty, 0);
BufferResBinding Binding(D->getAttr<HLSLResourceBindingAttr>());
addBufferResourceAnnotation(GV, QT.getAsString(),
static_cast<llvm::hlsl::ResourceClass>(RC), RK,
Binding);
}
CGHLSLRuntime::BufferResBinding::BufferResBinding(
HLSLResourceBindingAttr *Binding) {
if (Binding) {
llvm::APInt RegInt(64, 0);
Binding->getSlot().substr(1).getAsInteger(10, RegInt);
Reg = RegInt.getLimitedValue();
llvm::APInt SpaceInt(64, 0);
Binding->getSpace().substr(5).getAsInteger(10, SpaceInt);
Space = SpaceInt.getLimitedValue();
} else {
Space = 0;
}
}
void clang::CodeGen::CGHLSLRuntime::setHLSLEntryAttributes(
const FunctionDecl *FD, llvm::Function *Fn) {
const auto *ShaderAttr = FD->getAttr<HLSLShaderAttr>();
assert(ShaderAttr && "All entry functions must have a HLSLShaderAttr");
const StringRef ShaderAttrKindStr = "hlsl.shader";
Fn->addFnAttr(ShaderAttrKindStr,
ShaderAttr->ConvertShaderTypeToStr(ShaderAttr->getType()));
if (HLSLNumThreadsAttr *NumThreadsAttr = FD->getAttr<HLSLNumThreadsAttr>()) {
const StringRef NumThreadsKindStr = "hlsl.numthreads";
std::string NumThreadsStr =
formatv("{0},{1},{2}", NumThreadsAttr->getX(), NumThreadsAttr->getY(),
NumThreadsAttr->getZ());
Fn->addFnAttr(NumThreadsKindStr, NumThreadsStr);
}
}
static Value *buildVectorInput(IRBuilder<> &B, Function *F, llvm::Type *Ty) {
if (const auto *VT = dyn_cast<FixedVectorType>(Ty)) {
Value *Result = PoisonValue::get(Ty);
for (unsigned I = 0; I < VT->getNumElements(); ++I) {
Value *Elt = B.CreateCall(F, {B.getInt32(I)});
Result = B.CreateInsertElement(Result, Elt, I);
}
return Result;
}
return B.CreateCall(F, {B.getInt32(0)});
}
llvm::Value *CGHLSLRuntime::emitInputSemantic(IRBuilder<> &B,
const ParmVarDecl &D,
llvm::Type *Ty) {
assert(D.hasAttrs() && "Entry parameter missing annotation attribute!");
if (D.hasAttr<HLSLSV_GroupIndexAttr>()) {
llvm::Function *DxGroupIndex =
CGM.getIntrinsic(Intrinsic::dx_flattened_thread_id_in_group);
return B.CreateCall(FunctionCallee(DxGroupIndex));
}
if (D.hasAttr<HLSLSV_DispatchThreadIDAttr>()) {
llvm::Function *DxThreadID = CGM.getIntrinsic(Intrinsic::dx_thread_id);
return buildVectorInput(B, DxThreadID, Ty);
}
assert(false && "Unhandled parameter attribute");
return nullptr;
}
void CGHLSLRuntime::emitEntryFunction(const FunctionDecl *FD,
llvm::Function *Fn) {
llvm::Module &M = CGM.getModule();
llvm::LLVMContext &Ctx = M.getContext();
auto *EntryTy = llvm::FunctionType::get(llvm::Type::getVoidTy(Ctx), false);
Function *EntryFn =
Function::Create(EntryTy, Function::ExternalLinkage, FD->getName(), &M);
// Copy function attributes over, we have no argument or return attributes
// that can be valid on the real entry.
AttributeList NewAttrs = AttributeList::get(Ctx, AttributeList::FunctionIndex,
Fn->getAttributes().getFnAttrs());
EntryFn->setAttributes(NewAttrs);
setHLSLEntryAttributes(FD, EntryFn);
// Set the called function as internal linkage.
Fn->setLinkage(GlobalValue::InternalLinkage);
BasicBlock *BB = BasicBlock::Create(Ctx, "entry", EntryFn);
IRBuilder<> B(BB);
llvm::SmallVector<Value *> Args;
// FIXME: support struct parameters where semantics are on members.
// See: https://github.com/llvm/llvm-project/issues/57874
unsigned SRetOffset = 0;
for (const auto &Param : Fn->args()) {
if (Param.hasStructRetAttr()) {
// FIXME: support output.
// See: https://github.com/llvm/llvm-project/issues/57874
SRetOffset = 1;
Args.emplace_back(PoisonValue::get(Param.getType()));
continue;
}
const ParmVarDecl *PD = FD->getParamDecl(Param.getArgNo() - SRetOffset);
Args.push_back(emitInputSemantic(B, *PD, Param.getType()));
}
CallInst *CI = B.CreateCall(FunctionCallee(Fn), Args);
(void)CI;
// FIXME: Handle codegen for return type semantics.
// See: https://github.com/llvm/llvm-project/issues/57875
B.CreateRetVoid();
}
static void gatherFunctions(SmallVectorImpl<Function *> &Fns, llvm::Module &M,
bool CtorOrDtor) {
const auto *GV =
M.getNamedGlobal(CtorOrDtor ? "llvm.global_ctors" : "llvm.global_dtors");
if (!GV)
return;
const auto *CA = dyn_cast<ConstantArray>(GV->getInitializer());
if (!CA)
return;
// The global_ctor array elements are a struct [Priority, Fn *, COMDat].
// HLSL neither supports priorities or COMDat values, so we will check those
// in an assert but not handle them.
llvm::SmallVector<Function *> CtorFns;
for (const auto &Ctor : CA->operands()) {
if (isa<ConstantAggregateZero>(Ctor))
continue;
ConstantStruct *CS = cast<ConstantStruct>(Ctor);
assert(cast<ConstantInt>(CS->getOperand(0))->getValue() == 65535 &&
"HLSL doesn't support setting priority for global ctors.");
assert(isa<ConstantPointerNull>(CS->getOperand(2)) &&
"HLSL doesn't support COMDat for global ctors.");
Fns.push_back(cast<Function>(CS->getOperand(1)));
}
}
void CGHLSLRuntime::generateGlobalCtorDtorCalls() {
llvm::Module &M = CGM.getModule();
SmallVector<Function *> CtorFns;
SmallVector<Function *> DtorFns;
gatherFunctions(CtorFns, M, true);
gatherFunctions(DtorFns, M, false);
// Insert a call to the global constructor at the beginning of the entry block
// to externally exported functions. This is a bit of a hack, but HLSL allows
// global constructors, but doesn't support driver initialization of globals.
for (auto &F : M.functions()) {
if (!F.hasFnAttribute("hlsl.shader"))
continue;
IRBuilder<> B(&F.getEntryBlock(), F.getEntryBlock().begin());
for (auto *Fn : CtorFns)
B.CreateCall(FunctionCallee(Fn));
// Insert global dtors before the terminator of the last instruction
B.SetInsertPoint(F.back().getTerminator());
for (auto *Fn : DtorFns)
B.CreateCall(FunctionCallee(Fn));
}
// No need to keep global ctors/dtors for non-lib profile after call to
// ctors/dtors added for entry.
Triple T(M.getTargetTriple());
if (T.getEnvironment() != Triple::EnvironmentType::Library) {
if (auto *GV = M.getNamedGlobal("llvm.global_ctors"))
GV->eraseFromParent();
if (auto *GV = M.getNamedGlobal("llvm.global_dtors"))
GV->eraseFromParent();
}
}