
This teaches the interleaved access pass to the lower the intrinsics for factors 4,6 and 8 added in #139893 to target intrinsics. Because factors 4 and 8 could either have been recursively [de]interleaved or have just been a single intrinsic, we need to check that it's the former it before reshuffling around the values via interleaveLeafValues. After this patch, we can teach the loop vectorizer to emit a single interleave intrinsic for factors 2 through to 8, and then we can remove the recursive interleaving matching in interleaved access pass.
957 lines
34 KiB
C++
957 lines
34 KiB
C++
//===- InterleavedAccessPass.cpp ------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the Interleaved Access pass, which identifies
|
|
// interleaved memory accesses and transforms them into target specific
|
|
// intrinsics.
|
|
//
|
|
// An interleaved load reads data from memory into several vectors, with
|
|
// DE-interleaving the data on a factor. An interleaved store writes several
|
|
// vectors to memory with RE-interleaving the data on a factor.
|
|
//
|
|
// As interleaved accesses are difficult to identified in CodeGen (mainly
|
|
// because the VECTOR_SHUFFLE DAG node is quite different from the shufflevector
|
|
// IR), we identify and transform them to intrinsics in this pass so the
|
|
// intrinsics can be easily matched into target specific instructions later in
|
|
// CodeGen.
|
|
//
|
|
// E.g. An interleaved load (Factor = 2):
|
|
// %wide.vec = load <8 x i32>, <8 x i32>* %ptr
|
|
// %v0 = shuffle <8 x i32> %wide.vec, <8 x i32> poison, <0, 2, 4, 6>
|
|
// %v1 = shuffle <8 x i32> %wide.vec, <8 x i32> poison, <1, 3, 5, 7>
|
|
//
|
|
// It could be transformed into a ld2 intrinsic in AArch64 backend or a vld2
|
|
// intrinsic in ARM backend.
|
|
//
|
|
// In X86, this can be further optimized into a set of target
|
|
// specific loads followed by an optimized sequence of shuffles.
|
|
//
|
|
// E.g. An interleaved store (Factor = 3):
|
|
// %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
|
|
// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
|
|
// store <12 x i32> %i.vec, <12 x i32>* %ptr
|
|
//
|
|
// It could be transformed into a st3 intrinsic in AArch64 backend or a vst3
|
|
// intrinsic in ARM backend.
|
|
//
|
|
// Similarly, a set of interleaved stores can be transformed into an optimized
|
|
// sequence of shuffles followed by a set of target specific stores for X86.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/CodeGen/InterleavedAccess.h"
|
|
#include "llvm/CodeGen/TargetLowering.h"
|
|
#include "llvm/CodeGen/TargetPassConfig.h"
|
|
#include "llvm/CodeGen/TargetSubtargetInfo.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/InstIterator.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include <cassert>
|
|
#include <utility>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "interleaved-access"
|
|
|
|
static cl::opt<bool> LowerInterleavedAccesses(
|
|
"lower-interleaved-accesses",
|
|
cl::desc("Enable lowering interleaved accesses to intrinsics"),
|
|
cl::init(true), cl::Hidden);
|
|
|
|
namespace {
|
|
|
|
class InterleavedAccessImpl {
|
|
friend class InterleavedAccess;
|
|
|
|
public:
|
|
InterleavedAccessImpl() = default;
|
|
InterleavedAccessImpl(DominatorTree *DT, const TargetLowering *TLI)
|
|
: DT(DT), TLI(TLI), MaxFactor(TLI->getMaxSupportedInterleaveFactor()) {}
|
|
bool runOnFunction(Function &F);
|
|
|
|
private:
|
|
DominatorTree *DT = nullptr;
|
|
const TargetLowering *TLI = nullptr;
|
|
|
|
/// The maximum supported interleave factor.
|
|
unsigned MaxFactor = 0u;
|
|
|
|
/// Transform an interleaved load into target specific intrinsics.
|
|
bool lowerInterleavedLoad(Instruction *Load,
|
|
SmallSetVector<Instruction *, 32> &DeadInsts);
|
|
|
|
/// Transform an interleaved store into target specific intrinsics.
|
|
bool lowerInterleavedStore(Instruction *Store,
|
|
SmallSetVector<Instruction *, 32> &DeadInsts);
|
|
|
|
/// Transform a load and a deinterleave intrinsic into target specific
|
|
/// instructions.
|
|
bool lowerDeinterleaveIntrinsic(IntrinsicInst *II,
|
|
SmallSetVector<Instruction *, 32> &DeadInsts);
|
|
|
|
/// Transform an interleave intrinsic and a store into target specific
|
|
/// instructions.
|
|
bool lowerInterleaveIntrinsic(IntrinsicInst *II,
|
|
SmallSetVector<Instruction *, 32> &DeadInsts);
|
|
|
|
/// Returns true if the uses of an interleaved load by the
|
|
/// extractelement instructions in \p Extracts can be replaced by uses of the
|
|
/// shufflevector instructions in \p Shuffles instead. If so, the necessary
|
|
/// replacements are also performed.
|
|
bool tryReplaceExtracts(ArrayRef<ExtractElementInst *> Extracts,
|
|
ArrayRef<ShuffleVectorInst *> Shuffles);
|
|
|
|
/// Given a number of shuffles of the form shuffle(binop(x,y)), convert them
|
|
/// to binop(shuffle(x), shuffle(y)) to allow the formation of an
|
|
/// interleaving load. Any newly created shuffles that operate on \p LI will
|
|
/// be added to \p Shuffles. Returns true, if any changes to the IR have been
|
|
/// made.
|
|
bool replaceBinOpShuffles(ArrayRef<ShuffleVectorInst *> BinOpShuffles,
|
|
SmallVectorImpl<ShuffleVectorInst *> &Shuffles,
|
|
Instruction *LI);
|
|
};
|
|
|
|
class InterleavedAccess : public FunctionPass {
|
|
InterleavedAccessImpl Impl;
|
|
|
|
public:
|
|
static char ID;
|
|
|
|
InterleavedAccess() : FunctionPass(ID) {
|
|
initializeInterleavedAccessPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
StringRef getPassName() const override { return "Interleaved Access Pass"; }
|
|
|
|
bool runOnFunction(Function &F) override;
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequired<DominatorTreeWrapperPass>();
|
|
AU.setPreservesCFG();
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace.
|
|
|
|
PreservedAnalyses InterleavedAccessPass::run(Function &F,
|
|
FunctionAnalysisManager &FAM) {
|
|
auto *DT = &FAM.getResult<DominatorTreeAnalysis>(F);
|
|
auto *TLI = TM->getSubtargetImpl(F)->getTargetLowering();
|
|
InterleavedAccessImpl Impl(DT, TLI);
|
|
bool Changed = Impl.runOnFunction(F);
|
|
|
|
if (!Changed)
|
|
return PreservedAnalyses::all();
|
|
|
|
PreservedAnalyses PA;
|
|
PA.preserveSet<CFGAnalyses>();
|
|
return PA;
|
|
}
|
|
|
|
char InterleavedAccess::ID = 0;
|
|
|
|
bool InterleavedAccess::runOnFunction(Function &F) {
|
|
auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
|
|
if (!TPC || !LowerInterleavedAccesses)
|
|
return false;
|
|
|
|
LLVM_DEBUG(dbgs() << "*** " << getPassName() << ": " << F.getName() << "\n");
|
|
|
|
Impl.DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
|
auto &TM = TPC->getTM<TargetMachine>();
|
|
Impl.TLI = TM.getSubtargetImpl(F)->getTargetLowering();
|
|
Impl.MaxFactor = Impl.TLI->getMaxSupportedInterleaveFactor();
|
|
|
|
return Impl.runOnFunction(F);
|
|
}
|
|
|
|
INITIALIZE_PASS_BEGIN(InterleavedAccess, DEBUG_TYPE,
|
|
"Lower interleaved memory accesses to target specific intrinsics", false,
|
|
false)
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
|
INITIALIZE_PASS_END(InterleavedAccess, DEBUG_TYPE,
|
|
"Lower interleaved memory accesses to target specific intrinsics", false,
|
|
false)
|
|
|
|
FunctionPass *llvm::createInterleavedAccessPass() {
|
|
return new InterleavedAccess();
|
|
}
|
|
|
|
/// Check if the mask is a DE-interleave mask for an interleaved load.
|
|
///
|
|
/// E.g. DE-interleave masks (Factor = 2) could be:
|
|
/// <0, 2, 4, 6> (mask of index 0 to extract even elements)
|
|
/// <1, 3, 5, 7> (mask of index 1 to extract odd elements)
|
|
static bool isDeInterleaveMask(ArrayRef<int> Mask, unsigned &Factor,
|
|
unsigned &Index, unsigned MaxFactor,
|
|
unsigned NumLoadElements) {
|
|
if (Mask.size() < 2)
|
|
return false;
|
|
|
|
// Check potential Factors.
|
|
for (Factor = 2; Factor <= MaxFactor; Factor++) {
|
|
// Make sure we don't produce a load wider than the input load.
|
|
if (Mask.size() * Factor > NumLoadElements)
|
|
return false;
|
|
if (ShuffleVectorInst::isDeInterleaveMaskOfFactor(Mask, Factor, Index))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Check if the mask can be used in an interleaved store.
|
|
//
|
|
/// It checks for a more general pattern than the RE-interleave mask.
|
|
/// I.e. <x, y, ... z, x+1, y+1, ...z+1, x+2, y+2, ...z+2, ...>
|
|
/// E.g. For a Factor of 2 (LaneLen=4): <4, 32, 5, 33, 6, 34, 7, 35>
|
|
/// E.g. For a Factor of 3 (LaneLen=4): <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
|
|
/// E.g. For a Factor of 4 (LaneLen=2): <8, 2, 12, 4, 9, 3, 13, 5>
|
|
///
|
|
/// The particular case of an RE-interleave mask is:
|
|
/// I.e. <0, LaneLen, ... , LaneLen*(Factor - 1), 1, LaneLen + 1, ...>
|
|
/// E.g. For a Factor of 2 (LaneLen=4): <0, 4, 1, 5, 2, 6, 3, 7>
|
|
static bool isReInterleaveMask(ShuffleVectorInst *SVI, unsigned &Factor,
|
|
unsigned MaxFactor) {
|
|
unsigned NumElts = SVI->getShuffleMask().size();
|
|
if (NumElts < 4)
|
|
return false;
|
|
|
|
// Check potential Factors.
|
|
for (Factor = 2; Factor <= MaxFactor; Factor++) {
|
|
if (SVI->isInterleave(Factor))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// Return the corresponded deinterleaved mask, or nullptr if there is no valid
|
|
// mask.
|
|
static Value *getMask(Value *WideMask, unsigned Factor,
|
|
ElementCount LeafValueEC);
|
|
|
|
static Value *getMask(Value *WideMask, unsigned Factor,
|
|
VectorType *LeafValueTy) {
|
|
return getMask(WideMask, Factor, LeafValueTy->getElementCount());
|
|
}
|
|
|
|
bool InterleavedAccessImpl::lowerInterleavedLoad(
|
|
Instruction *Load, SmallSetVector<Instruction *, 32> &DeadInsts) {
|
|
if (isa<ScalableVectorType>(Load->getType()))
|
|
return false;
|
|
|
|
if (auto *LI = dyn_cast<LoadInst>(Load)) {
|
|
if (!LI->isSimple())
|
|
return false;
|
|
} else if (auto *VPLoad = dyn_cast<VPIntrinsic>(Load)) {
|
|
assert(VPLoad->getIntrinsicID() == Intrinsic::vp_load);
|
|
// Require a constant mask.
|
|
if (!isa<ConstantVector>(VPLoad->getMaskParam()))
|
|
return false;
|
|
} else {
|
|
llvm_unreachable("unsupported load operation");
|
|
}
|
|
|
|
// Check if all users of this load are shufflevectors. If we encounter any
|
|
// users that are extractelement instructions or binary operators, we save
|
|
// them to later check if they can be modified to extract from one of the
|
|
// shufflevectors instead of the load.
|
|
|
|
SmallVector<ShuffleVectorInst *, 4> Shuffles;
|
|
SmallVector<ExtractElementInst *, 4> Extracts;
|
|
// BinOpShuffles need to be handled a single time in case both operands of the
|
|
// binop are the same load.
|
|
SmallSetVector<ShuffleVectorInst *, 4> BinOpShuffles;
|
|
|
|
for (auto *User : Load->users()) {
|
|
auto *Extract = dyn_cast<ExtractElementInst>(User);
|
|
if (Extract && isa<ConstantInt>(Extract->getIndexOperand())) {
|
|
Extracts.push_back(Extract);
|
|
continue;
|
|
}
|
|
if (auto *BI = dyn_cast<BinaryOperator>(User)) {
|
|
if (!BI->user_empty() && all_of(BI->users(), [](auto *U) {
|
|
auto *SVI = dyn_cast<ShuffleVectorInst>(U);
|
|
return SVI && isa<UndefValue>(SVI->getOperand(1));
|
|
})) {
|
|
for (auto *SVI : BI->users())
|
|
BinOpShuffles.insert(cast<ShuffleVectorInst>(SVI));
|
|
continue;
|
|
}
|
|
}
|
|
auto *SVI = dyn_cast<ShuffleVectorInst>(User);
|
|
if (!SVI || !isa<UndefValue>(SVI->getOperand(1)))
|
|
return false;
|
|
|
|
Shuffles.push_back(SVI);
|
|
}
|
|
|
|
if (Shuffles.empty() && BinOpShuffles.empty())
|
|
return false;
|
|
|
|
unsigned Factor, Index;
|
|
|
|
unsigned NumLoadElements =
|
|
cast<FixedVectorType>(Load->getType())->getNumElements();
|
|
auto *FirstSVI = Shuffles.size() > 0 ? Shuffles[0] : BinOpShuffles[0];
|
|
// Check if the first shufflevector is DE-interleave shuffle.
|
|
if (!isDeInterleaveMask(FirstSVI->getShuffleMask(), Factor, Index, MaxFactor,
|
|
NumLoadElements))
|
|
return false;
|
|
|
|
// Holds the corresponding index for each DE-interleave shuffle.
|
|
SmallVector<unsigned, 4> Indices;
|
|
|
|
Type *VecTy = FirstSVI->getType();
|
|
|
|
// Check if other shufflevectors are also DE-interleaved of the same type
|
|
// and factor as the first shufflevector.
|
|
for (auto *Shuffle : Shuffles) {
|
|
if (Shuffle->getType() != VecTy)
|
|
return false;
|
|
if (!ShuffleVectorInst::isDeInterleaveMaskOfFactor(
|
|
Shuffle->getShuffleMask(), Factor, Index))
|
|
return false;
|
|
|
|
assert(Shuffle->getShuffleMask().size() <= NumLoadElements);
|
|
Indices.push_back(Index);
|
|
}
|
|
for (auto *Shuffle : BinOpShuffles) {
|
|
if (Shuffle->getType() != VecTy)
|
|
return false;
|
|
if (!ShuffleVectorInst::isDeInterleaveMaskOfFactor(
|
|
Shuffle->getShuffleMask(), Factor, Index))
|
|
return false;
|
|
|
|
assert(Shuffle->getShuffleMask().size() <= NumLoadElements);
|
|
|
|
if (cast<Instruction>(Shuffle->getOperand(0))->getOperand(0) == Load)
|
|
Indices.push_back(Index);
|
|
if (cast<Instruction>(Shuffle->getOperand(0))->getOperand(1) == Load)
|
|
Indices.push_back(Index);
|
|
}
|
|
|
|
// Try and modify users of the load that are extractelement instructions to
|
|
// use the shufflevector instructions instead of the load.
|
|
if (!tryReplaceExtracts(Extracts, Shuffles))
|
|
return false;
|
|
|
|
bool BinOpShuffleChanged =
|
|
replaceBinOpShuffles(BinOpShuffles.getArrayRef(), Shuffles, Load);
|
|
|
|
if (auto *VPLoad = dyn_cast<VPIntrinsic>(Load)) {
|
|
Value *LaneMask =
|
|
getMask(VPLoad->getMaskParam(), Factor, cast<VectorType>(VecTy));
|
|
if (!LaneMask)
|
|
return false;
|
|
|
|
LLVM_DEBUG(dbgs() << "IA: Found an interleaved vp.load: " << *Load << "\n");
|
|
|
|
// Sometimes the number of Shuffles might be less than Factor, we have to
|
|
// fill the gaps with null. Also, lowerInterleavedVPLoad
|
|
// expects them to be sorted.
|
|
SmallVector<Value *, 4> ShuffleValues(Factor, nullptr);
|
|
for (auto [Idx, ShuffleMaskIdx] : enumerate(Indices))
|
|
ShuffleValues[ShuffleMaskIdx] = Shuffles[Idx];
|
|
if (!TLI->lowerInterleavedVPLoad(VPLoad, LaneMask, ShuffleValues))
|
|
// If Extracts is not empty, tryReplaceExtracts made changes earlier.
|
|
return !Extracts.empty() || BinOpShuffleChanged;
|
|
} else {
|
|
LLVM_DEBUG(dbgs() << "IA: Found an interleaved load: " << *Load << "\n");
|
|
|
|
// Try to create target specific intrinsics to replace the load and
|
|
// shuffles.
|
|
if (!TLI->lowerInterleavedLoad(cast<LoadInst>(Load), Shuffles, Indices,
|
|
Factor))
|
|
// If Extracts is not empty, tryReplaceExtracts made changes earlier.
|
|
return !Extracts.empty() || BinOpShuffleChanged;
|
|
}
|
|
|
|
DeadInsts.insert_range(Shuffles);
|
|
|
|
DeadInsts.insert(Load);
|
|
return true;
|
|
}
|
|
|
|
bool InterleavedAccessImpl::replaceBinOpShuffles(
|
|
ArrayRef<ShuffleVectorInst *> BinOpShuffles,
|
|
SmallVectorImpl<ShuffleVectorInst *> &Shuffles, Instruction *Load) {
|
|
for (auto *SVI : BinOpShuffles) {
|
|
BinaryOperator *BI = cast<BinaryOperator>(SVI->getOperand(0));
|
|
Type *BIOp0Ty = BI->getOperand(0)->getType();
|
|
ArrayRef<int> Mask = SVI->getShuffleMask();
|
|
assert(all_of(Mask, [&](int Idx) {
|
|
return Idx < (int)cast<FixedVectorType>(BIOp0Ty)->getNumElements();
|
|
}));
|
|
|
|
BasicBlock::iterator insertPos = SVI->getIterator();
|
|
auto *NewSVI1 =
|
|
new ShuffleVectorInst(BI->getOperand(0), PoisonValue::get(BIOp0Ty),
|
|
Mask, SVI->getName(), insertPos);
|
|
auto *NewSVI2 = new ShuffleVectorInst(
|
|
BI->getOperand(1), PoisonValue::get(BI->getOperand(1)->getType()), Mask,
|
|
SVI->getName(), insertPos);
|
|
BinaryOperator *NewBI = BinaryOperator::CreateWithCopiedFlags(
|
|
BI->getOpcode(), NewSVI1, NewSVI2, BI, BI->getName(), insertPos);
|
|
SVI->replaceAllUsesWith(NewBI);
|
|
LLVM_DEBUG(dbgs() << " Replaced: " << *BI << "\n And : " << *SVI
|
|
<< "\n With : " << *NewSVI1 << "\n And : "
|
|
<< *NewSVI2 << "\n And : " << *NewBI << "\n");
|
|
RecursivelyDeleteTriviallyDeadInstructions(SVI);
|
|
if (NewSVI1->getOperand(0) == Load)
|
|
Shuffles.push_back(NewSVI1);
|
|
if (NewSVI2->getOperand(0) == Load)
|
|
Shuffles.push_back(NewSVI2);
|
|
}
|
|
|
|
return !BinOpShuffles.empty();
|
|
}
|
|
|
|
bool InterleavedAccessImpl::tryReplaceExtracts(
|
|
ArrayRef<ExtractElementInst *> Extracts,
|
|
ArrayRef<ShuffleVectorInst *> Shuffles) {
|
|
// If there aren't any extractelement instructions to modify, there's nothing
|
|
// to do.
|
|
if (Extracts.empty())
|
|
return true;
|
|
|
|
// Maps extractelement instructions to vector-index pairs. The extractlement
|
|
// instructions will be modified to use the new vector and index operands.
|
|
DenseMap<ExtractElementInst *, std::pair<Value *, int>> ReplacementMap;
|
|
|
|
for (auto *Extract : Extracts) {
|
|
// The vector index that is extracted.
|
|
auto *IndexOperand = cast<ConstantInt>(Extract->getIndexOperand());
|
|
auto Index = IndexOperand->getSExtValue();
|
|
|
|
// Look for a suitable shufflevector instruction. The goal is to modify the
|
|
// extractelement instruction (which uses an interleaved load) to use one
|
|
// of the shufflevector instructions instead of the load.
|
|
for (auto *Shuffle : Shuffles) {
|
|
// If the shufflevector instruction doesn't dominate the extract, we
|
|
// can't create a use of it.
|
|
if (!DT->dominates(Shuffle, Extract))
|
|
continue;
|
|
|
|
// Inspect the indices of the shufflevector instruction. If the shuffle
|
|
// selects the same index that is extracted, we can modify the
|
|
// extractelement instruction.
|
|
SmallVector<int, 4> Indices;
|
|
Shuffle->getShuffleMask(Indices);
|
|
for (unsigned I = 0; I < Indices.size(); ++I)
|
|
if (Indices[I] == Index) {
|
|
assert(Extract->getOperand(0) == Shuffle->getOperand(0) &&
|
|
"Vector operations do not match");
|
|
ReplacementMap[Extract] = std::make_pair(Shuffle, I);
|
|
break;
|
|
}
|
|
|
|
// If we found a suitable shufflevector instruction, stop looking.
|
|
if (ReplacementMap.count(Extract))
|
|
break;
|
|
}
|
|
|
|
// If we did not find a suitable shufflevector instruction, the
|
|
// extractelement instruction cannot be modified, so we must give up.
|
|
if (!ReplacementMap.count(Extract))
|
|
return false;
|
|
}
|
|
|
|
// Finally, perform the replacements.
|
|
IRBuilder<> Builder(Extracts[0]->getContext());
|
|
for (auto &Replacement : ReplacementMap) {
|
|
auto *Extract = Replacement.first;
|
|
auto *Vector = Replacement.second.first;
|
|
auto Index = Replacement.second.second;
|
|
Builder.SetInsertPoint(Extract);
|
|
Extract->replaceAllUsesWith(Builder.CreateExtractElement(Vector, Index));
|
|
Extract->eraseFromParent();
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool InterleavedAccessImpl::lowerInterleavedStore(
|
|
Instruction *Store, SmallSetVector<Instruction *, 32> &DeadInsts) {
|
|
Value *StoredValue;
|
|
if (auto *SI = dyn_cast<StoreInst>(Store)) {
|
|
if (!SI->isSimple())
|
|
return false;
|
|
StoredValue = SI->getValueOperand();
|
|
} else if (auto *VPStore = dyn_cast<VPIntrinsic>(Store)) {
|
|
assert(VPStore->getIntrinsicID() == Intrinsic::vp_store);
|
|
// Require a constant mask.
|
|
if (!isa<ConstantVector>(VPStore->getMaskParam()))
|
|
return false;
|
|
StoredValue = VPStore->getArgOperand(0);
|
|
} else {
|
|
llvm_unreachable("unsupported store operation");
|
|
}
|
|
|
|
auto *SVI = dyn_cast<ShuffleVectorInst>(StoredValue);
|
|
if (!SVI || !SVI->hasOneUse() || isa<ScalableVectorType>(SVI->getType()))
|
|
return false;
|
|
|
|
unsigned NumStoredElements =
|
|
cast<FixedVectorType>(SVI->getType())->getNumElements();
|
|
// Check if the shufflevector is RE-interleave shuffle.
|
|
unsigned Factor;
|
|
if (!isReInterleaveMask(SVI, Factor, MaxFactor))
|
|
return false;
|
|
assert(NumStoredElements % Factor == 0 &&
|
|
"number of stored element should be a multiple of Factor");
|
|
|
|
if (auto *VPStore = dyn_cast<VPIntrinsic>(Store)) {
|
|
unsigned LaneMaskLen = NumStoredElements / Factor;
|
|
Value *LaneMask = getMask(VPStore->getMaskParam(), Factor,
|
|
ElementCount::getFixed(LaneMaskLen));
|
|
if (!LaneMask)
|
|
return false;
|
|
|
|
LLVM_DEBUG(dbgs() << "IA: Found an interleaved vp.store: " << *Store
|
|
<< "\n");
|
|
|
|
IRBuilder<> Builder(VPStore);
|
|
// We need to effectively de-interleave the shufflemask
|
|
// because lowerInterleavedVPStore expects individual de-interleaved
|
|
// values.
|
|
SmallVector<Value *, 10> NewShuffles;
|
|
SmallVector<int, 16> NewShuffleMask(LaneMaskLen);
|
|
auto ShuffleMask = SVI->getShuffleMask();
|
|
|
|
for (unsigned i = 0; i < Factor; i++) {
|
|
for (unsigned j = 0; j < LaneMaskLen; j++)
|
|
NewShuffleMask[j] = ShuffleMask[i + Factor * j];
|
|
|
|
NewShuffles.push_back(Builder.CreateShuffleVector(
|
|
SVI->getOperand(0), SVI->getOperand(1), NewShuffleMask));
|
|
}
|
|
|
|
// Try to create target specific intrinsics to replace the vp.store and
|
|
// shuffle.
|
|
if (!TLI->lowerInterleavedVPStore(VPStore, LaneMask, NewShuffles))
|
|
// We already created new shuffles.
|
|
return true;
|
|
} else {
|
|
LLVM_DEBUG(dbgs() << "IA: Found an interleaved store: " << *Store << "\n");
|
|
|
|
// Try to create target specific intrinsics to replace the store and
|
|
// shuffle.
|
|
if (!TLI->lowerInterleavedStore(cast<StoreInst>(Store), SVI, Factor))
|
|
return false;
|
|
}
|
|
|
|
// Already have a new target specific interleaved store. Erase the old store.
|
|
DeadInsts.insert(Store);
|
|
DeadInsts.insert(SVI);
|
|
return true;
|
|
}
|
|
|
|
static bool isInterleaveIntrinsic(Intrinsic::ID IID) {
|
|
switch (IID) {
|
|
case Intrinsic::vector_interleave2:
|
|
case Intrinsic::vector_interleave3:
|
|
case Intrinsic::vector_interleave4:
|
|
case Intrinsic::vector_interleave5:
|
|
case Intrinsic::vector_interleave6:
|
|
case Intrinsic::vector_interleave7:
|
|
case Intrinsic::vector_interleave8:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static bool isDeinterleaveIntrinsic(Intrinsic::ID IID) {
|
|
switch (IID) {
|
|
case Intrinsic::vector_deinterleave2:
|
|
case Intrinsic::vector_deinterleave3:
|
|
case Intrinsic::vector_deinterleave4:
|
|
case Intrinsic::vector_deinterleave5:
|
|
case Intrinsic::vector_deinterleave6:
|
|
case Intrinsic::vector_deinterleave7:
|
|
case Intrinsic::vector_deinterleave8:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static unsigned getIntrinsicFactor(const IntrinsicInst *II) {
|
|
switch (II->getIntrinsicID()) {
|
|
case Intrinsic::vector_deinterleave2:
|
|
case Intrinsic::vector_interleave2:
|
|
return 2;
|
|
case Intrinsic::vector_deinterleave3:
|
|
case Intrinsic::vector_interleave3:
|
|
return 3;
|
|
case Intrinsic::vector_deinterleave4:
|
|
case Intrinsic::vector_interleave4:
|
|
return 4;
|
|
case Intrinsic::vector_deinterleave5:
|
|
case Intrinsic::vector_interleave5:
|
|
return 5;
|
|
case Intrinsic::vector_deinterleave6:
|
|
case Intrinsic::vector_interleave6:
|
|
return 6;
|
|
case Intrinsic::vector_deinterleave7:
|
|
case Intrinsic::vector_interleave7:
|
|
return 7;
|
|
case Intrinsic::vector_deinterleave8:
|
|
case Intrinsic::vector_interleave8:
|
|
return 8;
|
|
default:
|
|
llvm_unreachable("Unexpected intrinsic");
|
|
}
|
|
}
|
|
|
|
// For an (de)interleave tree like this:
|
|
//
|
|
// A C B D
|
|
// |___| |___|
|
|
// |_____|
|
|
// |
|
|
// A B C D
|
|
//
|
|
// We will get ABCD at the end while the leaf operands/results
|
|
// are ACBD, which are also what we initially collected in
|
|
// getVectorInterleaveFactor / getVectorDeinterleaveFactor. But TLI
|
|
// hooks (e.g. lowerDeinterleaveIntrinsicToLoad) expect ABCD, so we need
|
|
// to reorder them by interleaving these values.
|
|
static void interleaveLeafValues(MutableArrayRef<Value *> SubLeaves) {
|
|
unsigned NumLeaves = SubLeaves.size();
|
|
assert(isPowerOf2_32(NumLeaves) && NumLeaves > 1);
|
|
if (NumLeaves == 2)
|
|
return;
|
|
|
|
const unsigned HalfLeaves = NumLeaves / 2;
|
|
// Visit the sub-trees.
|
|
interleaveLeafValues(SubLeaves.take_front(HalfLeaves));
|
|
interleaveLeafValues(SubLeaves.drop_front(HalfLeaves));
|
|
|
|
SmallVector<Value *, 8> Buffer;
|
|
// a0 a1 a2 a3 b0 b1 b2 b3
|
|
// -> a0 b0 a1 b1 a2 b2 a3 b3
|
|
for (unsigned i = 0U; i < NumLeaves; ++i)
|
|
Buffer.push_back(SubLeaves[i / 2 + (i % 2 ? HalfLeaves : 0)]);
|
|
|
|
llvm::copy(Buffer, SubLeaves.begin());
|
|
}
|
|
|
|
static bool
|
|
getVectorInterleaveFactor(IntrinsicInst *II, SmallVectorImpl<Value *> &Operands,
|
|
SmallVectorImpl<Instruction *> &DeadInsts) {
|
|
assert(isInterleaveIntrinsic(II->getIntrinsicID()));
|
|
|
|
// Visit with BFS
|
|
SmallVector<IntrinsicInst *, 8> Queue;
|
|
Queue.push_back(II);
|
|
while (!Queue.empty()) {
|
|
IntrinsicInst *Current = Queue.front();
|
|
Queue.erase(Queue.begin());
|
|
|
|
// All the intermediate intrinsics will be deleted.
|
|
DeadInsts.push_back(Current);
|
|
|
|
for (unsigned I = 0; I < getIntrinsicFactor(Current); ++I) {
|
|
Value *Op = Current->getOperand(I);
|
|
if (auto *OpII = dyn_cast<IntrinsicInst>(Op))
|
|
if (OpII->getIntrinsicID() == Intrinsic::vector_interleave2) {
|
|
Queue.push_back(OpII);
|
|
continue;
|
|
}
|
|
|
|
// If this is not a perfectly balanced tree, the leaf
|
|
// result types would be different.
|
|
if (!Operands.empty() && Op->getType() != Operands.back()->getType())
|
|
return false;
|
|
|
|
Operands.push_back(Op);
|
|
}
|
|
}
|
|
|
|
const unsigned Factor = Operands.size();
|
|
// Currently we only recognize factors 2...8 and other powers of 2.
|
|
// FIXME: should we assert here instead?
|
|
if (Factor <= 1 ||
|
|
(!isPowerOf2_32(Factor) && Factor != getIntrinsicFactor(II)))
|
|
return false;
|
|
|
|
// Recursively interleaved factors need to have their values reordered
|
|
// TODO: Remove once the loop vectorizer no longer recursively interleaves
|
|
// factors 4 + 8
|
|
if (isPowerOf2_32(Factor) && getIntrinsicFactor(II) == 2)
|
|
interleaveLeafValues(Operands);
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
getVectorDeinterleaveFactor(IntrinsicInst *II,
|
|
SmallVectorImpl<Value *> &Results,
|
|
SmallVectorImpl<Instruction *> &DeadInsts) {
|
|
assert(isDeinterleaveIntrinsic(II->getIntrinsicID()));
|
|
using namespace PatternMatch;
|
|
if (!II->hasNUses(getIntrinsicFactor(II)))
|
|
return false;
|
|
|
|
// Visit with BFS
|
|
SmallVector<IntrinsicInst *, 8> Queue;
|
|
Queue.push_back(II);
|
|
while (!Queue.empty()) {
|
|
IntrinsicInst *Current = Queue.front();
|
|
Queue.erase(Queue.begin());
|
|
assert(Current->hasNUses(getIntrinsicFactor(Current)));
|
|
|
|
// All the intermediate intrinsics will be deleted from the bottom-up.
|
|
DeadInsts.insert(DeadInsts.begin(), Current);
|
|
|
|
SmallVector<ExtractValueInst *> EVs(getIntrinsicFactor(Current), nullptr);
|
|
for (User *Usr : Current->users()) {
|
|
if (!isa<ExtractValueInst>(Usr))
|
|
return 0;
|
|
|
|
auto *EV = cast<ExtractValueInst>(Usr);
|
|
// Intermediate ExtractValue instructions will also be deleted.
|
|
DeadInsts.insert(DeadInsts.begin(), EV);
|
|
ArrayRef<unsigned> Indices = EV->getIndices();
|
|
if (Indices.size() != 1)
|
|
return false;
|
|
|
|
if (!EVs[Indices[0]])
|
|
EVs[Indices[0]] = EV;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
// We have legal indices. At this point we're either going
|
|
// to continue the traversal or push the leaf values into Results.
|
|
for (ExtractValueInst *EV : EVs) {
|
|
// Continue the traversal. We're playing safe here and matching only the
|
|
// expression consisting of a perfectly balanced binary tree in which all
|
|
// intermediate values are only used once.
|
|
if (EV->hasOneUse() &&
|
|
match(EV->user_back(),
|
|
m_Intrinsic<Intrinsic::vector_deinterleave2>()) &&
|
|
EV->user_back()->hasNUses(2)) {
|
|
auto *EVUsr = cast<IntrinsicInst>(EV->user_back());
|
|
Queue.push_back(EVUsr);
|
|
continue;
|
|
}
|
|
|
|
// If this is not a perfectly balanced tree, the leaf
|
|
// result types would be different.
|
|
if (!Results.empty() && EV->getType() != Results.back()->getType())
|
|
return false;
|
|
|
|
// Save the leaf value.
|
|
Results.push_back(EV);
|
|
}
|
|
}
|
|
|
|
const unsigned Factor = Results.size();
|
|
// Currently we only recognize factors of 2...8 and other powers of 2.
|
|
// FIXME: should we assert here instead?
|
|
if (Factor <= 1 ||
|
|
(!isPowerOf2_32(Factor) && Factor != getIntrinsicFactor(II)))
|
|
return 0;
|
|
|
|
// Recursively interleaved factors need to have their values reordered
|
|
// TODO: Remove once the loop vectorizer no longer recursively interleaves
|
|
// factors 4 + 8
|
|
if (isPowerOf2_32(Factor) && getIntrinsicFactor(II) == 2)
|
|
interleaveLeafValues(Results);
|
|
return true;
|
|
}
|
|
|
|
static Value *getMask(Value *WideMask, unsigned Factor,
|
|
ElementCount LeafValueEC) {
|
|
if (auto *IMI = dyn_cast<IntrinsicInst>(WideMask)) {
|
|
SmallVector<Value *, 8> Operands;
|
|
SmallVector<Instruction *, 8> DeadInsts;
|
|
if (getVectorInterleaveFactor(IMI, Operands, DeadInsts)) {
|
|
assert(!Operands.empty());
|
|
if (Operands.size() == Factor && llvm::all_equal(Operands))
|
|
return Operands[0];
|
|
}
|
|
}
|
|
|
|
if (auto *ConstMask = dyn_cast<Constant>(WideMask)) {
|
|
if (auto *Splat = ConstMask->getSplatValue())
|
|
// All-ones or all-zeros mask.
|
|
return ConstantVector::getSplat(LeafValueEC, Splat);
|
|
|
|
if (LeafValueEC.isFixed()) {
|
|
unsigned LeafMaskLen = LeafValueEC.getFixedValue();
|
|
SmallVector<Constant *, 8> LeafMask(LeafMaskLen, nullptr);
|
|
// If this is a fixed-length constant mask, each lane / leaf has to
|
|
// use the same mask. This is done by checking if every group with Factor
|
|
// number of elements in the interleaved mask has homogeneous values.
|
|
for (unsigned Idx = 0U; Idx < LeafMaskLen * Factor; ++Idx) {
|
|
Constant *C = ConstMask->getAggregateElement(Idx);
|
|
if (LeafMask[Idx / Factor] && LeafMask[Idx / Factor] != C)
|
|
return nullptr;
|
|
LeafMask[Idx / Factor] = C;
|
|
}
|
|
|
|
return ConstantVector::get(LeafMask);
|
|
}
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
bool InterleavedAccessImpl::lowerDeinterleaveIntrinsic(
|
|
IntrinsicInst *DI, SmallSetVector<Instruction *, 32> &DeadInsts) {
|
|
Value *LoadedVal = DI->getOperand(0);
|
|
if (!LoadedVal->hasOneUse() || !isa<LoadInst, VPIntrinsic>(LoadedVal))
|
|
return false;
|
|
|
|
SmallVector<Value *, 8> DeinterleaveValues;
|
|
SmallVector<Instruction *, 8> DeinterleaveDeadInsts;
|
|
if (!getVectorDeinterleaveFactor(DI, DeinterleaveValues,
|
|
DeinterleaveDeadInsts))
|
|
return false;
|
|
|
|
const unsigned Factor = DeinterleaveValues.size();
|
|
|
|
if (auto *VPLoad = dyn_cast<VPIntrinsic>(LoadedVal)) {
|
|
if (VPLoad->getIntrinsicID() != Intrinsic::vp_load)
|
|
return false;
|
|
// Check mask operand. Handle both all-true/false and interleaved mask.
|
|
Value *WideMask = VPLoad->getOperand(1);
|
|
Value *Mask = getMask(WideMask, Factor,
|
|
cast<VectorType>(DeinterleaveValues[0]->getType()));
|
|
if (!Mask)
|
|
return false;
|
|
|
|
LLVM_DEBUG(dbgs() << "IA: Found a vp.load with deinterleave intrinsic "
|
|
<< *DI << " and factor = " << Factor << "\n");
|
|
|
|
// Since lowerInterleaveLoad expects Shuffles and LoadInst, use special
|
|
// TLI function to emit target-specific interleaved instruction.
|
|
if (!TLI->lowerInterleavedVPLoad(VPLoad, Mask, DeinterleaveValues))
|
|
return false;
|
|
|
|
} else {
|
|
auto *LI = cast<LoadInst>(LoadedVal);
|
|
if (!LI->isSimple())
|
|
return false;
|
|
|
|
LLVM_DEBUG(dbgs() << "IA: Found a load with deinterleave intrinsic " << *DI
|
|
<< " and factor = " << Factor << "\n");
|
|
|
|
// Try and match this with target specific intrinsics.
|
|
if (!TLI->lowerDeinterleaveIntrinsicToLoad(LI, DeinterleaveValues))
|
|
return false;
|
|
}
|
|
|
|
DeadInsts.insert_range(DeinterleaveDeadInsts);
|
|
// We now have a target-specific load, so delete the old one.
|
|
DeadInsts.insert(cast<Instruction>(LoadedVal));
|
|
return true;
|
|
}
|
|
|
|
bool InterleavedAccessImpl::lowerInterleaveIntrinsic(
|
|
IntrinsicInst *II, SmallSetVector<Instruction *, 32> &DeadInsts) {
|
|
if (!II->hasOneUse())
|
|
return false;
|
|
Value *StoredBy = II->user_back();
|
|
if (!isa<StoreInst, VPIntrinsic>(StoredBy))
|
|
return false;
|
|
|
|
SmallVector<Value *, 8> InterleaveValues;
|
|
SmallVector<Instruction *, 8> InterleaveDeadInsts;
|
|
if (!getVectorInterleaveFactor(II, InterleaveValues, InterleaveDeadInsts))
|
|
return false;
|
|
|
|
const unsigned Factor = InterleaveValues.size();
|
|
|
|
if (auto *VPStore = dyn_cast<VPIntrinsic>(StoredBy)) {
|
|
if (VPStore->getIntrinsicID() != Intrinsic::vp_store)
|
|
return false;
|
|
|
|
Value *WideMask = VPStore->getOperand(2);
|
|
Value *Mask = getMask(WideMask, Factor,
|
|
cast<VectorType>(InterleaveValues[0]->getType()));
|
|
if (!Mask)
|
|
return false;
|
|
|
|
LLVM_DEBUG(dbgs() << "IA: Found a vp.store with interleave intrinsic "
|
|
<< *II << " and factor = " << Factor << "\n");
|
|
|
|
// Since lowerInterleavedStore expects Shuffle and StoreInst, use special
|
|
// TLI function to emit target-specific interleaved instruction.
|
|
if (!TLI->lowerInterleavedVPStore(VPStore, Mask, InterleaveValues))
|
|
return false;
|
|
} else {
|
|
auto *SI = cast<StoreInst>(StoredBy);
|
|
if (!SI->isSimple())
|
|
return false;
|
|
|
|
LLVM_DEBUG(dbgs() << "IA: Found a store with interleave intrinsic " << *II
|
|
<< " and factor = " << Factor << "\n");
|
|
|
|
// Try and match this with target specific intrinsics.
|
|
if (!TLI->lowerInterleaveIntrinsicToStore(SI, InterleaveValues))
|
|
return false;
|
|
}
|
|
|
|
// We now have a target-specific store, so delete the old one.
|
|
DeadInsts.insert(cast<Instruction>(StoredBy));
|
|
DeadInsts.insert_range(InterleaveDeadInsts);
|
|
return true;
|
|
}
|
|
|
|
bool InterleavedAccessImpl::runOnFunction(Function &F) {
|
|
// Holds dead instructions that will be erased later.
|
|
SmallSetVector<Instruction *, 32> DeadInsts;
|
|
bool Changed = false;
|
|
|
|
using namespace PatternMatch;
|
|
for (auto &I : instructions(F)) {
|
|
if (match(&I, m_CombineOr(m_Load(m_Value()),
|
|
m_Intrinsic<Intrinsic::vp_load>())))
|
|
Changed |= lowerInterleavedLoad(&I, DeadInsts);
|
|
|
|
if (match(&I, m_CombineOr(m_Store(m_Value(), m_Value()),
|
|
m_Intrinsic<Intrinsic::vp_store>())))
|
|
Changed |= lowerInterleavedStore(&I, DeadInsts);
|
|
|
|
if (auto *II = dyn_cast<IntrinsicInst>(&I)) {
|
|
if (isDeinterleaveIntrinsic(II->getIntrinsicID()))
|
|
Changed |= lowerDeinterleaveIntrinsic(II, DeadInsts);
|
|
else if (isInterleaveIntrinsic(II->getIntrinsicID()))
|
|
Changed |= lowerInterleaveIntrinsic(II, DeadInsts);
|
|
}
|
|
}
|
|
|
|
for (auto *I : DeadInsts)
|
|
I->eraseFromParent();
|
|
|
|
return Changed;
|
|
}
|