llvm-project/llvm/lib/Target/RISCV/RISCVInstrInfoVVLPatterns.td

3074 lines
162 KiB
TableGen

//===- RISCVInstrInfoVVLPatterns.td - RVV VL patterns ------*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// This file contains the required infrastructure and VL patterns to
/// support code generation for the standard 'V' (Vector) extension, version
/// version 1.0.
///
/// This file is included from and depends upon RISCVInstrInfoVPseudos.td
///
/// Note: the patterns for RVV intrinsics are found in
/// RISCVInstrInfoVPseudos.td.
///
//===----------------------------------------------------------------------===//
// Splats an 64-bit value that has been split into two i32 parts. This is
// expanded late to two scalar stores and a stride 0 vector load.
// The first operand is passthru operand.
//
// This is only present to generate the correct TableGen SDNode description,
// it is lowered before instruction selection.
// FIXME: I'm not sure the types here are entirely correct.
// Returns a vector. Operand 0 is a passthru, operand 1 and 2 are i32 scalars, operand 3 is VL
def riscv_splat_vector_split_i64_vl : RVSDNode<"SPLAT_VECTOR_SPLIT_I64_VL",
SDTypeProfile<1, 4, [SDTCisVec<0>,
SDTCVecEltisVT<0, i64>,
SDTCisSameAs<1, 0>,
SDTCisVT<2, i32>,
SDTCisVT<3, i32>,
SDTCisVT<4, XLenVT>]>>;
// RISC-V vector tuple type version of INSERT_SUBVECTOR/EXTRACT_SUBVECTOR.
def riscv_tuple_insert : RVSDNode<"TUPLE_INSERT",
SDTypeProfile<1, 3, [SDTCisSameAs<1, 0>,
SDTCisVec<2>,
SDTCisVT<3, i32>]>>;
def riscv_tuple_extract : RVSDNode<"TUPLE_EXTRACT",
SDTypeProfile<1, 2, [SDTCisVec<0>,
SDTCisVT<2, i32>]>>;
//===----------------------------------------------------------------------===//
// Helpers to define the VL patterns.
//===----------------------------------------------------------------------===//
def SDT_RISCVIntUnOp_VL : SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>,
SDTCisSameAs<0, 2>,
SDTCisVec<0>, SDTCisInt<0>,
SDTCVecEltisVT<3, i1>,
SDTCisSameNumEltsAs<0, 3>,
SDTCisVT<4, XLenVT>]>;
def SDT_RISCVIntBinOp_VL : SDTypeProfile<1, 5, [SDTCisSameAs<0, 1>,
SDTCisSameAs<0, 2>,
SDTCisVec<0>, SDTCisInt<0>,
SDTCisSameAs<0, 3>,
SDTCVecEltisVT<4, i1>,
SDTCisSameNumEltsAs<0, 4>,
SDTCisVT<5, XLenVT>]>;
// Input: (vector, vector/scalar, passthru, mask, roundmode, vl)
def SDT_RISCVVNBinOp_RM_VL : SDTypeProfile<1, 6, [SDTCisVec<0>, SDTCisInt<0>,
SDTCisSameAs<0, 3>,
SDTCisSameNumEltsAs<0, 1>,
SDTCisVec<1>,
SDTCisOpSmallerThanOp<2, 1>,
SDTCisSameAs<0, 2>,
SDTCisSameNumEltsAs<0, 4>,
SDTCVecEltisVT<4, i1>,
SDTCisVT<5, XLenVT>,
SDTCisVT<6, XLenVT>]>;
def SDT_RISCVFPUnOp_VL : SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>,
SDTCisVec<0>, SDTCisFP<0>,
SDTCVecEltisVT<2, i1>,
SDTCisSameNumEltsAs<0, 2>,
SDTCisVT<3, XLenVT>]>;
def SDT_RISCVFPBinOp_VL : SDTypeProfile<1, 5, [SDTCisSameAs<0, 1>,
SDTCisSameAs<0, 2>,
SDTCisVec<0>, SDTCisFP<0>,
SDTCisSameAs<0, 3>,
SDTCVecEltisVT<4, i1>,
SDTCisSameNumEltsAs<0, 4>,
SDTCisVT<5, XLenVT>]>;
def SDT_RISCVCopySign_VL : SDTypeProfile<1, 5, [SDTCisSameAs<0, 1>,
SDTCisSameAs<0, 2>,
SDTCisVec<0>, SDTCisFP<0>,
SDTCisSameAs<0, 3>,
SDTCVecEltisVT<4, i1>,
SDTCisSameNumEltsAs<0, 4>,
SDTCisVT<5, XLenVT>]>;
// VMV_V_V_VL matches the semantics of vmv.v.v but includes an extra operand
// for the VL value to be used for the operation. The first operand is
// passthru operand.
def riscv_vmv_v_v_vl : RVSDNode<"VMV_V_V_VL",
SDTypeProfile<1, 3, [SDTCisVec<0>,
SDTCisSameAs<0, 1>,
SDTCisSameAs<0, 2>,
SDTCisVT<3, XLenVT>]>>;
// VMV_V_X_VL matches the semantics of vmv.v.x but includes an extra operand
// for the VL value to be used for the operation. The first operand is
// passthru operand.
def riscv_vmv_v_x_vl : RVSDNode<"VMV_V_X_VL",
SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisInt<0>,
SDTCisSameAs<0, 1>,
SDTCisVT<2, XLenVT>,
SDTCisVT<3, XLenVT>]>>;
// VFMV_V_F_VL matches the semantics of vfmv.v.f but includes an extra operand
// for the VL value to be used for the operation. The first operand is
// passthru operand.
def riscv_vfmv_v_f_vl : RVSDNode<"VFMV_V_F_VL",
SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisFP<0>,
SDTCisSameAs<0, 1>,
SDTCisEltOfVec<2, 0>,
SDTCisVT<3, XLenVT>]>>;
// VMV_S_X_VL matches the semantics of vmv.s.x. It carries a VL operand.
def riscv_vmv_s_x_vl : RVSDNode<"VMV_S_X_VL",
SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>,
SDTCisInt<0>,
SDTCisVT<2, XLenVT>,
SDTCisVT<3, XLenVT>]>>;
// VFMV_S_F_VL matches the semantics of vfmv.s.f. It carries a VL operand.
def riscv_vfmv_s_f_vl : RVSDNode<"VFMV_S_F_VL",
SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>,
SDTCisFP<0>,
SDTCisEltOfVec<2, 0>,
SDTCisVT<3, XLenVT>]>>;
// Vector binary ops with a passthru as a third operand, a mask as a fourth
// operand, and VL as a fifth operand.
let HasPassthruOp = true, HasMaskOp = true in {
def riscv_add_vl : RVSDNode<"ADD_VL", SDT_RISCVIntBinOp_VL, [SDNPCommutative]>;
def riscv_sub_vl : RVSDNode<"SUB_VL", SDT_RISCVIntBinOp_VL>;
def riscv_mul_vl : RVSDNode<"MUL_VL", SDT_RISCVIntBinOp_VL, [SDNPCommutative]>;
def riscv_mulhs_vl : RVSDNode<"MULHS_VL", SDT_RISCVIntBinOp_VL, [SDNPCommutative]>;
def riscv_mulhu_vl : RVSDNode<"MULHU_VL", SDT_RISCVIntBinOp_VL, [SDNPCommutative]>;
def riscv_and_vl : RVSDNode<"AND_VL", SDT_RISCVIntBinOp_VL, [SDNPCommutative]>;
def riscv_or_vl : RVSDNode<"OR_VL", SDT_RISCVIntBinOp_VL, [SDNPCommutative]>;
def riscv_xor_vl : RVSDNode<"XOR_VL", SDT_RISCVIntBinOp_VL, [SDNPCommutative]>;
def riscv_sdiv_vl : RVSDNode<"SDIV_VL", SDT_RISCVIntBinOp_VL>;
def riscv_srem_vl : RVSDNode<"SREM_VL", SDT_RISCVIntBinOp_VL>;
def riscv_udiv_vl : RVSDNode<"UDIV_VL", SDT_RISCVIntBinOp_VL>;
def riscv_urem_vl : RVSDNode<"UREM_VL", SDT_RISCVIntBinOp_VL>;
def riscv_shl_vl : RVSDNode<"SHL_VL", SDT_RISCVIntBinOp_VL>;
def riscv_sra_vl : RVSDNode<"SRA_VL", SDT_RISCVIntBinOp_VL>;
def riscv_srl_vl : RVSDNode<"SRL_VL", SDT_RISCVIntBinOp_VL>;
def riscv_rotl_vl : RVSDNode<"ROTL_VL", SDT_RISCVIntBinOp_VL>;
def riscv_rotr_vl : RVSDNode<"ROTR_VL", SDT_RISCVIntBinOp_VL>;
def riscv_smin_vl : RVSDNode<"SMIN_VL", SDT_RISCVIntBinOp_VL, [SDNPCommutative]>;
def riscv_smax_vl : RVSDNode<"SMAX_VL", SDT_RISCVIntBinOp_VL, [SDNPCommutative]>;
def riscv_umin_vl : RVSDNode<"UMIN_VL", SDT_RISCVIntBinOp_VL, [SDNPCommutative]>;
def riscv_umax_vl : RVSDNode<"UMAX_VL", SDT_RISCVIntBinOp_VL, [SDNPCommutative]>;
def riscv_bitreverse_vl : RVSDNode<"BITREVERSE_VL", SDT_RISCVIntUnOp_VL>;
def riscv_bswap_vl : RVSDNode<"BSWAP_VL", SDT_RISCVIntUnOp_VL>;
def riscv_ctlz_vl : RVSDNode<"CTLZ_VL", SDT_RISCVIntUnOp_VL>;
def riscv_cttz_vl : RVSDNode<"CTTZ_VL", SDT_RISCVIntUnOp_VL>;
def riscv_ctpop_vl : RVSDNode<"CTPOP_VL", SDT_RISCVIntUnOp_VL>;
// Averaging adds of signed integers.
def riscv_avgfloors_vl : RVSDNode<"AVGFLOORS_VL", SDT_RISCVIntBinOp_VL, [SDNPCommutative]>;
// Averaging adds of unsigned integers.
def riscv_avgflooru_vl : RVSDNode<"AVGFLOORU_VL", SDT_RISCVIntBinOp_VL, [SDNPCommutative]>;
// Rounding averaging adds of signed integers.
def riscv_avgceils_vl : RVSDNode<"AVGCEILS_VL", SDT_RISCVIntBinOp_VL, [SDNPCommutative]>;
// Rounding averaging adds of unsigned integers.
def riscv_avgceilu_vl : RVSDNode<"AVGCEILU_VL", SDT_RISCVIntBinOp_VL, [SDNPCommutative]>;
def riscv_saddsat_vl : RVSDNode<"SADDSAT_VL", SDT_RISCVIntBinOp_VL, [SDNPCommutative]>;
def riscv_uaddsat_vl : RVSDNode<"UADDSAT_VL", SDT_RISCVIntBinOp_VL, [SDNPCommutative]>;
def riscv_ssubsat_vl : RVSDNode<"SSUBSAT_VL", SDT_RISCVIntBinOp_VL>;
def riscv_usubsat_vl : RVSDNode<"USUBSAT_VL", SDT_RISCVIntBinOp_VL>;
def riscv_fadd_vl : RVSDNode<"FADD_VL", SDT_RISCVFPBinOp_VL, [SDNPCommutative]>;
def riscv_fsub_vl : RVSDNode<"FSUB_VL", SDT_RISCVFPBinOp_VL>;
def riscv_fmul_vl : RVSDNode<"FMUL_VL", SDT_RISCVFPBinOp_VL, [SDNPCommutative]>;
def riscv_fdiv_vl : RVSDNode<"FDIV_VL", SDT_RISCVFPBinOp_VL>;
} // let HasPassthruOp = true, HasMaskOp = true
// Vector unary ops with a mask as a second operand and VL as a third operand.
let HasMaskOp = true in {
def riscv_fneg_vl : RVSDNode<"FNEG_VL", SDT_RISCVFPUnOp_VL>;
def riscv_fabs_vl : RVSDNode<"FABS_VL", SDT_RISCVFPUnOp_VL>;
def riscv_fsqrt_vl : RVSDNode<"FSQRT_VL", SDT_RISCVFPUnOp_VL>;
} // let HasMaskOp = true
let HasPassthruOp = true, HasMaskOp = true in {
def riscv_fcopysign_vl : RVSDNode<"FCOPYSIGN_VL", SDT_RISCVCopySign_VL>;
def riscv_vfmin_vl : RVSDNode<"VFMIN_VL", SDT_RISCVFPBinOp_VL, [SDNPCommutative]>;
def riscv_vfmax_vl : RVSDNode<"VFMAX_VL", SDT_RISCVFPBinOp_VL, [SDNPCommutative]>;
} // let HasPassthruOp = true, HasMaskOp = true
let IsStrictFP = true, HasPassthruOp = true, HasMaskOp = true in {
def riscv_strict_fadd_vl : RVSDNode<"STRICT_FADD_VL", SDT_RISCVFPBinOp_VL, [SDNPCommutative, SDNPHasChain]>;
def riscv_strict_fsub_vl : RVSDNode<"STRICT_FSUB_VL", SDT_RISCVFPBinOp_VL, [SDNPHasChain]>;
def riscv_strict_fmul_vl : RVSDNode<"STRICT_FMUL_VL", SDT_RISCVFPBinOp_VL, [SDNPCommutative, SDNPHasChain]>;
def riscv_strict_fdiv_vl : RVSDNode<"STRICT_FDIV_VL", SDT_RISCVFPBinOp_VL, [SDNPHasChain]>;
} // let IsStrictFP = true, HasPassthruOp = true, HasMaskOp = true
let IsStrictFP = true, HasMaskOp = true in
def riscv_strict_fsqrt_vl : RVSDNode<"STRICT_FSQRT_VL", SDT_RISCVFPUnOp_VL, [SDNPHasChain]>;
def any_riscv_fadd_vl : PatFrags<(ops node:$lhs, node:$rhs, node:$passthru, node:$mask, node:$vl),
[(riscv_fadd_vl node:$lhs, node:$rhs, node:$passthru, node:$mask, node:$vl),
(riscv_strict_fadd_vl node:$lhs, node:$rhs, node:$passthru, node:$mask, node:$vl)]>;
def any_riscv_fsub_vl : PatFrags<(ops node:$lhs, node:$rhs, node:$passthru, node:$mask, node:$vl),
[(riscv_fsub_vl node:$lhs, node:$rhs, node:$passthru, node:$mask, node:$vl),
(riscv_strict_fsub_vl node:$lhs, node:$rhs, node:$passthru, node:$mask, node:$vl)]>;
def any_riscv_fmul_vl : PatFrags<(ops node:$lhs, node:$rhs, node:$passthru, node:$mask, node:$vl),
[(riscv_fmul_vl node:$lhs, node:$rhs, node:$passthru, node:$mask, node:$vl),
(riscv_strict_fmul_vl node:$lhs, node:$rhs, node:$passthru, node:$mask, node:$vl)]>;
def any_riscv_fdiv_vl : PatFrags<(ops node:$lhs, node:$rhs, node:$passthru, node:$mask, node:$vl),
[(riscv_fdiv_vl node:$lhs, node:$rhs, node:$passthru, node:$mask, node:$vl),
(riscv_strict_fdiv_vl node:$lhs, node:$rhs, node:$passthru, node:$mask, node:$vl)]>;
def any_riscv_fsqrt_vl : PatFrags<(ops node:$src, node:$mask, node:$vl),
[(riscv_fsqrt_vl node:$src, node:$mask, node:$vl),
(riscv_strict_fsqrt_vl node:$src, node:$mask, node:$vl)]>;
let HasMaskOp = true in
def riscv_fclass_vl : RVSDNode<"FCLASS_VL",
SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisVec<0>,
SDTCisFP<1>, SDTCisVec<1>,
SDTCisSameSizeAs<0, 1>,
SDTCisSameNumEltsAs<0, 1>,
SDTCVecEltisVT<2, i1>,
SDTCisSameNumEltsAs<0, 2>,
SDTCisVT<3, XLenVT>]>>;
def SDT_RISCVVecFMA_VL : SDTypeProfile<1, 5, [SDTCisSameAs<0, 1>,
SDTCisSameAs<0, 2>,
SDTCisSameAs<0, 3>,
SDTCisVec<0>, SDTCisFP<0>,
SDTCVecEltisVT<4, i1>,
SDTCisSameNumEltsAs<0, 4>,
SDTCisVT<5, XLenVT>]>;
let HasMaskOp = true in {
// Vector FMA ops with a mask as a fourth operand and VL as a fifth operand.
def riscv_vfmadd_vl : RVSDNode<"VFMADD_VL", SDT_RISCVVecFMA_VL, [SDNPCommutative]>;
def riscv_vfnmadd_vl : RVSDNode<"VFNMADD_VL", SDT_RISCVVecFMA_VL, [SDNPCommutative]>;
def riscv_vfmsub_vl : RVSDNode<"VFMSUB_VL", SDT_RISCVVecFMA_VL, [SDNPCommutative]>;
def riscv_vfnmsub_vl : RVSDNode<"VFNMSUB_VL", SDT_RISCVVecFMA_VL, [SDNPCommutative]>;
}
def SDT_RISCVWVecFMA_VL : SDTypeProfile<1, 5, [SDTCisVec<0>, SDTCisFP<0>,
SDTCisVec<1>, SDTCisFP<1>,
SDTCisOpSmallerThanOp<1, 0>,
SDTCisSameNumEltsAs<0, 1>,
SDTCisSameAs<1, 2>,
SDTCisSameAs<0, 3>,
SDTCVecEltisVT<4, i1>,
SDTCisSameNumEltsAs<0, 4>,
SDTCisVT<5, XLenVT>]>;
let HasMaskOp = true in {
// Vector widening FMA ops with a mask as a fourth operand and VL as a fifth
// operand.
def riscv_vfwmadd_vl : RVSDNode<"VFWMADD_VL", SDT_RISCVWVecFMA_VL, [SDNPCommutative]>;
def riscv_vfwnmadd_vl : RVSDNode<"VFWNMADD_VL", SDT_RISCVWVecFMA_VL, [SDNPCommutative]>;
def riscv_vfwmsub_vl : RVSDNode<"VFWMSUB_VL", SDT_RISCVWVecFMA_VL, [SDNPCommutative]>;
def riscv_vfwnmsub_vl : RVSDNode<"VFWNMSUB_VL", SDT_RISCVWVecFMA_VL, [SDNPCommutative]>;
let IsStrictFP = true in {
def riscv_strict_vfmadd_vl : RVSDNode<"STRICT_VFMADD_VL", SDT_RISCVVecFMA_VL, [SDNPCommutative, SDNPHasChain]>;
def riscv_strict_vfnmadd_vl : RVSDNode<"STRICT_VFNMADD_VL", SDT_RISCVVecFMA_VL, [SDNPCommutative, SDNPHasChain]>;
def riscv_strict_vfmsub_vl : RVSDNode<"STRICT_VFMSUB_VL", SDT_RISCVVecFMA_VL, [SDNPCommutative, SDNPHasChain]>;
def riscv_strict_vfnmsub_vl : RVSDNode<"STRICT_VFNMSUB_VL", SDT_RISCVVecFMA_VL, [SDNPCommutative, SDNPHasChain]>;
} // let IsStrictFP = true
} // let HasMaskOp = true
def any_riscv_vfmadd_vl : PatFrags<(ops node:$rs1, node:$rs2, node:$rs3, node:$mask, node:$vl),
[(riscv_vfmadd_vl node:$rs1, node:$rs2, node:$rs3, node:$mask, node:$vl),
(riscv_strict_vfmadd_vl node:$rs1, node:$rs2, node:$rs3, node:$mask, node:$vl)]>;
def any_riscv_vfnmadd_vl : PatFrags<(ops node:$rs1, node:$rs2, node:$rs3, node:$mask, node:$vl),
[(riscv_vfnmadd_vl node:$rs1, node:$rs2, node:$rs3, node:$mask, node:$vl),
(riscv_strict_vfnmadd_vl node:$rs1, node:$rs2, node:$rs3, node:$mask, node:$vl)]>;
def any_riscv_vfmsub_vl : PatFrags<(ops node:$rs1, node:$rs2, node:$rs3, node:$mask, node:$vl),
[(riscv_vfmsub_vl node:$rs1, node:$rs2, node:$rs3, node:$mask, node:$vl),
(riscv_strict_vfmsub_vl node:$rs1, node:$rs2, node:$rs3, node:$mask, node:$vl)]>;
def any_riscv_vfnmsub_vl : PatFrags<(ops node:$rs1, node:$rs2, node:$rs3, node:$mask, node:$vl),
[(riscv_vfnmsub_vl node:$rs1, node:$rs2, node:$rs3, node:$mask, node:$vl),
(riscv_strict_vfnmsub_vl node:$rs1, node:$rs2, node:$rs3, node:$mask, node:$vl)]>;
def SDT_RISCVFPRoundOp_VL : SDTypeProfile<1, 3, [
SDTCisFP<0>, SDTCisFP<1>, SDTCisOpSmallerThanOp<0, 1>, SDTCisSameNumEltsAs<0, 1>,
SDTCVecEltisVT<2, i1>, SDTCisSameNumEltsAs<1, 2>, SDTCisVT<3, XLenVT>
]>;
def SDT_RISCVFPExtendOp_VL : SDTypeProfile<1, 3, [
SDTCisFP<0>, SDTCisFP<1>, SDTCisOpSmallerThanOp<1, 0>, SDTCisSameNumEltsAs<0, 1>,
SDTCVecEltisVT<2, i1>, SDTCisSameNumEltsAs<1, 2>, SDTCisVT<3, XLenVT>
]>;
let HasMaskOp = true in {
def riscv_fpround_vl : RVSDNode<"FP_ROUND_VL", SDT_RISCVFPRoundOp_VL>;
def riscv_fpextend_vl : RVSDNode<"FP_EXTEND_VL", SDT_RISCVFPExtendOp_VL>;
// Matches the semantics of the vfcnvt.rod function (Convert double-width
// float to single-width float, rounding towards odd). Takes a double-width
// float vector and produces a single-width float vector. Also has a mask and
// VL operand.
def riscv_fncvt_rod_vl : RVSDNode<"VFNCVT_ROD_VL", SDT_RISCVFPRoundOp_VL>;
let IsStrictFP = true in {
def riscv_strict_fpround_vl : RVSDNode<"STRICT_FP_ROUND_VL", SDT_RISCVFPRoundOp_VL, [SDNPHasChain]>;
def riscv_strict_fpextend_vl : RVSDNode<"STRICT_FP_EXTEND_VL", SDT_RISCVFPExtendOp_VL, [SDNPHasChain]>;
def riscv_strict_fncvt_rod_vl : RVSDNode<"STRICT_VFNCVT_ROD_VL", SDT_RISCVFPRoundOp_VL, [SDNPHasChain]>;
} // let IsStrictFP = true
} // let HasMaskOp = true
def any_riscv_fpround_vl : PatFrags<(ops node:$src, node:$mask, node:$vl),
[(riscv_fpround_vl node:$src, node:$mask, node:$vl),
(riscv_strict_fpround_vl node:$src, node:$mask, node:$vl)]>;
def any_riscv_fpextend_vl : PatFrags<(ops node:$src, node:$mask, node:$vl),
[(riscv_fpextend_vl node:$src, node:$mask, node:$vl),
(riscv_strict_fpextend_vl node:$src, node:$mask, node:$vl)]>;
def any_riscv_fncvt_rod_vl : PatFrags<(ops node:$src, node:$mask, node:$vl),
[(riscv_fncvt_rod_vl node:$src, node:$mask, node:$vl),
(riscv_strict_fncvt_rod_vl node:$src, node:$mask, node:$vl)]>;
def SDT_RISCVFP2IOp_VL : SDTypeProfile<1, 3, [
SDTCisInt<0>, SDTCisFP<1>, SDTCisSameNumEltsAs<0, 1>,
SDTCVecEltisVT<2, i1>, SDTCisSameNumEltsAs<1, 2>, SDTCisVT<3, XLenVT>
]>;
def SDT_RISCVFP2IOp_RM_VL : SDTypeProfile<1, 4, [
SDTCisInt<0>, SDTCisFP<1>, SDTCisSameNumEltsAs<0, 1>,
SDTCVecEltisVT<2, i1>, SDTCisSameNumEltsAs<1, 2>, SDTCisVT<3, XLenVT>,
SDTCisVT<4, XLenVT> // Rounding mode
]>;
def SDT_RISCVI2FPOp_VL : SDTypeProfile<1, 3, [
SDTCisFP<0>, SDTCisInt<1>, SDTCisSameNumEltsAs<0, 1>,
SDTCVecEltisVT<2, i1>, SDTCisSameNumEltsAs<1, 2>, SDTCisVT<3, XLenVT>
]>;
def SDT_RISCVI2FPOp_RM_VL : SDTypeProfile<1, 4, [
SDTCisFP<0>, SDTCisInt<1>, SDTCisSameNumEltsAs<0, 1>,
SDTCVecEltisVT<2, i1>, SDTCisSameNumEltsAs<1, 2>, SDTCisVT<3, XLenVT>,
SDTCisVT<4, XLenVT> // Rounding mode
]>;
def SDT_RISCVSETCCOP_VL : SDTypeProfile<1, 6, [
SDTCVecEltisVT<0, i1>, SDTCisVec<1>, SDTCisSameNumEltsAs<0, 1>,
SDTCisSameAs<1, 2>, SDTCisVT<3, OtherVT>, SDTCisSameAs<0, 4>,
SDTCisSameAs<0, 5>, SDTCisVT<6, XLenVT>]>;
// Float -> Int
let HasMaskOp = true in {
def riscv_vfcvt_rm_xu_f_vl : RVSDNode<"VFCVT_RM_XU_F_VL", SDT_RISCVFP2IOp_RM_VL>;
def riscv_vfcvt_rm_x_f_vl : RVSDNode<"VFCVT_RM_X_F_VL", SDT_RISCVFP2IOp_RM_VL>;
def riscv_vfcvt_rtz_xu_f_vl : RVSDNode<"VFCVT_RTZ_XU_F_VL", SDT_RISCVFP2IOp_VL>;
def riscv_vfcvt_rtz_x_f_vl : RVSDNode<"VFCVT_RTZ_X_F_VL", SDT_RISCVFP2IOp_VL>;
let IsStrictFP = true in {
def riscv_strict_vfcvt_rm_x_f_vl : RVSDNode<"STRICT_VFCVT_RM_X_F_VL", SDT_RISCVFP2IOp_RM_VL, [SDNPHasChain]>;
def riscv_strict_vfcvt_rtz_xu_f_vl : RVSDNode<"STRICT_VFCVT_RTZ_XU_F_VL", SDT_RISCVFP2IOp_VL, [SDNPHasChain]>;
def riscv_strict_vfcvt_rtz_x_f_vl : RVSDNode<"STRICT_VFCVT_RTZ_X_F_VL", SDT_RISCVFP2IOp_VL, [SDNPHasChain]>;
} // let IsStrictFP = true
} // let HasMaskOp = true
def any_riscv_vfcvt_rm_x_f_vl : PatFrags<(ops node:$src, node:$mask, node:$vl, node:$rm),
[(riscv_vfcvt_rm_x_f_vl node:$src, node:$mask, node:$vl, node:$rm),
(riscv_strict_vfcvt_rm_x_f_vl node:$src, node:$mask, node:$vl, node:$rm)]>;
def any_riscv_vfcvt_rtz_xu_f_vl : PatFrags<(ops node:$src, node:$mask, node:$vl),
[(riscv_vfcvt_rtz_xu_f_vl node:$src, node:$mask, node:$vl),
(riscv_strict_vfcvt_rtz_xu_f_vl node:$src, node:$mask, node:$vl)]>;
def any_riscv_vfcvt_rtz_x_f_vl : PatFrags<(ops node:$src, node:$mask, node:$vl),
[(riscv_vfcvt_rtz_x_f_vl node:$src, node:$mask, node:$vl),
(riscv_strict_vfcvt_rtz_x_f_vl node:$src, node:$mask, node:$vl)]>;
// Int -> Float
let HasMaskOp = true in {
def riscv_sint_to_fp_vl : RVSDNode<"SINT_TO_FP_VL", SDT_RISCVI2FPOp_VL>;
def riscv_uint_to_fp_vl : RVSDNode<"UINT_TO_FP_VL", SDT_RISCVI2FPOp_VL>;
def riscv_vfcvt_rm_f_xu_vl : RVSDNode<"VFCVT_RM_F_XU_VL", SDT_RISCVI2FPOp_RM_VL>;
def riscv_vfcvt_rm_f_x_vl : RVSDNode<"VFCVT_RM_F_X_VL", SDT_RISCVI2FPOp_RM_VL>;
let IsStrictFP = true in {
def riscv_strict_sint_to_fp_vl : RVSDNode<"STRICT_SINT_TO_FP_VL", SDT_RISCVI2FPOp_VL, [SDNPHasChain]>;
def riscv_strict_uint_to_fp_vl : RVSDNode<"STRICT_UINT_TO_FP_VL", SDT_RISCVI2FPOp_VL, [SDNPHasChain]>;
} // let IsStrictFP = true
} // let HasMaskOp = true
def any_riscv_sint_to_fp_vl : PatFrags<(ops node:$src, node:$mask, node:$vl),
[(riscv_sint_to_fp_vl node:$src, node:$mask, node:$vl),
(riscv_strict_sint_to_fp_vl node:$src, node:$mask, node:$vl)]>;
def any_riscv_uint_to_fp_vl : PatFrags<(ops node:$src, node:$mask, node:$vl),
[(riscv_uint_to_fp_vl node:$src, node:$mask, node:$vl),
(riscv_strict_uint_to_fp_vl node:$src, node:$mask, node:$vl)]>;
let HasMaskOp = true in {
def riscv_vfround_noexcept_vl: RVSDNode<"VFROUND_NOEXCEPT_VL", SDT_RISCVFPUnOp_VL>;
let IsStrictFP = true in
def riscv_strict_vfround_noexcept_vl: RVSDNode<"STRICT_VFROUND_NOEXCEPT_VL", SDT_RISCVFPUnOp_VL, [SDNPHasChain]>;
}
def any_riscv_vfround_noexcept_vl : PatFrags<(ops node:$src, node:$mask, node:$vl),
[(riscv_vfround_noexcept_vl node:$src, node:$mask, node:$vl),
(riscv_strict_vfround_noexcept_vl node:$src, node:$mask, node:$vl)]>;
// Vector compare producing a mask. Fourth operand is input mask. Fifth
// operand is VL.
let HasPassthruOp = true, HasMaskOp = true in
def riscv_setcc_vl : RVSDNode<"SETCC_VL", SDT_RISCVSETCCOP_VL>;
let IsStrictFP = true, HasMaskOp = true in {
def riscv_strict_fsetcc_vl : RVSDNode<"STRICT_FSETCC_VL", SDT_RISCVSETCCOP_VL, [SDNPHasChain]>;
def riscv_strict_fsetccs_vl : RVSDNode<"STRICT_FSETCCS_VL", SDT_RISCVSETCCOP_VL, [SDNPHasChain]>;
} // let IsStrictFP = true, HasMaskOp = true
def any_riscv_fsetcc_vl : PatFrags<(ops node:$lhs, node:$rhs, node:$cc, node:$passthru, node:$mask, node:$vl),
[(riscv_setcc_vl node:$lhs, node:$rhs, node:$cc, node:$passthru, node:$mask, node:$vl),
(riscv_strict_fsetcc_vl node:$lhs, node:$rhs, node:$cc, node:$passthru, node:$mask, node:$vl)]>;
def any_riscv_fsetccs_vl : PatFrags<(ops node:$lhs, node:$rhs, node:$cc, node:$passthru, node:$mask, node:$vl),
[(riscv_setcc_vl node:$lhs, node:$rhs, node:$cc, node:$passthru, node:$mask, node:$vl),
(riscv_strict_fsetccs_vl node:$lhs, node:$rhs, node:$cc, node:$passthru, node:$mask, node:$vl)]>;
let HasMaskOp = true in {
// Matches the semantics of vrgather.vx and vrgather.vv with extra operands
// for passthru and VL, except that out of bound indices result in a poison
// result not zero. Operands are (src, index, mask, passthru, vl).
def riscv_vrgather_vx_vl : RVSDNode<"VRGATHER_VX_VL",
SDTypeProfile<1, 5, [SDTCisVec<0>,
SDTCisSameAs<0, 1>,
SDTCisVT<2, XLenVT>,
SDTCisSameAs<0, 3>,
SDTCVecEltisVT<4, i1>,
SDTCisSameNumEltsAs<0, 4>,
SDTCisVT<5, XLenVT>]>>;
def riscv_vrgather_vv_vl : RVSDNode<"VRGATHER_VV_VL",
SDTypeProfile<1, 5, [SDTCisVec<0>,
SDTCisSameAs<0, 1>,
SDTCisInt<2>,
SDTCisSameNumEltsAs<0, 2>,
SDTCisSameSizeAs<0, 2>,
SDTCisSameAs<0, 3>,
SDTCVecEltisVT<4, i1>,
SDTCisSameNumEltsAs<0, 4>,
SDTCisVT<5, XLenVT>]>>;
def riscv_vrgatherei16_vv_vl : RVSDNode<"VRGATHEREI16_VV_VL",
SDTypeProfile<1, 5, [SDTCisVec<0>,
SDTCisSameAs<0, 1>,
SDTCisInt<2>,
SDTCVecEltisVT<2, i16>,
SDTCisSameNumEltsAs<0, 2>,
SDTCisSameAs<0, 3>,
SDTCVecEltisVT<4, i1>,
SDTCisSameNumEltsAs<0, 4>,
SDTCisVT<5, XLenVT>]>>;
} // let HasMaskOp = true
def SDT_RISCVVMERGE_VL : SDTypeProfile<1, 5, [
SDTCisVec<0>, SDTCisVec<1>, SDTCisSameNumEltsAs<0, 1>, SDTCVecEltisVT<1, i1>,
SDTCisSameAs<0, 2>, SDTCisSameAs<2, 3>, SDTCisSameAs<0, 4>,
SDTCisVT<5, XLenVT>
]>;
// General vmerge node with mask, true, false, passthru, and vl operands.
// Tail agnostic vselect can be implemented by setting passthru to undef.
let HasPassthruOp = true in
def riscv_vmerge_vl : RVSDNode<"VMERGE_VL", SDT_RISCVVMERGE_VL>;
def SDT_RISCVVMSETCLR_VL : SDTypeProfile<1, 1, [SDTCVecEltisVT<0, i1>,
SDTCisVT<1, XLenVT>]>;
// Set mask vector to all zeros or ones.
def riscv_vmclr_vl : RVSDNode<"VMCLR_VL", SDT_RISCVVMSETCLR_VL>;
def riscv_vmset_vl : RVSDNode<"VMSET_VL", SDT_RISCVVMSETCLR_VL>;
def SDT_RISCVMaskBinOp_VL : SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>,
SDTCisSameAs<0, 2>,
SDTCVecEltisVT<0, i1>,
SDTCisVT<3, XLenVT>]>;
// Mask binary operators.
def riscv_vmand_vl : RVSDNode<"VMAND_VL", SDT_RISCVMaskBinOp_VL, [SDNPCommutative]>;
def riscv_vmor_vl : RVSDNode<"VMOR_VL", SDT_RISCVMaskBinOp_VL, [SDNPCommutative]>;
def riscv_vmxor_vl : RVSDNode<"VMXOR_VL", SDT_RISCVMaskBinOp_VL, [SDNPCommutative]>;
def true_mask : PatLeaf<(riscv_vmset_vl (XLenVT srcvalue))>;
def riscv_vmnot_vl : PatFrag<(ops node:$rs, node:$vl),
(riscv_vmxor_vl node:$rs, true_mask, node:$vl)>;
let HasMaskOp = true in {
// vcpop.m with additional mask and VL operands.
def riscv_vcpop_vl : RVSDNode<"VCPOP_VL",
SDTypeProfile<1, 3, [SDTCisVT<0, XLenVT>,
SDTCisVec<1>, SDTCisInt<1>,
SDTCVecEltisVT<2, i1>,
SDTCisSameNumEltsAs<1, 2>,
SDTCisVT<3, XLenVT>]>>;
// vfirst.m with additional mask and VL operands.
def riscv_vfirst_vl : RVSDNode<"VFIRST_VL",
SDTypeProfile<1, 3, [SDTCisVT<0, XLenVT>,
SDTCisVec<1>, SDTCisInt<1>,
SDTCVecEltisVT<2, i1>,
SDTCisSameNumEltsAs<1, 2>,
SDTCisVT<3, XLenVT>]>>;
} // let HasMaskOp = true
def SDT_RISCVVEXTEND_VL : SDTypeProfile<1, 3, [SDTCisVec<0>,
SDTCisSameNumEltsAs<0, 1>,
SDTCisSameNumEltsAs<1, 2>,
SDTCVecEltisVT<2, i1>,
SDTCisVT<3, XLenVT>]>;
let HasMaskOp = true in {
// Vector sign/zero extend with additional mask & VL operands.
def riscv_sext_vl : RVSDNode<"VSEXT_VL", SDT_RISCVVEXTEND_VL>;
def riscv_zext_vl : RVSDNode<"VZEXT_VL", SDT_RISCVVEXTEND_VL>;
} // let HasMaskOp = true
def riscv_ext_vl : PatFrags<(ops node:$A, node:$B, node:$C),
[(riscv_sext_vl node:$A, node:$B, node:$C),
(riscv_zext_vl node:$A, node:$B, node:$C)]>;
def SDT_RISCVVTRUNCATE_VL : SDTypeProfile<1, 3, [SDTCisVec<0>,
SDTCisSameNumEltsAs<0, 1>,
SDTCisSameNumEltsAs<0, 2>,
SDTCVecEltisVT<2, i1>,
SDTCisVT<3, XLenVT>]>;
let HasMaskOp = true in {
// Truncates a RVV integer vector by one power-of-two. Carries both an extra
// mask and VL operand.
def riscv_trunc_vector_vl : RVSDNode<"TRUNCATE_VECTOR_VL",
SDT_RISCVVTRUNCATE_VL>;
// Truncates a RVV integer vector by one power-of-two. If the value doesn't
// fit in the destination type, the result is saturated. These correspond to
// vnclip and vnclipu with a shift of 0. Carries both an extra mask and VL
// operand.
def riscv_trunc_vector_vl_ssat : RVSDNode<"TRUNCATE_VECTOR_VL_SSAT",
SDT_RISCVVTRUNCATE_VL>;
def riscv_trunc_vector_vl_usat : RVSDNode<"TRUNCATE_VECTOR_VL_USAT",
SDT_RISCVVTRUNCATE_VL>;
} // let HasMaskOp = true
def SDT_RISCVVWIntBinOp_VL : SDTypeProfile<1, 5, [SDTCisVec<0>, SDTCisInt<0>,
SDTCisInt<1>,
SDTCisSameNumEltsAs<0, 1>,
SDTCisOpSmallerThanOp<1, 0>,
SDTCisSameAs<1, 2>,
SDTCisSameAs<0, 3>,
SDTCisSameNumEltsAs<1, 4>,
SDTCVecEltisVT<4, i1>,
SDTCisVT<5, XLenVT>]>;
let HasPassthruOp = true, HasMaskOp = true in {
// Widening instructions with a passthru value a third operand, a mask as a
// fourth operand, and VL as a fifth operand.
def riscv_vwmul_vl : RVSDNode<"VWMUL_VL", SDT_RISCVVWIntBinOp_VL, [SDNPCommutative]>;
def riscv_vwmulu_vl : RVSDNode<"VWMULU_VL", SDT_RISCVVWIntBinOp_VL, [SDNPCommutative]>;
def riscv_vwmulsu_vl : RVSDNode<"VWMULSU_VL", SDT_RISCVVWIntBinOp_VL>;
def riscv_vwadd_vl : RVSDNode<"VWADD_VL", SDT_RISCVVWIntBinOp_VL, [SDNPCommutative]>;
def riscv_vwaddu_vl : RVSDNode<"VWADDU_VL", SDT_RISCVVWIntBinOp_VL, [SDNPCommutative]>;
def riscv_vwsub_vl : RVSDNode<"VWSUB_VL", SDT_RISCVVWIntBinOp_VL, []>;
def riscv_vwsubu_vl : RVSDNode<"VWSUBU_VL", SDT_RISCVVWIntBinOp_VL, []>;
def riscv_vwsll_vl : RVSDNode<"VWSLL_VL", SDT_RISCVVWIntBinOp_VL, []>;
} // let HasPassthruOp = true, HasMaskOp = true
def SDT_RISCVVWIntTernOp_VL : SDTypeProfile<1, 5, [SDTCisVec<0>, SDTCisInt<0>,
SDTCisInt<1>,
SDTCisSameNumEltsAs<0, 1>,
SDTCisOpSmallerThanOp<1, 0>,
SDTCisSameAs<1, 2>,
SDTCisSameAs<0, 3>,
SDTCisSameNumEltsAs<1, 4>,
SDTCVecEltisVT<4, i1>,
SDTCisVT<5, XLenVT>]>;
let HasMaskOp = true in {
// Widening ternary operations with a mask as the fourth operand and VL as the
// fifth operand.
def riscv_vwmacc_vl : RVSDNode<"VWMACC_VL", SDT_RISCVVWIntTernOp_VL, [SDNPCommutative]>;
def riscv_vwmaccu_vl : RVSDNode<"VWMACCU_VL", SDT_RISCVVWIntTernOp_VL, [SDNPCommutative]>;
def riscv_vwmaccsu_vl : RVSDNode<"VWMACCSU_VL", SDT_RISCVVWIntTernOp_VL, []>;
} // let HasMaskOp = true
def SDT_RISCVVWFPBinOp_VL : SDTypeProfile<1, 5, [SDTCisVec<0>, SDTCisFP<0>,
SDTCisFP<1>,
SDTCisSameNumEltsAs<0, 1>,
SDTCisOpSmallerThanOp<1, 0>,
SDTCisSameAs<1, 2>,
SDTCisSameAs<0, 3>,
SDTCisSameNumEltsAs<1, 4>,
SDTCVecEltisVT<4, i1>,
SDTCisVT<5, XLenVT>]>;
let HasPassthruOp = true, HasMaskOp = true in {
def riscv_vfwmul_vl : RVSDNode<"VFWMUL_VL", SDT_RISCVVWFPBinOp_VL, [SDNPCommutative]>;
def riscv_vfwadd_vl : RVSDNode<"VFWADD_VL", SDT_RISCVVWFPBinOp_VL, [SDNPCommutative]>;
def riscv_vfwsub_vl : RVSDNode<"VFWSUB_VL", SDT_RISCVVWFPBinOp_VL, []>;
} // let HasPassthruOp = true, HasMaskOp = true
def SDT_RISCVVWIntBinOpW_VL : SDTypeProfile<1, 5, [SDTCisVec<0>, SDTCisInt<0>,
SDTCisSameAs<0, 1>,
SDTCisInt<2>,
SDTCisSameNumEltsAs<1, 2>,
SDTCisOpSmallerThanOp<2, 1>,
SDTCisSameAs<0, 3>,
SDTCisSameNumEltsAs<1, 4>,
SDTCVecEltisVT<4, i1>,
SDTCisVT<5, XLenVT>]>;
let HasPassthruOp = true, HasMaskOp = true in {
def riscv_vwadd_w_vl : RVSDNode<"VWADD_W_VL", SDT_RISCVVWIntBinOpW_VL>;
def riscv_vwaddu_w_vl : RVSDNode<"VWADDU_W_VL", SDT_RISCVVWIntBinOpW_VL>;
def riscv_vwsub_w_vl : RVSDNode<"VWSUB_W_VL", SDT_RISCVVWIntBinOpW_VL>;
def riscv_vwsubu_w_vl : RVSDNode<"VWSUBU_W_VL", SDT_RISCVVWIntBinOpW_VL>;
} // let HasPassthruOp = true, HasMaskOp = true
def SDT_RISCVVWFPBinOpW_VL : SDTypeProfile<1, 5, [SDTCisVec<0>, SDTCisFP<0>,
SDTCisSameAs<0, 1>,
SDTCisFP<2>,
SDTCisSameNumEltsAs<1, 2>,
SDTCisOpSmallerThanOp<2, 1>,
SDTCisSameAs<0, 3>,
SDTCisSameNumEltsAs<1, 4>,
SDTCVecEltisVT<4, i1>,
SDTCisVT<5, XLenVT>]>;
let HasPassthruOp = true, HasMaskOp = true in {
def riscv_vfwadd_w_vl : RVSDNode<"VFWADD_W_VL", SDT_RISCVVWFPBinOpW_VL>;
def riscv_vfwsub_w_vl : RVSDNode<"VFWSUB_W_VL", SDT_RISCVVWFPBinOpW_VL>;
} // let HasPassthruOp = true, HasMaskOp = true
def SDTRVVVecReduce : SDTypeProfile<1, 6, [
SDTCisVec<0>, SDTCisVec<1>, SDTCisVec<2>, SDTCisSameAs<0, 3>,
SDTCVecEltisVT<4, i1>, SDTCisSameNumEltsAs<2, 4>, SDTCisVT<5, XLenVT>,
SDTCisVT<6, XLenVT>
]>;
let HasOneUse = 1 in {
def riscv_add_vl_oneuse : PatFrag<(ops node:$A, node:$B, node:$C, node:$D,
node:$E),
(riscv_add_vl node:$A, node:$B, node:$C,
node:$D, node:$E)>;
def riscv_or_vl_is_add_oneuse : PatFrag<(ops node:$A, node:$B, node:$C, node:$D,
node:$E),
(riscv_or_vl node:$A, node:$B, node:$C,
node:$D, node:$E), [{
return orDisjoint(N);
}]>;
def riscv_sub_vl_oneuse : PatFrag<(ops node:$A, node:$B, node:$C, node:$D,
node:$E),
(riscv_sub_vl node:$A, node:$B, node:$C,
node:$D, node:$E)>;
def riscv_mul_vl_oneuse : PatFrag<(ops node:$A, node:$B, node:$C, node:$D,
node:$E),
(riscv_mul_vl node:$A, node:$B, node:$C,
node:$D, node:$E)>;
def riscv_vwmul_vl_oneuse : PatFrag<(ops node:$A, node:$B, node:$C, node:$D,
node:$E),
(riscv_vwmul_vl node:$A, node:$B, node:$C,
node:$D, node:$E)>;
def riscv_vwmulu_vl_oneuse : PatFrag<(ops node:$A, node:$B, node:$C, node:$D,
node:$E),
(riscv_vwmulu_vl node:$A, node:$B, node:$C,
node:$D, node:$E)>;
def riscv_vwmulsu_vl_oneuse : PatFrag<(ops node:$A, node:$B, node:$C, node:$D,
node:$E),
(riscv_vwmulsu_vl node:$A, node:$B, node:$C,
node:$D, node:$E)>;
def riscv_sext_vl_oneuse : PatFrag<(ops node:$A, node:$B, node:$C),
(riscv_sext_vl node:$A, node:$B, node:$C)>;
def riscv_zext_vl_oneuse : PatFrag<(ops node:$A, node:$B, node:$C),
(riscv_zext_vl node:$A, node:$B, node:$C)>;
def riscv_ext_vl_oneuse : PatFrag<(ops node:$A, node:$B, node:$C),
(riscv_ext_vl node:$A, node:$B, node:$C)>;
def riscv_fpextend_vl_oneuse : PatFrag<(ops node:$A, node:$B, node:$C),
(riscv_fpextend_vl node:$A, node:$B, node:$C)>;
def riscv_vfmadd_vl_oneuse : PatFrag<(ops node:$A, node:$B, node:$C, node:$D,
node:$E),
(riscv_vfmadd_vl node:$A, node:$B,
node:$C, node:$D, node:$E)>;
def riscv_vfnmadd_vl_oneuse : PatFrag<(ops node:$A, node:$B, node:$C, node:$D,
node:$E),
(riscv_vfnmadd_vl node:$A, node:$B,
node:$C, node:$D, node:$E)>;
def riscv_vfmsub_vl_oneuse : PatFrag<(ops node:$A, node:$B, node:$C, node:$D,
node:$E),
(riscv_vfmsub_vl node:$A, node:$B,
node:$C, node:$D, node:$E)>;
def riscv_vfnmsub_vl_oneuse : PatFrag<(ops node:$A, node:$B, node:$C, node:$D,
node:$E),
(riscv_vfnmsub_vl node:$A, node:$B,
node:$C, node:$D, node:$E)>;
} // HasOneUse = 1
def riscv_fpextend_vl_sameuser : PatFrag<(ops node:$A, node:$B, node:$C),
(riscv_fpextend_vl node:$A, node:$B, node:$C), [{
return !N->use_empty() && all_equal(N->users());
}]>;
// These nodes match the semantics of the corresponding RVV vector reduction
// instructions. They produce a vector result which is the reduction
// performed over the second vector operand plus the first element of the
// third vector operand. The first operand is the pass-thru operand. The
// second operand is an unconstrained vector type, and the result, first, and
// third operand's types are expected to be the corresponding full-width
// LMUL=1 type for the second operand:
// nxv8i8 = vecreduce_add nxv8i8, nxv32i8, nxv8i8
// nxv2i32 = vecreduce_add nxv2i32, nxv8i32, nxv2i32
// The different in types does introduce extra vsetvli instructions but
// similarly it reduces the number of registers consumed per reduction.
// Also has a mask and VL operand.
let HasMaskOp = true in
foreach kind = ["ADD", "UMAX", "SMAX", "UMIN", "SMIN", "AND", "OR", "XOR",
"FADD", "SEQ_FADD", "FMIN", "FMAX"] in
def rvv_vecreduce_#kind#_vl : RVSDNode<"VECREDUCE_"#kind#"_VL", SDTRVVVecReduce>;
// Give explicit Complexity to prefer simm5/uimm5.
def SplatPat : ComplexPattern<vAny, 1, "selectVSplat", [], [], 1>;
def SplatPat_simm5 : ComplexPattern<vAny, 1, "selectVSplatSimm5", [], [], 3>;
def SplatPat_uimm5 : ComplexPattern<vAny, 1, "selectVSplatUimmBits<5>", [], [], 3>;
def SplatPat_uimm6 : ComplexPattern<vAny, 1, "selectVSplatUimmBits<6>", [], [], 3>;
def SplatPat_simm5_plus1
: ComplexPattern<vAny, 1, "selectVSplatSimm5Plus1", [], [], 3>;
def SplatPat_simm5_plus1_nodec
: ComplexPattern<vAny, 1, "selectVSplatSimm5Plus1NoDec", [], [], 3>;
def SplatPat_simm5_plus1_nonzero
: ComplexPattern<vAny, 1, "selectVSplatSimm5Plus1NonZero", [], [], 3>;
def SplatPat_imm64_neg : ComplexPattern<vAny, 1, "selectVSplatImm64Neg", [], [], 3>;
// Selects extends or truncates of splats where we only care about the lowest 8
// bits of each element.
def Low8BitsSplatPat
: ComplexPattern<vAny, 1, "selectLow8BitsVSplat", [], [], 2>;
// Ignore the vl operand on vmv_v_f, and vmv_s_f.
def SplatFPOp : PatFrags<(ops node:$op),
[(riscv_vfmv_v_f_vl undef, node:$op, srcvalue),
(riscv_vfmv_s_f_vl undef, node:$op, srcvalue)]>;
def sew8simm5 : ComplexPattern<XLenVT, 1, "selectRVVSimm5<8>", []>;
def sew16simm5 : ComplexPattern<XLenVT, 1, "selectRVVSimm5<16>", []>;
def sew32simm5 : ComplexPattern<XLenVT, 1, "selectRVVSimm5<32>", []>;
def sew64simm5 : ComplexPattern<XLenVT, 1, "selectRVVSimm5<64>", []>;
class VPatBinaryVL_V<SDPatternOperator vop,
string instruction_name,
string suffix,
ValueType result_type,
ValueType op1_type,
ValueType op2_type,
ValueType mask_type,
int log2sew,
LMULInfo vlmul,
VReg result_reg_class,
VReg op1_reg_class,
VReg op2_reg_class,
bit isSEWAware = 0>
: Pat<(result_type (vop
(op1_type op1_reg_class:$rs1),
(op2_type op2_reg_class:$rs2),
(result_type result_reg_class:$passthru),
(mask_type VMV0:$vm),
VLOpFrag)),
(!cast<Instruction>(
!if(isSEWAware,
instruction_name#"_"#suffix#"_"#vlmul.MX#"_E"#!shl(1, log2sew)#"_MASK",
instruction_name#"_"#suffix#"_"#vlmul.MX#"_MASK"))
result_reg_class:$passthru,
op1_reg_class:$rs1,
op2_reg_class:$rs2,
(mask_type VMV0:$vm), GPR:$vl, log2sew, TAIL_AGNOSTIC)>;
class VPatBinaryVL_V_RM<SDPatternOperator vop,
string instruction_name,
string suffix,
ValueType result_type,
ValueType op1_type,
ValueType op2_type,
ValueType mask_type,
int log2sew,
LMULInfo vlmul,
VReg result_reg_class,
VReg op1_reg_class,
VReg op2_reg_class,
bit isSEWAware = 0>
: Pat<(result_type (vop
(op1_type op1_reg_class:$rs1),
(op2_type op2_reg_class:$rs2),
(result_type result_reg_class:$passthru),
(mask_type VMV0:$vm),
VLOpFrag)),
(!cast<Instruction>(
!if(isSEWAware,
instruction_name#"_"#suffix#"_"#vlmul.MX#"_E"#!shl(1, log2sew)#"_MASK",
instruction_name#"_"#suffix#"_"#vlmul.MX#"_MASK"))
result_reg_class:$passthru,
op1_reg_class:$rs1,
op2_reg_class:$rs2,
(mask_type VMV0:$vm),
// Value to indicate no rounding mode change in
// RISCVInsertReadWriteCSR
FRM_DYN,
GPR:$vl, log2sew, TAIL_AGNOSTIC)>;
multiclass VPatTiedBinaryNoMaskVL_V<SDNode vop,
string instruction_name,
string suffix,
ValueType result_type,
ValueType op2_type,
int sew,
LMULInfo vlmul,
VReg result_reg_class,
VReg op2_reg_class> {
def : Pat<(result_type (vop
(result_type result_reg_class:$rs1),
(op2_type op2_reg_class:$rs2),
srcvalue,
true_mask,
VLOpFrag)),
(!cast<Instruction>(instruction_name#"_"#suffix#"_"# vlmul.MX#"_TIED")
result_reg_class:$rs1,
op2_reg_class:$rs2,
GPR:$vl, sew, TAIL_AGNOSTIC)>;
// Tail undisturbed
def : Pat<(riscv_vmerge_vl true_mask,
(result_type (vop
result_reg_class:$rs1,
(op2_type op2_reg_class:$rs2),
srcvalue,
true_mask,
VLOpFrag)),
result_reg_class:$rs1, result_reg_class:$rs1, VLOpFrag),
(!cast<Instruction>(instruction_name#"_"#suffix#"_"# vlmul.MX#"_TIED")
result_reg_class:$rs1,
op2_reg_class:$rs2,
GPR:$vl, sew, TU_MU)>;
}
class VPatTiedBinaryMaskVL_V<SDNode vop,
string instruction_name,
string suffix,
ValueType result_type,
ValueType op2_type,
ValueType mask_type,
int sew,
LMULInfo vlmul,
VReg result_reg_class,
VReg op2_reg_class> :
Pat<(result_type (vop
(result_type result_reg_class:$rs1),
(op2_type op2_reg_class:$rs2),
(result_type result_reg_class:$rs1),
(mask_type VMV0:$vm),
VLOpFrag)),
(!cast<Instruction>(instruction_name#"_"#suffix#"_"# vlmul.MX#"_MASK_TIED")
result_reg_class:$rs1,
op2_reg_class:$rs2,
(mask_type VMV0:$vm), GPR:$vl, sew, TU_MU)>;
multiclass VPatTiedBinaryNoMaskVL_V_RM<SDNode vop,
string instruction_name,
string suffix,
ValueType result_type,
ValueType op2_type,
int log2sew,
LMULInfo vlmul,
VReg result_reg_class,
VReg op2_reg_class,
bit isSEWAware = 0> {
defvar name = !if(isSEWAware,
instruction_name#"_"#suffix#"_"#vlmul.MX#"_E"#!shl(1, log2sew)#"_TIED",
instruction_name#"_"#suffix#"_"#vlmul.MX#"_TIED");
def : Pat<(result_type (vop
(result_type result_reg_class:$rs1),
(op2_type op2_reg_class:$rs2),
srcvalue,
true_mask,
VLOpFrag)),
(!cast<Instruction>(name)
result_reg_class:$rs1,
op2_reg_class:$rs2,
// Value to indicate no rounding mode change in
// RISCVInsertReadWriteCSR
FRM_DYN,
GPR:$vl, log2sew, TAIL_AGNOSTIC)>;
// Tail undisturbed
def : Pat<(riscv_vmerge_vl true_mask,
(result_type (vop
result_reg_class:$rs1,
(op2_type op2_reg_class:$rs2),
srcvalue,
true_mask,
VLOpFrag)),
result_reg_class:$rs1, result_reg_class:$rs1, VLOpFrag),
(!cast<Instruction>(name)
result_reg_class:$rs1,
op2_reg_class:$rs2,
// Value to indicate no rounding mode change in
// RISCVInsertReadWriteCSR
FRM_DYN,
GPR:$vl, log2sew, TU_MU)>;
}
class VPatBinaryVL_XI<SDPatternOperator vop,
string instruction_name,
string suffix,
ValueType result_type,
ValueType vop1_type,
ValueType vop2_type,
ValueType mask_type,
int log2sew,
LMULInfo vlmul,
VReg result_reg_class,
VReg vop_reg_class,
ComplexPattern SplatPatKind,
DAGOperand xop_kind,
bit isSEWAware = 0>
: Pat<(result_type (vop
(vop1_type vop_reg_class:$rs1),
(vop2_type (SplatPatKind (XLenVT xop_kind:$rs2))),
(result_type result_reg_class:$passthru),
(mask_type VMV0:$vm),
VLOpFrag)),
(!cast<Instruction>(
!if(isSEWAware,
instruction_name#_#suffix#_#vlmul.MX#"_E"#!shl(1, log2sew)#"_MASK",
instruction_name#_#suffix#_#vlmul.MX#"_MASK"))
result_reg_class:$passthru,
vop_reg_class:$rs1,
xop_kind:$rs2,
(mask_type VMV0:$vm), GPR:$vl, log2sew, TAIL_AGNOSTIC)>;
multiclass VPatBinaryVL_VV_VX<SDPatternOperator vop, string instruction_name,
list<VTypeInfo> vtilist = AllIntegerVectors,
bit isSEWAware = 0> {
foreach vti = vtilist in {
let Predicates = GetVTypePredicates<vti>.Predicates in {
def : VPatBinaryVL_V<vop, instruction_name, "VV",
vti.Vector, vti.Vector, vti.Vector, vti.Mask,
vti.Log2SEW, vti.LMul, vti.RegClass, vti.RegClass,
vti.RegClass, isSEWAware>;
def : VPatBinaryVL_XI<vop, instruction_name, "VX",
vti.Vector, vti.Vector, vti.Vector, vti.Mask,
vti.Log2SEW, vti.LMul, vti.RegClass, vti.RegClass,
SplatPat, GPR, isSEWAware>;
}
}
}
multiclass VPatBinaryVL_VV_VX_VI<SDPatternOperator vop, string instruction_name,
Operand ImmType = simm5>
: VPatBinaryVL_VV_VX<vop, instruction_name> {
foreach vti = AllIntegerVectors in {
let Predicates = GetVTypePredicates<vti>.Predicates in
def : VPatBinaryVL_XI<vop, instruction_name, "VI",
vti.Vector, vti.Vector, vti.Vector, vti.Mask,
vti.Log2SEW, vti.LMul, vti.RegClass, vti.RegClass,
!cast<ComplexPattern>(SplatPat#_#ImmType),
ImmType>;
}
}
multiclass VPatBinaryWVL_VV_VX<SDPatternOperator vop, string instruction_name> {
foreach VtiToWti = AllWidenableIntVectors in {
defvar vti = VtiToWti.Vti;
defvar wti = VtiToWti.Wti;
let Predicates = !listconcat(GetVTypePredicates<vti>.Predicates,
GetVTypePredicates<wti>.Predicates) in {
def : VPatBinaryVL_V<vop, instruction_name, "VV",
wti.Vector, vti.Vector, vti.Vector, vti.Mask,
vti.Log2SEW, vti.LMul, wti.RegClass, vti.RegClass,
vti.RegClass>;
def : VPatBinaryVL_XI<vop, instruction_name, "VX",
wti.Vector, vti.Vector, vti.Vector, vti.Mask,
vti.Log2SEW, vti.LMul, wti.RegClass, vti.RegClass,
SplatPat, GPR>;
}
}
}
multiclass VPatBinaryWVL_VV_VX_WV_WX<SDPatternOperator vop, SDNode vop_w,
string instruction_name>
: VPatBinaryWVL_VV_VX<vop, instruction_name> {
foreach VtiToWti = AllWidenableIntVectors in {
defvar vti = VtiToWti.Vti;
defvar wti = VtiToWti.Wti;
let Predicates = !listconcat(GetVTypePredicates<vti>.Predicates,
GetVTypePredicates<wti>.Predicates) in {
defm : VPatTiedBinaryNoMaskVL_V<vop_w, instruction_name, "WV",
wti.Vector, vti.Vector, vti.Log2SEW,
vti.LMul, wti.RegClass, vti.RegClass>;
def : VPatTiedBinaryMaskVL_V<vop_w, instruction_name, "WV",
wti.Vector, vti.Vector, wti.Mask,
vti.Log2SEW, vti.LMul, wti.RegClass,
vti.RegClass>;
def : VPatBinaryVL_V<vop_w, instruction_name, "WV",
wti.Vector, wti.Vector, vti.Vector, vti.Mask,
vti.Log2SEW, vti.LMul, wti.RegClass, wti.RegClass,
vti.RegClass>;
def : VPatBinaryVL_XI<vop_w, instruction_name, "WX",
wti.Vector, wti.Vector, vti.Vector, vti.Mask,
vti.Log2SEW, vti.LMul, wti.RegClass, wti.RegClass,
SplatPat, GPR>;
}
}
}
class VPatBinaryVL_VF<SDPatternOperator vop,
string instruction_name,
ValueType result_type,
ValueType vop1_type,
ValueType vop2_type,
ValueType mask_type,
int log2sew,
LMULInfo vlmul,
VReg result_reg_class,
VReg vop_reg_class,
RegisterClass scalar_reg_class,
bit isSEWAware = 0>
: Pat<(result_type (vop (vop1_type vop_reg_class:$rs1),
(vop2_type (SplatFPOp scalar_reg_class:$rs2)),
(result_type result_reg_class:$passthru),
(mask_type VMV0:$vm),
VLOpFrag)),
(!cast<Instruction>(
!if(isSEWAware,
instruction_name#"_"#vlmul.MX#"_E"#!shl(1, log2sew)#"_MASK",
instruction_name#"_"#vlmul.MX#"_MASK"))
result_reg_class:$passthru,
vop_reg_class:$rs1,
scalar_reg_class:$rs2,
(mask_type VMV0:$vm), GPR:$vl, log2sew, TAIL_AGNOSTIC)>;
class VPatBinaryVL_VF_RM<SDPatternOperator vop,
string instruction_name,
ValueType result_type,
ValueType vop1_type,
ValueType vop2_type,
ValueType mask_type,
int log2sew,
LMULInfo vlmul,
VReg result_reg_class,
VReg vop_reg_class,
RegisterClass scalar_reg_class,
bit isSEWAware = 0>
: Pat<(result_type (vop (vop1_type vop_reg_class:$rs1),
(vop2_type (SplatFPOp scalar_reg_class:$rs2)),
(result_type result_reg_class:$passthru),
(mask_type VMV0:$vm),
VLOpFrag)),
(!cast<Instruction>(
!if(isSEWAware,
instruction_name#"_"#vlmul.MX#"_E"#!shl(1, log2sew)#"_MASK",
instruction_name#"_"#vlmul.MX#"_MASK"))
result_reg_class:$passthru,
vop_reg_class:$rs1,
scalar_reg_class:$rs2,
(mask_type VMV0:$vm),
// Value to indicate no rounding mode change in
// RISCVInsertReadWriteCSR
FRM_DYN,
GPR:$vl, log2sew, TAIL_AGNOSTIC)>;
multiclass VPatBinaryFPVL_VV_VF<SDPatternOperator vop, string instruction_name,
bit isSEWAware = 0> {
foreach vti = AllFloatVectors in {
let Predicates = GetVTypePredicates<vti>.Predicates in {
def : VPatBinaryVL_V<vop, instruction_name, "VV",
vti.Vector, vti.Vector, vti.Vector, vti.Mask,
vti.Log2SEW, vti.LMul, vti.RegClass, vti.RegClass,
vti.RegClass, isSEWAware>;
def : VPatBinaryVL_VF<vop, instruction_name#"_V"#vti.ScalarSuffix,
vti.Vector, vti.Vector, vti.Vector, vti.Mask,
vti.Log2SEW, vti.LMul, vti.RegClass, vti.RegClass,
vti.ScalarRegClass, isSEWAware>;
}
}
}
multiclass VPatBinaryFPVL_VV_VF_RM<SDPatternOperator vop, string instruction_name,
bit isSEWAware = 0> {
foreach vti = AllFloatVectors in {
let Predicates = GetVTypePredicates<vti>.Predicates in {
def : VPatBinaryVL_V_RM<vop, instruction_name, "VV",
vti.Vector, vti.Vector, vti.Vector, vti.Mask,
vti.Log2SEW, vti.LMul, vti.RegClass, vti.RegClass,
vti.RegClass, isSEWAware>;
def : VPatBinaryVL_VF_RM<vop, instruction_name#"_V"#vti.ScalarSuffix,
vti.Vector, vti.Vector, vti.Vector, vti.Mask,
vti.Log2SEW, vti.LMul, vti.RegClass, vti.RegClass,
vti.ScalarRegClass, isSEWAware>;
}
}
}
multiclass VPatBinaryFPVL_R_VF<SDPatternOperator vop, string instruction_name,
bit isSEWAware = 0> {
foreach fvti = AllFloatVectors in {
let Predicates = GetVTypePredicates<fvti>.Predicates in
def : Pat<(fvti.Vector (vop (SplatFPOp fvti.ScalarRegClass:$rs2),
fvti.RegClass:$rs1,
(fvti.Vector fvti.RegClass:$passthru),
(fvti.Mask VMV0:$vm),
VLOpFrag)),
(!cast<Instruction>(
!if(isSEWAware,
instruction_name#"_V"#fvti.ScalarSuffix#"_"#fvti.LMul.MX#"_E"#fvti.SEW#"_MASK",
instruction_name#"_V"#fvti.ScalarSuffix#"_"#fvti.LMul.MX#"_MASK"))
fvti.RegClass:$passthru,
fvti.RegClass:$rs1, fvti.ScalarRegClass:$rs2,
(fvti.Mask VMV0:$vm), GPR:$vl, fvti.Log2SEW, TAIL_AGNOSTIC)>;
}
}
multiclass VPatBinaryFPVL_R_VF_RM<SDPatternOperator vop, string instruction_name,
bit isSEWAware = 0> {
foreach fvti = AllFloatVectors in {
let Predicates = GetVTypePredicates<fvti>.Predicates in
def : Pat<(fvti.Vector (vop (SplatFPOp fvti.ScalarRegClass:$rs2),
fvti.RegClass:$rs1,
(fvti.Vector fvti.RegClass:$passthru),
(fvti.Mask VMV0:$vm),
VLOpFrag)),
(!cast<Instruction>(
!if(isSEWAware,
instruction_name#"_V"#fvti.ScalarSuffix#"_"#fvti.LMul.MX#"_E"#fvti.SEW#"_MASK",
instruction_name#"_V"#fvti.ScalarSuffix#"_"#fvti.LMul.MX#"_MASK"))
fvti.RegClass:$passthru,
fvti.RegClass:$rs1, fvti.ScalarRegClass:$rs2,
(fvti.Mask VMV0:$vm),
// Value to indicate no rounding mode change in
// RISCVInsertReadWriteCSR
FRM_DYN,
GPR:$vl, fvti.Log2SEW, TAIL_AGNOSTIC)>;
}
}
multiclass VPatIntegerSetCCVL_VV<VTypeInfo vti, string instruction_name,
CondCode cc> {
def : Pat<(vti.Mask (riscv_setcc_vl (vti.Vector vti.RegClass:$rs1),
vti.RegClass:$rs2, cc,
VR:$passthru,
(vti.Mask VMV0:$vm),
VLOpFrag)),
(!cast<Instruction>(instruction_name#"_VV_"#vti.LMul.MX#"_MASK")
VR:$passthru,
vti.RegClass:$rs1,
vti.RegClass:$rs2,
(vti.Mask VMV0:$vm), GPR:$vl, vti.Log2SEW, TA_MU)>;
}
// Inherits from VPatIntegerSetCCVL_VV and adds a pattern with operands swapped.
multiclass VPatIntegerSetCCVL_VV_Swappable<VTypeInfo vti, string instruction_name,
CondCode cc, CondCode invcc>
: VPatIntegerSetCCVL_VV<vti, instruction_name, cc> {
def : Pat<(vti.Mask (riscv_setcc_vl (vti.Vector vti.RegClass:$rs2),
vti.RegClass:$rs1, invcc,
VR:$passthru,
(vti.Mask VMV0:$vm),
VLOpFrag)),
(!cast<Instruction>(instruction_name#"_VV_"#vti.LMul.MX#"_MASK")
VR:$passthru, vti.RegClass:$rs1,
vti.RegClass:$rs2, (vti.Mask VMV0:$vm), GPR:$vl,
vti.Log2SEW, TA_MU)>;
}
multiclass VPatIntegerSetCCVL_VX_Swappable<VTypeInfo vti, string instruction_name,
CondCode cc, CondCode invcc> {
defvar instruction_masked = !cast<Instruction>(instruction_name#"_VX_"#vti.LMul.MX#"_MASK");
def : Pat<(vti.Mask (riscv_setcc_vl (vti.Vector vti.RegClass:$rs1),
(SplatPat (XLenVT GPR:$rs2)), cc,
VR:$passthru,
(vti.Mask VMV0:$vm),
VLOpFrag)),
(instruction_masked VR:$passthru, vti.RegClass:$rs1,
GPR:$rs2, (vti.Mask VMV0:$vm), GPR:$vl,
vti.Log2SEW, TA_MU)>;
def : Pat<(vti.Mask (riscv_setcc_vl (SplatPat (XLenVT GPR:$rs2)),
(vti.Vector vti.RegClass:$rs1), invcc,
VR:$passthru,
(vti.Mask VMV0:$vm),
VLOpFrag)),
(instruction_masked VR:$passthru, vti.RegClass:$rs1,
GPR:$rs2, (vti.Mask VMV0:$vm), GPR:$vl,
vti.Log2SEW, TA_MU)>;
}
multiclass VPatIntegerSetCCVL_VI_Swappable<VTypeInfo vti, string instruction_name,
CondCode cc, CondCode invcc,
ComplexPattern splatpat_kind = SplatPat_simm5> {
defvar instruction_masked = !cast<Instruction>(instruction_name#"_VI_"#vti.LMul.MX#"_MASK");
def : Pat<(vti.Mask (riscv_setcc_vl (vti.Vector vti.RegClass:$rs1),
(splatpat_kind simm5:$rs2), cc,
VR:$passthru,
(vti.Mask VMV0:$vm),
VLOpFrag)),
(instruction_masked VR:$passthru, vti.RegClass:$rs1,
XLenVT:$rs2, (vti.Mask VMV0:$vm), GPR:$vl,
vti.Log2SEW, TA_MU)>;
// FIXME: Can do some canonicalization to remove these patterns.
def : Pat<(vti.Mask (riscv_setcc_vl (splatpat_kind simm5:$rs2),
(vti.Vector vti.RegClass:$rs1), invcc,
VR:$passthru,
(vti.Mask VMV0:$vm),
VLOpFrag)),
(instruction_masked VR:$passthru, vti.RegClass:$rs1,
simm5:$rs2, (vti.Mask VMV0:$vm), GPR:$vl,
vti.Log2SEW, TA_MU)>;
}
multiclass VPatFPSetCCVL_VV_VF_FV<SDPatternOperator vop, CondCode cc,
string inst_name,
string swapped_op_inst_name> {
foreach fvti = AllFloatVectors in {
let Predicates = GetVTypePredicates<fvti>.Predicates in {
def : Pat<(fvti.Mask (vop (fvti.Vector fvti.RegClass:$rs1),
fvti.RegClass:$rs2,
cc,
VR:$passthru,
(fvti.Mask VMV0:$vm),
VLOpFrag)),
(!cast<Instruction>(inst_name#"_VV_"#fvti.LMul.MX#"_MASK")
VR:$passthru, fvti.RegClass:$rs1,
fvti.RegClass:$rs2, (fvti.Mask VMV0:$vm),
GPR:$vl, fvti.Log2SEW, TA_MU)>;
def : Pat<(fvti.Mask (vop (fvti.Vector fvti.RegClass:$rs1),
(SplatFPOp fvti.ScalarRegClass:$rs2),
cc,
VR:$passthru,
(fvti.Mask VMV0:$vm),
VLOpFrag)),
(!cast<Instruction>(inst_name#"_V"#fvti.ScalarSuffix#"_"#fvti.LMul.MX#"_MASK")
VR:$passthru, fvti.RegClass:$rs1,
fvti.ScalarRegClass:$rs2, (fvti.Mask VMV0:$vm),
GPR:$vl, fvti.Log2SEW, TA_MU)>;
def : Pat<(fvti.Mask (vop (SplatFPOp fvti.ScalarRegClass:$rs2),
(fvti.Vector fvti.RegClass:$rs1),
cc,
VR:$passthru,
(fvti.Mask VMV0:$vm),
VLOpFrag)),
(!cast<Instruction>(swapped_op_inst_name#"_V"#fvti.ScalarSuffix#"_"#fvti.LMul.MX#"_MASK")
VR:$passthru, fvti.RegClass:$rs1,
fvti.ScalarRegClass:$rs2, (fvti.Mask VMV0:$vm),
GPR:$vl, fvti.Log2SEW, TA_MU)>;
}
}
}
multiclass VPatExtendVL_V<SDNode vop, string inst_name, string suffix,
list <VTypeInfoToFraction> fraction_list> {
foreach vtiTofti = fraction_list in {
defvar vti = vtiTofti.Vti;
defvar fti = vtiTofti.Fti;
let Predicates = !listconcat(GetVTypePredicates<vti>.Predicates,
GetVTypePredicates<fti>.Predicates) in
def : Pat<(vti.Vector (vop (fti.Vector fti.RegClass:$rs2),
(fti.Mask VMV0:$vm), VLOpFrag)),
(!cast<Instruction>(inst_name#"_"#suffix#"_"#vti.LMul.MX#"_MASK")
(vti.Vector (IMPLICIT_DEF)),
fti.RegClass:$rs2,
(fti.Mask VMV0:$vm), GPR:$vl, vti.Log2SEW, TA_MA)>;
}
}
// Single width converting
multiclass VPatConvertFP2IVL_V<SDPatternOperator vop, string instruction_name> {
foreach fvti = AllFloatVectors in {
defvar ivti = GetIntVTypeInfo<fvti>.Vti;
let Predicates = !listconcat(GetVTypePredicates<fvti>.Predicates,
GetVTypePredicates<ivti>.Predicates) in
def : Pat<(ivti.Vector (vop (fvti.Vector fvti.RegClass:$rs1),
(fvti.Mask VMV0:$vm),
VLOpFrag)),
(!cast<Instruction>(instruction_name#"_"#ivti.LMul.MX#"_MASK")
(ivti.Vector (IMPLICIT_DEF)), fvti.RegClass:$rs1,
(fvti.Mask VMV0:$vm), GPR:$vl, ivti.Log2SEW, TA_MA)>;
}
}
multiclass VPatConvertFP2I_RM_VL_V<SDPatternOperator vop, string instruction_name> {
foreach fvti = AllFloatVectors in {
defvar ivti = GetIntVTypeInfo<fvti>.Vti;
let Predicates = !listconcat(GetVTypePredicates<fvti>.Predicates,
GetVTypePredicates<ivti>.Predicates) in
def : Pat<(ivti.Vector (vop (fvti.Vector fvti.RegClass:$rs1),
(fvti.Mask VMV0:$vm), (XLenVT timm:$frm),
VLOpFrag)),
(!cast<Instruction>(instruction_name#"_"#ivti.LMul.MX#"_MASK")
(ivti.Vector (IMPLICIT_DEF)), fvti.RegClass:$rs1,
(fvti.Mask VMV0:$vm), timm:$frm, GPR:$vl, ivti.Log2SEW,
TA_MA)>;
}
}
multiclass VPatConvertI2FPVL_V_RM<SDPatternOperator vop, string instruction_name> {
foreach fvti = AllFloatVectors in {
defvar ivti = GetIntVTypeInfo<fvti>.Vti;
let Predicates = !listconcat(GetVTypePredicates<fvti>.Predicates,
GetVTypePredicates<ivti>.Predicates) in
def : Pat<(fvti.Vector (vop (ivti.Vector ivti.RegClass:$rs1),
(ivti.Mask VMV0:$vm),
VLOpFrag)),
(!cast<Instruction>(instruction_name#"_"#fvti.LMul.MX#"_E"#fvti.SEW#"_MASK")
(fvti.Vector (IMPLICIT_DEF)), ivti.RegClass:$rs1,
(ivti.Mask VMV0:$vm),
// Value to indicate no rounding mode change in
// RISCVInsertReadWriteCSR
FRM_DYN,
GPR:$vl, fvti.Log2SEW, TA_MA)>;
}
}
multiclass VPatConvertI2FP_RM_VL_V<SDNode vop, string instruction_name> {
foreach fvti = AllFloatVectors in {
defvar ivti = GetIntVTypeInfo<fvti>.Vti;
let Predicates = !listconcat(GetVTypePredicates<fvti>.Predicates,
GetVTypePredicates<ivti>.Predicates) in
def : Pat<(fvti.Vector (vop (ivti.Vector ivti.RegClass:$rs1),
(ivti.Mask VMV0:$vm), (XLenVT timm:$frm),
VLOpFrag)),
(!cast<Instruction>(instruction_name#"_"#fvti.LMul.MX#"_E"#fvti.SEW#"_MASK")
(fvti.Vector (IMPLICIT_DEF)), ivti.RegClass:$rs1,
(ivti.Mask VMV0:$vm), timm:$frm, GPR:$vl, fvti.Log2SEW, TA_MA)>;
}
}
// Widening converting
multiclass VPatWConvertFP2IVL_V<SDPatternOperator vop, string instruction_name> {
foreach fvtiToFWti = AllWidenableFloatVectors in {
defvar fvti = fvtiToFWti.Vti;
defvar iwti = GetIntVTypeInfo<fvtiToFWti.Wti>.Vti;
let Predicates = !listconcat(GetVTypePredicates<fvti>.Predicates,
GetVTypePredicates<iwti>.Predicates) in
def : Pat<(iwti.Vector (vop (fvti.Vector fvti.RegClass:$rs1),
(fvti.Mask VMV0:$vm),
VLOpFrag)),
(!cast<Instruction>(instruction_name#"_"#fvti.LMul.MX#"_MASK")
(iwti.Vector (IMPLICIT_DEF)), fvti.RegClass:$rs1,
(fvti.Mask VMV0:$vm), GPR:$vl, fvti.Log2SEW, TA_MA)>;
}
}
multiclass VPatWConvertFP2I_RM_VL_V<SDNode vop, string instruction_name> {
foreach fvtiToFWti = AllWidenableFloatVectors in {
defvar fvti = fvtiToFWti.Vti;
defvar iwti = GetIntVTypeInfo<fvtiToFWti.Wti>.Vti;
let Predicates = !listconcat(GetVTypePredicates<fvti>.Predicates,
GetVTypePredicates<iwti>.Predicates) in
def : Pat<(iwti.Vector (vop (fvti.Vector fvti.RegClass:$rs1),
(fvti.Mask VMV0:$vm), (XLenVT timm:$frm),
VLOpFrag)),
(!cast<Instruction>(instruction_name#"_"#fvti.LMul.MX#"_MASK")
(iwti.Vector (IMPLICIT_DEF)), fvti.RegClass:$rs1,
(fvti.Mask VMV0:$vm), timm:$frm, GPR:$vl, fvti.Log2SEW, TA_MA)>;
}
}
multiclass VPatWConvertI2FPVL_V<SDPatternOperator vop,
string instruction_name> {
foreach vtiToWti = AllWidenableIntToFloatVectors in {
defvar ivti = vtiToWti.Vti;
defvar fwti = vtiToWti.Wti;
let Predicates = !listconcat(GetVTypePredicates<ivti>.Predicates,
GetVTypePredicates<fwti>.Predicates) in
def : Pat<(fwti.Vector (vop (ivti.Vector ivti.RegClass:$rs1),
(ivti.Mask VMV0:$vm),
VLOpFrag)),
(!cast<Instruction>(instruction_name#"_"#ivti.LMul.MX#"_E"#ivti.SEW#"_MASK")
(fwti.Vector (IMPLICIT_DEF)), ivti.RegClass:$rs1,
(ivti.Mask VMV0:$vm),
GPR:$vl, ivti.Log2SEW, TA_MA)>;
}
}
// Narrowing converting
multiclass VPatNConvertFP2IVL_W<SDPatternOperator vop,
string instruction_name> {
// Reuse the same list of types used in the widening nodes, but just swap the
// direction of types around so we're converting from Wti -> Vti
foreach vtiToWti = AllWidenableIntToFloatVectors in {
defvar vti = vtiToWti.Vti;
defvar fwti = vtiToWti.Wti;
let Predicates = !listconcat(GetVTypePredicates<vti>.Predicates,
GetVTypePredicates<fwti>.Predicates) in
def : Pat<(vti.Vector (vop (fwti.Vector fwti.RegClass:$rs1),
(fwti.Mask VMV0:$vm),
VLOpFrag)),
(!cast<Instruction>(instruction_name#"_"#vti.LMul.MX#"_MASK")
(vti.Vector (IMPLICIT_DEF)), fwti.RegClass:$rs1,
(fwti.Mask VMV0:$vm), GPR:$vl, vti.Log2SEW, TA_MA)>;
}
}
multiclass VPatNConvertFP2I_RM_VL_W<SDNode vop, string instruction_name> {
foreach vtiToWti = AllWidenableIntToFloatVectors in {
defvar vti = vtiToWti.Vti;
defvar fwti = vtiToWti.Wti;
let Predicates = !listconcat(GetVTypePredicates<vti>.Predicates,
GetVTypePredicates<fwti>.Predicates) in
def : Pat<(vti.Vector (vop (fwti.Vector fwti.RegClass:$rs1),
(fwti.Mask VMV0:$vm), (XLenVT timm:$frm),
VLOpFrag)),
(!cast<Instruction>(instruction_name#"_"#vti.LMul.MX#"_MASK")
(vti.Vector (IMPLICIT_DEF)), fwti.RegClass:$rs1,
(fwti.Mask VMV0:$vm), timm:$frm, GPR:$vl, vti.Log2SEW, TA_MA)>;
}
}
multiclass VPatNConvertI2FPVL_W_RM<SDPatternOperator vop,
string instruction_name> {
foreach fvtiToFWti = AllWidenableFloatVectors in {
defvar fvti = fvtiToFWti.Vti;
defvar iwti = GetIntVTypeInfo<fvtiToFWti.Wti>.Vti;
let Predicates = !listconcat(GetVTypePredicates<fvti>.Predicates,
GetVTypePredicates<iwti>.Predicates) in
def : Pat<(fvti.Vector (vop (iwti.Vector iwti.RegClass:$rs1),
(iwti.Mask VMV0:$vm),
VLOpFrag)),
(!cast<Instruction>(instruction_name#"_"#fvti.LMul.MX#"_E"#fvti.SEW#"_MASK")
(fvti.Vector (IMPLICIT_DEF)), iwti.RegClass:$rs1,
(iwti.Mask VMV0:$vm),
// Value to indicate no rounding mode change in
// RISCVInsertReadWriteCSR
FRM_DYN,
GPR:$vl, fvti.Log2SEW, TA_MA)>;
}
}
multiclass VPatNConvertI2FP_RM_VL_W<SDNode vop, string instruction_name> {
foreach fvtiToFWti = AllWidenableFloatVectors in {
defvar fvti = fvtiToFWti.Vti;
defvar iwti = GetIntVTypeInfo<fvtiToFWti.Wti>.Vti;
let Predicates = !listconcat(GetVTypePredicates<fvti>.Predicates,
GetVTypePredicates<iwti>.Predicates) in
def : Pat<(fvti.Vector (vop (iwti.Vector iwti.RegClass:$rs1),
(iwti.Mask VMV0:$vm), (XLenVT timm:$frm),
VLOpFrag)),
(!cast<Instruction>(instruction_name#"_"#fvti.LMul.MX#"_E"#fvti.SEW#"_MASK")
(fvti.Vector (IMPLICIT_DEF)), iwti.RegClass:$rs1,
(iwti.Mask VMV0:$vm), timm:$frm, GPR:$vl, fvti.Log2SEW, TA_MA)>;
}
}
multiclass VPatReductionVL<SDNode vop, string instruction_name, bit is_float> {
foreach vti = !if(is_float, AllFloatVectors, AllIntegerVectors) in {
defvar vti_m1 = !cast<VTypeInfo>(!if(is_float, "VF", "VI") # vti.SEW # "M1");
let Predicates = GetVTypePredicates<vti>.Predicates in {
def: Pat<(vti_m1.Vector (vop (vti_m1.Vector VR:$passthru),
(vti.Vector vti.RegClass:$rs1), VR:$rs2,
(vti.Mask VMV0:$vm), VLOpFrag,
(XLenVT timm:$policy))),
(!cast<Instruction>(instruction_name#"_VS_"#vti.LMul.MX#"_E"#vti.SEW#"_MASK")
(vti_m1.Vector VR:$passthru),
(vti.Vector vti.RegClass:$rs1),
(vti_m1.Vector VR:$rs2),
(vti.Mask VMV0:$vm), GPR:$vl, vti.Log2SEW, (XLenVT timm:$policy))>;
}
}
}
multiclass VPatReductionVL_RM<SDNode vop, string instruction_name, bit is_float> {
foreach vti = !if(is_float, AllFloatVectors, AllIntegerVectors) in {
defvar vti_m1 = !cast<VTypeInfo>(!if(is_float, "VF", "VI") # vti.SEW # "M1");
let Predicates = GetVTypePredicates<vti>.Predicates in {
def: Pat<(vti_m1.Vector (vop (vti_m1.Vector VR:$passthru),
(vti.Vector vti.RegClass:$rs1), VR:$rs2,
(vti.Mask VMV0:$vm), VLOpFrag,
(XLenVT timm:$policy))),
(!cast<Instruction>(instruction_name#"_VS_"#vti.LMul.MX#"_E"#vti.SEW#"_MASK")
(vti_m1.Vector VR:$passthru),
(vti.Vector vti.RegClass:$rs1),
(vti_m1.Vector VR:$rs2),
(vti.Mask VMV0:$vm),
// Value to indicate no rounding mode change in
// RISCVInsertReadWriteCSR
FRM_DYN,
GPR:$vl, vti.Log2SEW, (XLenVT timm:$policy))>;
}
}
}
multiclass VPatBinaryVL_WV_WX_WI<SDNode op, string instruction_name> {
foreach vtiToWti = AllWidenableIntVectors in {
defvar vti = vtiToWti.Vti;
defvar wti = vtiToWti.Wti;
let Predicates = !listconcat(GetVTypePredicates<vti>.Predicates,
GetVTypePredicates<wti>.Predicates) in {
def : Pat<
(vti.Vector
(riscv_trunc_vector_vl
(op (wti.Vector wti.RegClass:$rs2),
(wti.Vector (ext_oneuse (vti.Vector vti.RegClass:$rs1)))),
(vti.Mask true_mask),
VLOpFrag)),
(!cast<Instruction>(instruction_name#"_WV_"#vti.LMul.MX)
(vti.Vector (IMPLICIT_DEF)),
wti.RegClass:$rs2, vti.RegClass:$rs1, GPR:$vl, vti.Log2SEW, TA_MA)>;
def : Pat<
(vti.Vector
(riscv_trunc_vector_vl
(op (wti.Vector wti.RegClass:$rs2),
(wti.Vector (Low8BitsSplatPat (XLenVT GPR:$rs1)))),
(vti.Mask true_mask),
VLOpFrag)),
(!cast<Instruction>(instruction_name#"_WX_"#vti.LMul.MX)
(vti.Vector (IMPLICIT_DEF)),
wti.RegClass:$rs2, GPR:$rs1, GPR:$vl, vti.Log2SEW, TA_MA)>;
def : Pat<
(vti.Vector
(riscv_trunc_vector_vl
(op (wti.Vector wti.RegClass:$rs2),
(wti.Vector (SplatPat_uimm5 uimm5:$rs1))), (vti.Mask true_mask),
VLOpFrag)),
(!cast<Instruction>(instruction_name#"_WI_"#vti.LMul.MX)
(vti.Vector (IMPLICIT_DEF)),
wti.RegClass:$rs2, uimm5:$rs1, GPR:$vl, vti.Log2SEW, TA_MA)>;
}
}
}
multiclass VPatWidenReductionVL<SDNode vop, PatFrags extop, string instruction_name, bit is_float> {
foreach vtiToWti = !if(is_float, AllWidenableFloatVectors, AllWidenableIntVectors) in {
defvar vti = vtiToWti.Vti;
defvar wti = vtiToWti.Wti;
defvar wti_m1 = !cast<VTypeInfo>(!if(is_float, "VF", "VI") # wti.SEW # "M1");
let Predicates = !listconcat(GetVTypePredicates<vti>.Predicates,
GetVTypePredicates<wti>.Predicates) in {
def: Pat<(wti_m1.Vector (vop (wti_m1.Vector VR:$passthru),
(wti.Vector (extop (vti.Vector vti.RegClass:$rs1))),
VR:$rs2, (vti.Mask VMV0:$vm), VLOpFrag,
(XLenVT timm:$policy))),
(!cast<Instruction>(instruction_name#"_VS_"#vti.LMul.MX#"_E"#vti.SEW#"_MASK")
(wti_m1.Vector VR:$passthru), (vti.Vector vti.RegClass:$rs1),
(wti_m1.Vector VR:$rs2), (vti.Mask VMV0:$vm), GPR:$vl, vti.Log2SEW,
(XLenVT timm:$policy))>;
}
}
}
multiclass VPatWidenReductionVL_Ext_VL<SDNode vop, PatFrags extop, string instruction_name, bit is_float> {
foreach vtiToWti = !if(is_float, AllWidenableFloatVectors, AllWidenableIntVectors) in {
defvar vti = vtiToWti.Vti;
defvar wti = vtiToWti.Wti;
defvar wti_m1 = !cast<VTypeInfo>(!if(is_float, "VF", "VI") # wti.SEW # "M1");
let Predicates = !listconcat(GetVTypePredicates<vti>.Predicates,
GetVTypePredicates<wti>.Predicates) in {
def: Pat<(wti_m1.Vector (vop (wti_m1.Vector VR:$passthru),
(wti.Vector (extop (vti.Vector vti.RegClass:$rs1), (vti.Mask true_mask), (XLenVT srcvalue))),
VR:$rs2, (vti.Mask VMV0:$vm), VLOpFrag,
(XLenVT timm:$policy))),
(!cast<Instruction>(instruction_name#"_VS_"#vti.LMul.MX#"_E"#vti.SEW#"_MASK")
(wti_m1.Vector VR:$passthru), (vti.Vector vti.RegClass:$rs1),
(wti_m1.Vector VR:$rs2), (vti.Mask VMV0:$vm), GPR:$vl, vti.Log2SEW,
(XLenVT timm:$policy))>;
}
}
}
multiclass VPatWidenReductionVL_Ext_VL_RM<SDNode vop, PatFrags extop, string instruction_name, bit is_float> {
foreach vtiToWti = !if(is_float, AllWidenableFloatVectors, AllWidenableIntVectors) in {
defvar vti = vtiToWti.Vti;
defvar wti = vtiToWti.Wti;
defvar wti_m1 = !cast<VTypeInfo>(!if(is_float, "VF", "VI") # wti.SEW # "M1");
let Predicates = !listconcat(GetVTypePredicates<vti>.Predicates,
GetVTypePredicates<wti>.Predicates) in {
def: Pat<(wti_m1.Vector (vop (wti_m1.Vector VR:$passthru),
(wti.Vector (extop (vti.Vector vti.RegClass:$rs1), (vti.Mask true_mask), (XLenVT srcvalue))),
VR:$rs2, (vti.Mask VMV0:$vm), VLOpFrag,
(XLenVT timm:$policy))),
(!cast<Instruction>(instruction_name#"_VS_"#vti.LMul.MX#"_E"#vti.SEW#"_MASK")
(wti_m1.Vector VR:$passthru), (vti.Vector vti.RegClass:$rs1),
(wti_m1.Vector VR:$rs2), (vti.Mask VMV0:$vm),
// Value to indicate no rounding mode change in
// RISCVInsertReadWriteCSR
FRM_DYN,
GPR:$vl, vti.Log2SEW,
(XLenVT timm:$policy))>;
}
}
}
multiclass VPatBinaryFPWVL_VV_VF<SDNode vop, string instruction_name> {
foreach fvtiToFWti = AllWidenableFloatVectors in {
defvar vti = fvtiToFWti.Vti;
defvar wti = fvtiToFWti.Wti;
let Predicates = !listconcat(GetVTypePredicates<vti>.Predicates,
GetVTypePredicates<wti>.Predicates) in {
def : VPatBinaryVL_V<vop, instruction_name, "VV",
wti.Vector, vti.Vector, vti.Vector, vti.Mask,
vti.Log2SEW, vti.LMul, wti.RegClass, vti.RegClass,
vti.RegClass>;
def : VPatBinaryVL_VF<vop, instruction_name#"_V"#vti.ScalarSuffix,
wti.Vector, vti.Vector, vti.Vector, vti.Mask,
vti.Log2SEW, vti.LMul, wti.RegClass, vti.RegClass,
vti.ScalarRegClass>;
}
}
}
multiclass VPatBinaryFPWVL_VV_VF_RM<SDNode vop, string instruction_name,
bit isSEWAware = 0> {
foreach fvtiToFWti = AllWidenableFloatVectors in {
defvar vti = fvtiToFWti.Vti;
defvar wti = fvtiToFWti.Wti;
let Predicates = !listconcat(GetVTypePredicates<vti>.Predicates,
GetVTypePredicates<wti>.Predicates) in {
def : VPatBinaryVL_V_RM<vop, instruction_name, "VV",
wti.Vector, vti.Vector, vti.Vector, vti.Mask,
vti.Log2SEW, vti.LMul, wti.RegClass, vti.RegClass,
vti.RegClass, isSEWAware>;
def : VPatBinaryVL_VF_RM<vop, instruction_name#"_V"#vti.ScalarSuffix,
wti.Vector, vti.Vector, vti.Vector, vti.Mask,
vti.Log2SEW, vti.LMul, wti.RegClass, vti.RegClass,
vti.ScalarRegClass, isSEWAware>;
}
}
}
multiclass VPatBinaryFPWVL_VV_VF_WV_WF<SDNode vop, SDNode vop_w, string instruction_name>
: VPatBinaryFPWVL_VV_VF<vop, instruction_name> {
foreach fvtiToFWti = AllWidenableFloatVectors in {
defvar vti = fvtiToFWti.Vti;
defvar wti = fvtiToFWti.Wti;
let Predicates = !listconcat(GetVTypePredicates<vti>.Predicates,
GetVTypePredicates<wti>.Predicates) in {
defm : VPatTiedBinaryNoMaskVL_V<vop_w, instruction_name, "WV",
wti.Vector, vti.Vector, vti.Log2SEW,
vti.LMul, wti.RegClass, vti.RegClass>;
def : VPatBinaryVL_V<vop_w, instruction_name, "WV",
wti.Vector, wti.Vector, vti.Vector, vti.Mask,
vti.Log2SEW, vti.LMul, wti.RegClass, wti.RegClass,
vti.RegClass>;
def : VPatBinaryVL_VF<vop_w, instruction_name#"_W"#vti.ScalarSuffix,
wti.Vector, wti.Vector, vti.Vector, vti.Mask,
vti.Log2SEW, vti.LMul, wti.RegClass, wti.RegClass,
vti.ScalarRegClass>;
}
}
}
multiclass VPatBinaryFPWVL_VV_VF_WV_WF_RM<
SDNode vop, SDNode vop_w, string instruction_name, bit isSEWAware = 0>
: VPatBinaryFPWVL_VV_VF_RM<vop, instruction_name, isSEWAware> {
foreach fvtiToFWti = AllWidenableFloatVectors in {
defvar vti = fvtiToFWti.Vti;
defvar wti = fvtiToFWti.Wti;
let Predicates = !listconcat(GetVTypePredicates<vti>.Predicates,
GetVTypePredicates<wti>.Predicates) in {
defm : VPatTiedBinaryNoMaskVL_V_RM<vop_w, instruction_name, "WV",
wti.Vector, vti.Vector, vti.Log2SEW,
vti.LMul, wti.RegClass, vti.RegClass,
isSEWAware>;
def : VPatBinaryVL_V_RM<vop_w, instruction_name, "WV",
wti.Vector, wti.Vector, vti.Vector, vti.Mask,
vti.Log2SEW, vti.LMul, wti.RegClass, wti.RegClass,
vti.RegClass, isSEWAware>;
def : VPatBinaryVL_VF_RM<vop_w, instruction_name#"_W"#vti.ScalarSuffix,
wti.Vector, wti.Vector, vti.Vector, vti.Mask,
vti.Log2SEW, vti.LMul, wti.RegClass, wti.RegClass,
vti.ScalarRegClass, isSEWAware>;
}
}
}
multiclass VPatNarrowShiftSplatExt_WX<SDNode op, PatFrags extop, string instruction_name> {
foreach vtiToWti = AllWidenableIntVectors in {
defvar vti = vtiToWti.Vti;
defvar wti = vtiToWti.Wti;
let Predicates = !listconcat(GetVTypePredicates<vti>.Predicates,
GetVTypePredicates<wti>.Predicates) in
def : Pat<
(vti.Vector
(riscv_trunc_vector_vl
(op (wti.Vector wti.RegClass:$rs2),
(wti.Vector (extop (vti.Vector (SplatPat (XLenVT GPR:$rs1))),
(vti.Mask true_mask), VLOpFrag)),
srcvalue, (wti.Mask true_mask), VLOpFrag),
(vti.Mask true_mask), VLOpFrag)),
(!cast<Instruction>(instruction_name#"_WX_"#vti.LMul.MX)
(vti.Vector (IMPLICIT_DEF)),
wti.RegClass:$rs2, GPR:$rs1, GPR:$vl, vti.Log2SEW, TA_MA)>;
}
}
multiclass VPatNarrowShiftExtVL_WV<SDNode op, PatFrags extop, string instruction_name> {
foreach vtiToWti = AllWidenableIntVectors in {
defvar vti = vtiToWti.Vti;
defvar wti = vtiToWti.Wti;
let Predicates = !listconcat(GetVTypePredicates<vti>.Predicates,
GetVTypePredicates<wti>.Predicates) in
def : Pat<
(vti.Vector
(riscv_trunc_vector_vl
(op (wti.Vector wti.RegClass:$rs2),
(wti.Vector (extop (vti.Vector vti.RegClass:$rs1),
(vti.Mask true_mask), VLOpFrag)),
srcvalue, (vti.Mask true_mask), VLOpFrag),
(vti.Mask VMV0:$vm), VLOpFrag)),
(!cast<Instruction>(instruction_name#"_WV_"#vti.LMul.MX#"_MASK")
(vti.Vector (IMPLICIT_DEF)), wti.RegClass:$rs2, vti.RegClass:$rs1,
(vti.Mask VMV0:$vm), GPR:$vl, vti.Log2SEW, TA_MA)>;
}
}
multiclass VPatNarrowShiftVL_WV<SDNode op, string instruction_name> {
defm : VPatNarrowShiftExtVL_WV<op, riscv_sext_vl_oneuse, instruction_name>;
defm : VPatNarrowShiftExtVL_WV<op, riscv_zext_vl_oneuse, instruction_name>;
}
multiclass VPatMultiplyAddVL_VV_VX<SDNode op, string instruction_name> {
foreach vti = AllIntegerVectors in {
defvar suffix = vti.LMul.MX;
let Predicates = GetVTypePredicates<vti>.Predicates in {
// NOTE: We choose VMADD because it has the most commuting freedom. So it
// works best with how TwoAddressInstructionPass tries commuting.
def : Pat<(vti.Vector
(op vti.RegClass:$rs2,
(riscv_mul_vl_oneuse vti.RegClass:$rs1,
vti.RegClass:$rd,
srcvalue, (vti.Mask true_mask), VLOpFrag),
srcvalue, (vti.Mask true_mask), VLOpFrag)),
(!cast<Instruction>(instruction_name#"_VV_"# suffix)
vti.RegClass:$rd, vti.RegClass:$rs1, vti.RegClass:$rs2,
GPR:$vl, vti.Log2SEW, TAIL_AGNOSTIC)>;
// The choice of VMADD here is arbitrary, vmadd.vx and vmacc.vx are equally
// commutable.
def : Pat<(vti.Vector
(op vti.RegClass:$rs2,
(riscv_mul_vl_oneuse (SplatPat XLenVT:$rs1),
vti.RegClass:$rd,
srcvalue, (vti.Mask true_mask), VLOpFrag),
srcvalue, (vti.Mask true_mask), VLOpFrag)),
(!cast<Instruction>(instruction_name#"_VX_" # suffix)
vti.RegClass:$rd, vti.ScalarRegClass:$rs1, vti.RegClass:$rs2,
GPR:$vl, vti.Log2SEW, TAIL_AGNOSTIC)>;
}
}
}
multiclass VPatMultiplyAccVL_VV_VX<PatFrag op, string instruction_name> {
foreach vti = AllIntegerVectors in {
defvar suffix = vti.LMul.MX;
let Predicates = GetVTypePredicates<vti>.Predicates in {
def : Pat<(riscv_vmerge_vl (vti.Mask VMV0:$vm),
(vti.Vector (op vti.RegClass:$rd,
(riscv_mul_vl_oneuse vti.RegClass:$rs1, vti.RegClass:$rs2,
srcvalue, (vti.Mask true_mask), VLOpFrag),
srcvalue, (vti.Mask true_mask), VLOpFrag)),
vti.RegClass:$rd, vti.RegClass:$rd, VLOpFrag),
(!cast<Instruction>(instruction_name#"_VV_"# suffix #"_MASK")
vti.RegClass:$rd, vti.RegClass:$rs1, vti.RegClass:$rs2,
(vti.Mask VMV0:$vm), GPR:$vl, vti.Log2SEW, TU_MU)>;
def : Pat<(riscv_vmerge_vl (vti.Mask VMV0:$vm),
(vti.Vector (op vti.RegClass:$rd,
(riscv_mul_vl_oneuse (SplatPat XLenVT:$rs1), vti.RegClass:$rs2,
srcvalue, (vti.Mask true_mask), VLOpFrag),
srcvalue, (vti.Mask true_mask), VLOpFrag)),
vti.RegClass:$rd, vti.RegClass:$rd, VLOpFrag),
(!cast<Instruction>(instruction_name#"_VX_"# suffix #"_MASK")
vti.RegClass:$rd, vti.ScalarRegClass:$rs1, vti.RegClass:$rs2,
(vti.Mask VMV0:$vm), GPR:$vl, vti.Log2SEW, TU_MU)>;
def : Pat<(riscv_vmerge_vl (vti.Mask VMV0:$vm),
(vti.Vector (op vti.RegClass:$rd,
(riscv_mul_vl_oneuse vti.RegClass:$rs1, vti.RegClass:$rs2,
srcvalue, (vti.Mask true_mask), VLOpFrag),
srcvalue, (vti.Mask true_mask), VLOpFrag)),
vti.RegClass:$rd, undef, VLOpFrag),
(!cast<Instruction>(instruction_name#"_VV_"# suffix #"_MASK")
vti.RegClass:$rd, vti.RegClass:$rs1, vti.RegClass:$rs2,
(vti.Mask VMV0:$vm), GPR:$vl, vti.Log2SEW, TAIL_AGNOSTIC)>;
def : Pat<(riscv_vmerge_vl (vti.Mask VMV0:$vm),
(vti.Vector (op vti.RegClass:$rd,
(riscv_mul_vl_oneuse (SplatPat XLenVT:$rs1), vti.RegClass:$rs2,
srcvalue, (vti.Mask true_mask), VLOpFrag),
srcvalue, (vti.Mask true_mask), VLOpFrag)),
vti.RegClass:$rd, undef, VLOpFrag),
(!cast<Instruction>(instruction_name#"_VX_"# suffix #"_MASK")
vti.RegClass:$rd, vti.ScalarRegClass:$rs1, vti.RegClass:$rs2,
(vti.Mask VMV0:$vm), GPR:$vl, vti.Log2SEW, TAIL_AGNOSTIC)>;
}
}
}
multiclass VPatWidenMultiplyAddVL_VV_VX<SDNode vwmacc_op, string instr_name> {
foreach vtiTowti = AllWidenableIntVectors in {
defvar vti = vtiTowti.Vti;
defvar wti = vtiTowti.Wti;
let Predicates = !listconcat(GetVTypePredicates<vti>.Predicates,
GetVTypePredicates<wti>.Predicates) in {
def : Pat<(vwmacc_op (vti.Vector vti.RegClass:$rs1),
(vti.Vector vti.RegClass:$rs2),
(wti.Vector wti.RegClass:$rd),
(vti.Mask VMV0:$vm), VLOpFrag),
(!cast<Instruction>(instr_name#"_VV_"#vti.LMul.MX#"_MASK")
wti.RegClass:$rd, vti.RegClass:$rs1, vti.RegClass:$rs2,
(vti.Mask VMV0:$vm), GPR:$vl, vti.Log2SEW, TAIL_AGNOSTIC)>;
def : Pat<(vwmacc_op (SplatPat XLenVT:$rs1),
(vti.Vector vti.RegClass:$rs2),
(wti.Vector wti.RegClass:$rd),
(vti.Mask VMV0:$vm), VLOpFrag),
(!cast<Instruction>(instr_name#"_VX_"#vti.LMul.MX#"_MASK")
wti.RegClass:$rd, vti.ScalarRegClass:$rs1,
vti.RegClass:$rs2, (vti.Mask VMV0:$vm), GPR:$vl, vti.Log2SEW,
TAIL_AGNOSTIC)>;
}
}
}
multiclass VPatNarrowShiftSplat_WX_WI<SDNode op, string instruction_name> {
foreach vtiTowti = AllWidenableIntVectors in {
defvar vti = vtiTowti.Vti;
defvar wti = vtiTowti.Wti;
let Predicates = !listconcat(GetVTypePredicates<vti>.Predicates,
GetVTypePredicates<wti>.Predicates) in {
def : Pat<(vti.Vector (riscv_trunc_vector_vl
(wti.Vector (op wti.RegClass:$rs1, (SplatPat XLenVT:$rs2),
srcvalue, true_mask, VLOpFrag)), true_mask, VLOpFrag)),
(!cast<Instruction>(instruction_name#"_WX_"#vti.LMul.MX)
(vti.Vector (IMPLICIT_DEF)),
wti.RegClass:$rs1, GPR:$rs2, GPR:$vl, vti.Log2SEW, TA_MA)>;
def : Pat<(vti.Vector (riscv_trunc_vector_vl
(wti.Vector (op wti.RegClass:$rs1, (SplatPat_uimm5 uimm5:$rs2),
srcvalue, true_mask, VLOpFrag)), true_mask, VLOpFrag)),
(!cast<Instruction>(instruction_name#"_WI_"#vti.LMul.MX)
(vti.Vector (IMPLICIT_DEF)),
wti.RegClass:$rs1, uimm5:$rs2, GPR:$vl, vti.Log2SEW, TA_MA)>;
}
}
}
multiclass VPatFPMulAddVL_VV_VF<SDPatternOperator vop, string instruction_name> {
foreach vti = AllFloatVectors in {
defvar suffix = vti.LMul.MX;
let Predicates = GetVTypePredicates<vti>.Predicates in {
def : Pat<(vti.Vector (vop vti.RegClass:$rs1, vti.RegClass:$rd,
vti.RegClass:$rs2, (vti.Mask VMV0:$vm),
VLOpFrag)),
(!cast<Instruction>(instruction_name#"_VV_"# suffix #"_MASK")
vti.RegClass:$rd, vti.RegClass:$rs1, vti.RegClass:$rs2,
(vti.Mask VMV0:$vm), GPR:$vl, vti.Log2SEW, TA_MA)>;
def : Pat<(vti.Vector (vop (SplatFPOp vti.ScalarRegClass:$rs1),
vti.RegClass:$rd, vti.RegClass:$rs2,
(vti.Mask VMV0:$vm),
VLOpFrag)),
(!cast<Instruction>(instruction_name#"_V" # vti.ScalarSuffix # "_" # suffix # "_MASK")
vti.RegClass:$rd, vti.ScalarRegClass:$rs1, vti.RegClass:$rs2,
(vti.Mask VMV0:$vm), GPR:$vl, vti.Log2SEW, TA_MA)>;
}
}
}
multiclass VPatFPMulAddVL_VV_VF_RM<SDPatternOperator vop, string instruction_name> {
foreach vti = AllFloatVectors in {
defvar suffix = vti.LMul.MX # "_E" # vti.SEW;
let Predicates = GetVTypePredicates<vti>.Predicates in {
def : Pat<(vti.Vector (vop vti.RegClass:$rs1, vti.RegClass:$rd,
vti.RegClass:$rs2, (vti.Mask VMV0:$vm),
VLOpFrag)),
(!cast<Instruction>(instruction_name#"_VV_"# suffix #"_MASK")
vti.RegClass:$rd, vti.RegClass:$rs1, vti.RegClass:$rs2,
(vti.Mask VMV0:$vm),
// Value to indicate no rounding mode change in
// RISCVInsertReadWriteCSR
FRM_DYN,
GPR:$vl, vti.Log2SEW, TA_MA)>;
def : Pat<(vti.Vector (vop (SplatFPOp vti.ScalarRegClass:$rs1),
vti.RegClass:$rd, vti.RegClass:$rs2,
(vti.Mask VMV0:$vm),
VLOpFrag)),
(!cast<Instruction>(instruction_name#"_V" # vti.ScalarSuffix # "_" # suffix # "_MASK")
vti.RegClass:$rd, vti.ScalarRegClass:$rs1, vti.RegClass:$rs2,
(vti.Mask VMV0:$vm),
// Value to indicate no rounding mode change in
// RISCVInsertReadWriteCSR
FRM_DYN,
GPR:$vl, vti.Log2SEW, TA_MA)>;
}
}
}
multiclass VPatFPMulAccVL_VV_VF_RM<PatFrag vop, string instruction_name> {
foreach vti = AllFloatVectors in {
defvar suffix = vti.LMul.MX # "_E" # vti.SEW;
let Predicates = GetVTypePredicates<vti>.Predicates in {
def : Pat<(riscv_vmerge_vl (vti.Mask VMV0:$vm),
(vti.Vector (vop vti.RegClass:$rs1, vti.RegClass:$rs2,
vti.RegClass:$rd, (vti.Mask true_mask), VLOpFrag)),
vti.RegClass:$rd, vti.RegClass:$rd, VLOpFrag),
(!cast<Instruction>(instruction_name#"_VV_"# suffix #"_MASK")
vti.RegClass:$rd, vti.RegClass:$rs1, vti.RegClass:$rs2,
(vti.Mask VMV0:$vm),
// Value to indicate no rounding mode change in
// RISCVInsertReadWriteCSR
FRM_DYN,
GPR:$vl, vti.Log2SEW, TU_MU)>;
def : Pat<(riscv_vmerge_vl (vti.Mask VMV0:$vm),
(vti.Vector (vop (SplatFPOp vti.ScalarRegClass:$rs1), vti.RegClass:$rs2,
vti.RegClass:$rd, (vti.Mask true_mask), VLOpFrag)),
vti.RegClass:$rd, vti.RegClass:$rd, VLOpFrag),
(!cast<Instruction>(instruction_name#"_V" # vti.ScalarSuffix # "_" # suffix # "_MASK")
vti.RegClass:$rd, vti.ScalarRegClass:$rs1, vti.RegClass:$rs2,
(vti.Mask VMV0:$vm),
// Value to indicate no rounding mode change in
// RISCVInsertReadWriteCSR
FRM_DYN,
GPR:$vl, vti.Log2SEW, TU_MU)>;
def : Pat<(riscv_vmerge_vl (vti.Mask VMV0:$vm),
(vti.Vector (vop vti.RegClass:$rs1, vti.RegClass:$rs2,
vti.RegClass:$rd, (vti.Mask true_mask), VLOpFrag)),
vti.RegClass:$rd, undef, VLOpFrag),
(!cast<Instruction>(instruction_name#"_VV_"# suffix #"_MASK")
vti.RegClass:$rd, vti.RegClass:$rs1, vti.RegClass:$rs2,
(vti.Mask VMV0:$vm),
// Value to indicate no rounding mode change in
// RISCVInsertReadWriteCSR
FRM_DYN,
GPR:$vl, vti.Log2SEW, TAIL_AGNOSTIC)>;
def : Pat<(riscv_vmerge_vl (vti.Mask VMV0:$vm),
(vti.Vector (vop (SplatFPOp vti.ScalarRegClass:$rs1), vti.RegClass:$rs2,
vti.RegClass:$rd, (vti.Mask true_mask), VLOpFrag)),
vti.RegClass:$rd, undef, VLOpFrag),
(!cast<Instruction>(instruction_name#"_V" # vti.ScalarSuffix # "_" # suffix # "_MASK")
vti.RegClass:$rd, vti.ScalarRegClass:$rs1, vti.RegClass:$rs2,
(vti.Mask VMV0:$vm),
// Value to indicate no rounding mode change in
// RISCVInsertReadWriteCSR
FRM_DYN,
GPR:$vl, vti.Log2SEW, TAIL_AGNOSTIC)>;
}
}
}
multiclass VPatWidenFPMulAccVL_VV_VF<SDNode vop, string instruction_name> {
foreach vtiToWti = AllWidenableFloatVectors in {
defvar vti = vtiToWti.Vti;
defvar wti = vtiToWti.Wti;
let Predicates = !listconcat(GetVTypePredicates<vti>.Predicates,
GetVTypePredicates<wti>.Predicates) in {
def : Pat<(vop (vti.Vector vti.RegClass:$rs1),
(vti.Vector vti.RegClass:$rs2),
(wti.Vector wti.RegClass:$rd), (vti.Mask VMV0:$vm),
VLOpFrag),
(!cast<Instruction>(instruction_name#"_VV_"#vti.LMul.MX #"_MASK")
wti.RegClass:$rd, vti.RegClass:$rs1, vti.RegClass:$rs2,
(vti.Mask VMV0:$vm), GPR:$vl, vti.Log2SEW, TA_MA)>;
def : Pat<(vop (vti.Vector (SplatFPOp vti.ScalarRegClass:$rs1)),
(vti.Vector vti.RegClass:$rs2),
(wti.Vector wti.RegClass:$rd), (vti.Mask VMV0:$vm),
VLOpFrag),
(!cast<Instruction>(instruction_name#"_V"#vti.ScalarSuffix#"_"#vti.LMul.MX #"_MASK")
wti.RegClass:$rd, vti.ScalarRegClass:$rs1, vti.RegClass:$rs2,
(vti.Mask VMV0:$vm), GPR:$vl, vti.Log2SEW, TA_MA)>;
}
}
}
multiclass VPatWidenFPMulAccVL_VV_VF_RM<SDNode vop, string instruction_name,
list<VTypeInfoToWide> vtiToWtis =
AllWidenableFloatVectors> {
foreach vtiToWti = vtiToWtis in {
defvar vti = vtiToWti.Vti;
defvar wti = vtiToWti.Wti;
defvar suffix = vti.LMul.MX # "_E" # vti.SEW;
let Predicates = !listconcat(GetVTypePredicates<vti>.Predicates,
GetVTypePredicates<wti>.Predicates,
!if(!eq(vti.Scalar, bf16),
[HasStdExtZvfbfwma],
[])) in {
def : Pat<(vop (vti.Vector vti.RegClass:$rs1),
(vti.Vector vti.RegClass:$rs2),
(wti.Vector wti.RegClass:$rd), (vti.Mask VMV0:$vm),
VLOpFrag),
(!cast<Instruction>(instruction_name#"_VV_"#suffix#"_MASK")
wti.RegClass:$rd, vti.RegClass:$rs1, vti.RegClass:$rs2,
(vti.Mask VMV0:$vm),
// Value to indicate no rounding mode change in
// RISCVInsertReadWriteCSR
FRM_DYN,
GPR:$vl, vti.Log2SEW, TA_MA)>;
def : Pat<(vop (vti.Vector (SplatFPOp vti.ScalarRegClass:$rs1)),
(vti.Vector vti.RegClass:$rs2),
(wti.Vector wti.RegClass:$rd), (vti.Mask VMV0:$vm),
VLOpFrag),
(!cast<Instruction>(instruction_name#"_V"#vti.ScalarSuffix#"_"#suffix#"_MASK")
wti.RegClass:$rd, vti.ScalarRegClass:$rs1, vti.RegClass:$rs2,
(vti.Mask VMV0:$vm),
// Value to indicate no rounding mode change in
// RISCVInsertReadWriteCSR
FRM_DYN,
GPR:$vl, vti.Log2SEW, TA_MA)>;
}
}
}
multiclass VPatSlideVL_VX_VI<SDNode vop, string instruction_name> {
foreach vti = AllVectors in {
defvar ivti = GetIntVTypeInfo<vti>.Vti;
let Predicates = GetVTypePredicates<ivti>.Predicates in {
def : Pat<(vti.Vector (vop (vti.Vector vti.RegClass:$rd),
(vti.Vector vti.RegClass:$rs1),
uimm5:$rs2, (vti.Mask VMV0:$vm),
VLOpFrag, (XLenVT timm:$policy))),
(!cast<Instruction>(instruction_name#"_VI_"#vti.LMul.MX#"_MASK")
vti.RegClass:$rd, vti.RegClass:$rs1, uimm5:$rs2,
(vti.Mask VMV0:$vm), GPR:$vl, vti.Log2SEW,
(XLenVT timm:$policy))>;
def : Pat<(vti.Vector (vop (vti.Vector vti.RegClass:$rd),
(vti.Vector vti.RegClass:$rs1),
GPR:$rs2, (vti.Mask VMV0:$vm),
VLOpFrag, (XLenVT timm:$policy))),
(!cast<Instruction>(instruction_name#"_VX_"#vti.LMul.MX#"_MASK")
vti.RegClass:$rd, vti.RegClass:$rs1, GPR:$rs2,
(vti.Mask VMV0:$vm), GPR:$vl, vti.Log2SEW,
(XLenVT timm:$policy))>;
}
}
}
multiclass VPatSlide1VL_VX<SDNode vop, string instruction_name> {
foreach vti = AllIntegerVectors in {
let Predicates = GetVTypePredicates<vti>.Predicates in {
def : Pat<(vti.Vector (vop (vti.Vector vti.RegClass:$rs3),
(vti.Vector vti.RegClass:$rs1),
GPR:$rs2, (vti.Mask VMV0:$vm), VLOpFrag)),
(!cast<Instruction>(instruction_name#"_VX_"#vti.LMul.MX#"_MASK")
vti.RegClass:$rs3, vti.RegClass:$rs1, GPR:$rs2,
(vti.Mask VMV0:$vm), GPR:$vl, vti.Log2SEW, TU_MU)>;
}
}
}
multiclass VPatSlide1VL_VF<SDNode vop, string instruction_name> {
foreach vti = AllFloatVectors in {
let Predicates = GetVTypePredicates<vti>.Predicates in {
def : Pat<(vti.Vector (vop (vti.Vector vti.RegClass:$rs3),
(vti.Vector vti.RegClass:$rs1),
vti.Scalar:$rs2, (vti.Mask VMV0:$vm), VLOpFrag)),
(!cast<Instruction>(instruction_name#"_V"#vti.ScalarSuffix#"_"#vti.LMul.MX#"_MASK")
vti.RegClass:$rs3, vti.RegClass:$rs1, vti.Scalar:$rs2,
(vti.Mask VMV0:$vm), GPR:$vl, vti.Log2SEW, TU_MU)>;
}
}
}
multiclass VPatAVGADDVL_VV_VX_RM<SDNode vop, int vxrm, string suffix = ""> {
foreach vti = AllIntegerVectors in {
let Predicates = GetVTypePredicates<vti>.Predicates in {
def : Pat<(vop (vti.Vector vti.RegClass:$rs1),
(vti.Vector vti.RegClass:$rs2),
vti.RegClass:$passthru, (vti.Mask VMV0:$vm), VLOpFrag),
(!cast<Instruction>("PseudoVAADD"#suffix#"_VV_"#vti.LMul.MX#"_MASK")
vti.RegClass:$passthru, vti.RegClass:$rs1, vti.RegClass:$rs2,
(vti.Mask VMV0:$vm), vxrm, GPR:$vl, vti.Log2SEW, TAIL_AGNOSTIC)>;
def : Pat<(vop (vti.Vector vti.RegClass:$rs1),
(vti.Vector (SplatPat (XLenVT GPR:$rs2))),
vti.RegClass:$passthru, (vti.Mask VMV0:$vm), VLOpFrag),
(!cast<Instruction>("PseudoVAADD"#suffix#"_VX_"#vti.LMul.MX#"_MASK")
vti.RegClass:$passthru, vti.RegClass:$rs1, GPR:$rs2,
(vti.Mask VMV0:$vm), vxrm, GPR:$vl, vti.Log2SEW, TAIL_AGNOSTIC)>;
}
}
}
//===----------------------------------------------------------------------===//
// Patterns.
//===----------------------------------------------------------------------===//
// 11. Vector Integer Arithmetic Instructions
// 11.1. Vector Single-Width Integer Add and Subtract
defm : VPatBinaryVL_VV_VX_VI<riscv_add_vl, "PseudoVADD">;
defm : VPatBinaryVL_VV_VX<riscv_sub_vl, "PseudoVSUB">;
foreach vti = AllIntegerVectors in {
let Predicates = GetVTypePredicates<vti>.Predicates in {
// Handle VRSUB specially since it's the only integer binary op with
// reversed pattern operands
def : Pat<(riscv_sub_vl (vti.Vector (SplatPat (XLenVT GPR:$rs2))),
(vti.Vector vti.RegClass:$rs1),
vti.RegClass:$passthru, (vti.Mask VMV0:$vm), VLOpFrag),
(!cast<Instruction>("PseudoVRSUB_VX_"# vti.LMul.MX#"_MASK")
vti.RegClass:$passthru, vti.RegClass:$rs1, GPR:$rs2,
(vti.Mask VMV0:$vm), GPR:$vl, vti.Log2SEW, TAIL_AGNOSTIC)>;
def : Pat<(riscv_sub_vl (vti.Vector (SplatPat_simm5 simm5:$rs2)),
(vti.Vector vti.RegClass:$rs1),
vti.RegClass:$passthru, (vti.Mask VMV0:$vm), VLOpFrag),
(!cast<Instruction>("PseudoVRSUB_VI_"# vti.LMul.MX#"_MASK")
vti.RegClass:$passthru, vti.RegClass:$rs1, simm5:$rs2,
(vti.Mask VMV0:$vm), GPR:$vl, vti.Log2SEW, TAIL_AGNOSTIC)>;
// Match VSUB with a small immediate to vadd.vi by negating the immediate.
def : Pat<(riscv_sub_vl (vti.Vector vti.RegClass:$rs1),
(vti.Vector (SplatPat_simm5_plus1_nodec simm5_plus1:$rs2)),
vti.RegClass:$passthru, (vti.Mask VMV0:$vm), VLOpFrag),
(!cast<Instruction>("PseudoVADD_VI_"#vti.LMul.MX#"_MASK")
vti.RegClass:$passthru, vti.RegClass:$rs1,
(NegImm simm5_plus1:$rs2), (vti.Mask VMV0:$vm),
GPR:$vl, vti.Log2SEW, TAIL_AGNOSTIC)>;
}
}
// (add v, C) -> (sub v, -C) if -C cheaper to materialize
foreach vti = I64IntegerVectors in {
let Predicates = [HasVInstructionsI64] in {
def : Pat<(riscv_add_vl (vti.Vector vti.RegClass:$rs1),
(vti.Vector (SplatPat_imm64_neg (i64 GPR:$rs2))),
vti.RegClass:$passthru, (vti.Mask VMV0:$vm), VLOpFrag),
(!cast<Instruction>("PseudoVSUB_VX_"#vti.LMul.MX#"_MASK")
vti.RegClass:$passthru, vti.RegClass:$rs1,
negImm:$rs2, (vti.Mask VMV0:$vm),
GPR:$vl, vti.Log2SEW, TAIL_AGNOSTIC)>;
}
}
// 11.2. Vector Widening Integer Add/Subtract
defm : VPatBinaryWVL_VV_VX_WV_WX<riscv_vwadd_vl, riscv_vwadd_w_vl, "PseudoVWADD">;
defm : VPatBinaryWVL_VV_VX_WV_WX<riscv_vwaddu_vl, riscv_vwaddu_w_vl, "PseudoVWADDU">;
defm : VPatBinaryWVL_VV_VX_WV_WX<riscv_vwsub_vl, riscv_vwsub_w_vl, "PseudoVWSUB">;
defm : VPatBinaryWVL_VV_VX_WV_WX<riscv_vwsubu_vl, riscv_vwsubu_w_vl, "PseudoVWSUBU">;
// shl_vl (ext_vl v, splat 1) is a special case of widening add.
foreach vtiToWti = AllWidenableIntVectors in {
defvar vti = vtiToWti.Vti;
defvar wti = vtiToWti.Wti;
let Predicates = !listconcat(GetVTypePredicates<vti>.Predicates,
GetVTypePredicates<wti>.Predicates) in {
def : Pat<(riscv_shl_vl (wti.Vector (riscv_sext_vl_oneuse
(vti.Vector vti.RegClass:$rs1),
(vti.Mask VMV0:$vm), VLOpFrag)),
(wti.Vector (riscv_vmv_v_x_vl
(wti.Vector undef), 1, VLOpFrag)),
wti.RegClass:$passthru, (vti.Mask VMV0:$vm), VLOpFrag),
(!cast<Instruction>("PseudoVWADD_VV_"#vti.LMul.MX#"_MASK")
wti.RegClass:$passthru, vti.RegClass:$rs1, vti.RegClass:$rs1,
(vti.Mask VMV0:$vm), GPR:$vl, vti.Log2SEW, TAIL_AGNOSTIC)>;
def : Pat<(riscv_shl_vl (wti.Vector (riscv_zext_vl_oneuse
(vti.Vector vti.RegClass:$rs1),
(vti.Mask VMV0:$vm), VLOpFrag)),
(wti.Vector (riscv_vmv_v_x_vl
(wti.Vector undef), 1, VLOpFrag)),
wti.RegClass:$passthru, (vti.Mask VMV0:$vm), VLOpFrag),
(!cast<Instruction>("PseudoVWADDU_VV_"#vti.LMul.MX#"_MASK")
wti.RegClass:$passthru, vti.RegClass:$rs1, vti.RegClass:$rs1,
(vti.Mask VMV0:$vm), GPR:$vl, vti.Log2SEW, TAIL_AGNOSTIC)>;
}
}
// DAGCombiner::hoistLogicOpWithSameOpcodeHands may hoist disjoint ors
// to (ext (or disjoint (a, b)))
multiclass VPatWidenOrDisjointVL_VV_VX<SDNode extop, string instruction_name> {
foreach vtiToWti = AllWidenableIntVectors in {
defvar vti = vtiToWti.Vti;
defvar wti = vtiToWti.Wti;
let Predicates = !listconcat(GetVTypePredicates<vti>.Predicates,
GetVTypePredicates<wti>.Predicates) in {
def : Pat<(wti.Vector
(extop
(vti.Vector
(riscv_or_vl_is_add_oneuse
vti.RegClass:$rs2, vti.RegClass:$rs1,
undef, srcvalue, srcvalue)),
VMV0:$vm, VLOpFrag)),
(!cast<Instruction>(instruction_name#"_VV_"#vti.LMul.MX#"_MASK")
(wti.Vector (IMPLICIT_DEF)), vti.RegClass:$rs2,
vti.RegClass:$rs1, VMV0:$vm, GPR:$vl, vti.Log2SEW, TA_MA)>;
def : Pat<(wti.Vector
(extop
(vti.Vector
(riscv_or_vl_is_add_oneuse
vti.RegClass:$rs2, (SplatPat (XLenVT GPR:$rs1)),
undef, srcvalue, srcvalue)),
VMV0:$vm, VLOpFrag)),
(!cast<Instruction>(instruction_name#"_VX_"#vti.LMul.MX#"_MASK")
(wti.Vector (IMPLICIT_DEF)), vti.RegClass:$rs2,
GPR:$rs1, VMV0:$vm, GPR:$vl, vti.Log2SEW, TA_MA)>;
}
}
}
defm : VPatWidenOrDisjointVL_VV_VX<riscv_sext_vl, "PseudoVWADD">;
defm : VPatWidenOrDisjointVL_VV_VX<riscv_zext_vl, "PseudoVWADDU">;
// 11.3. Vector Integer Extension
defm : VPatExtendVL_V<riscv_zext_vl, "PseudoVZEXT", "VF2",
AllFractionableVF2IntVectors>;
defm : VPatExtendVL_V<riscv_sext_vl, "PseudoVSEXT", "VF2",
AllFractionableVF2IntVectors>;
defm : VPatExtendVL_V<riscv_zext_vl, "PseudoVZEXT", "VF4",
AllFractionableVF4IntVectors>;
defm : VPatExtendVL_V<riscv_sext_vl, "PseudoVSEXT", "VF4",
AllFractionableVF4IntVectors>;
defm : VPatExtendVL_V<riscv_zext_vl, "PseudoVZEXT", "VF8",
AllFractionableVF8IntVectors>;
defm : VPatExtendVL_V<riscv_sext_vl, "PseudoVSEXT", "VF8",
AllFractionableVF8IntVectors>;
// 11.5. Vector Bitwise Logical Instructions
defm : VPatBinaryVL_VV_VX_VI<riscv_and_vl, "PseudoVAND">;
defm : VPatBinaryVL_VV_VX_VI<riscv_or_vl, "PseudoVOR">;
defm : VPatBinaryVL_VV_VX_VI<riscv_xor_vl, "PseudoVXOR">;
// 11.6. Vector Single-Width Bit Shift Instructions
defm : VPatBinaryVL_VV_VX_VI<riscv_shl_vl, "PseudoVSLL", uimm5>;
defm : VPatBinaryVL_VV_VX_VI<riscv_srl_vl, "PseudoVSRL", uimm5>;
defm : VPatBinaryVL_VV_VX_VI<riscv_sra_vl, "PseudoVSRA", uimm5>;
foreach vti = AllIntegerVectors in {
// Emit shift by 1 as an add since it might be faster.
let Predicates = GetVTypePredicates<vti>.Predicates in
def : Pat<(riscv_shl_vl (vti.Vector vti.RegClass:$rs1),
(riscv_vmv_v_x_vl (vti.Vector undef), 1, (XLenVT srcvalue)),
srcvalue, (vti.Mask true_mask), VLOpFrag),
(!cast<Instruction>("PseudoVADD_VV_"# vti.LMul.MX)
(vti.Vector (IMPLICIT_DEF)),
vti.RegClass:$rs1, vti.RegClass:$rs1, GPR:$vl, vti.Log2SEW, TA_MA)>;
}
// 11.7. Vector Narrowing Integer Right Shift Instructions
defm : VPatBinaryVL_WV_WX_WI<srl, "PseudoVNSRL">;
defm : VPatBinaryVL_WV_WX_WI<sra, "PseudoVNSRA">;
defm : VPatNarrowShiftSplat_WX_WI<riscv_sra_vl, "PseudoVNSRA">;
defm : VPatNarrowShiftSplat_WX_WI<riscv_srl_vl, "PseudoVNSRL">;
defm : VPatNarrowShiftSplatExt_WX<riscv_sra_vl, riscv_sext_vl_oneuse, "PseudoVNSRA">;
defm : VPatNarrowShiftSplatExt_WX<riscv_sra_vl, riscv_zext_vl_oneuse, "PseudoVNSRA">;
defm : VPatNarrowShiftSplatExt_WX<riscv_srl_vl, riscv_sext_vl_oneuse, "PseudoVNSRL">;
defm : VPatNarrowShiftSplatExt_WX<riscv_srl_vl, riscv_zext_vl_oneuse, "PseudoVNSRL">;
defm : VPatNarrowShiftVL_WV<riscv_srl_vl, "PseudoVNSRL">;
defm : VPatNarrowShiftVL_WV<riscv_sra_vl, "PseudoVNSRA">;
foreach vtiTowti = AllWidenableIntVectors in {
defvar vti = vtiTowti.Vti;
defvar wti = vtiTowti.Wti;
let Predicates = !listconcat(GetVTypePredicates<vti>.Predicates,
GetVTypePredicates<wti>.Predicates) in
def : Pat<(vti.Vector (riscv_trunc_vector_vl (wti.Vector wti.RegClass:$rs1),
(vti.Mask VMV0:$vm),
VLOpFrag)),
(!cast<Instruction>("PseudoVNSRL_WI_"#vti.LMul.MX#"_MASK")
(vti.Vector (IMPLICIT_DEF)), wti.RegClass:$rs1, 0,
(vti.Mask VMV0:$vm), GPR:$vl, vti.Log2SEW, TA_MA)>;
}
// 11.8. Vector Integer Comparison Instructions
foreach vti = AllIntegerVectors in {
let Predicates = GetVTypePredicates<vti>.Predicates in {
defm : VPatIntegerSetCCVL_VV<vti, "PseudoVMSEQ", SETEQ>;
defm : VPatIntegerSetCCVL_VV<vti, "PseudoVMSNE", SETNE>;
defm : VPatIntegerSetCCVL_VV_Swappable<vti, "PseudoVMSLT", SETLT, SETGT>;
defm : VPatIntegerSetCCVL_VV_Swappable<vti, "PseudoVMSLTU", SETULT, SETUGT>;
defm : VPatIntegerSetCCVL_VV_Swappable<vti, "PseudoVMSLE", SETLE, SETGE>;
defm : VPatIntegerSetCCVL_VV_Swappable<vti, "PseudoVMSLEU", SETULE, SETUGE>;
defm : VPatIntegerSetCCVL_VX_Swappable<vti, "PseudoVMSEQ", SETEQ, SETEQ>;
defm : VPatIntegerSetCCVL_VX_Swappable<vti, "PseudoVMSNE", SETNE, SETNE>;
defm : VPatIntegerSetCCVL_VX_Swappable<vti, "PseudoVMSLT", SETLT, SETGT>;
defm : VPatIntegerSetCCVL_VX_Swappable<vti, "PseudoVMSLTU", SETULT, SETUGT>;
defm : VPatIntegerSetCCVL_VX_Swappable<vti, "PseudoVMSLE", SETLE, SETGE>;
defm : VPatIntegerSetCCVL_VX_Swappable<vti, "PseudoVMSLEU", SETULE, SETUGE>;
defm : VPatIntegerSetCCVL_VX_Swappable<vti, "PseudoVMSGT", SETGT, SETLT>;
defm : VPatIntegerSetCCVL_VX_Swappable<vti, "PseudoVMSGTU", SETUGT, SETULT>;
// There is no VMSGE(U)_VX instruction
defm : VPatIntegerSetCCVL_VI_Swappable<vti, "PseudoVMSEQ", SETEQ, SETEQ>;
defm : VPatIntegerSetCCVL_VI_Swappable<vti, "PseudoVMSNE", SETNE, SETNE>;
defm : VPatIntegerSetCCVL_VI_Swappable<vti, "PseudoVMSLE", SETLE, SETGE>;
defm : VPatIntegerSetCCVL_VI_Swappable<vti, "PseudoVMSLEU", SETULE, SETUGE>;
defm : VPatIntegerSetCCVL_VI_Swappable<vti, "PseudoVMSGT", SETGT, SETLT>;
defm : VPatIntegerSetCCVL_VI_Swappable<vti, "PseudoVMSGTU", SETUGT, SETULT>;
defm : VPatIntegerSetCCVL_VI_Swappable<vti, "PseudoVMSLE", SETLT, SETGT,
SplatPat_simm5_plus1>;
defm : VPatIntegerSetCCVL_VI_Swappable<vti, "PseudoVMSLEU", SETULT, SETUGT,
SplatPat_simm5_plus1_nonzero>;
defm : VPatIntegerSetCCVL_VI_Swappable<vti, "PseudoVMSGT", SETGE, SETLE,
SplatPat_simm5_plus1>;
defm : VPatIntegerSetCCVL_VI_Swappable<vti, "PseudoVMSGTU", SETUGE, SETULE,
SplatPat_simm5_plus1_nonzero>;
}
} // foreach vti = AllIntegerVectors
// 11.9. Vector Integer Min/Max Instructions
defm : VPatBinaryVL_VV_VX<riscv_umin_vl, "PseudoVMINU">;
defm : VPatBinaryVL_VV_VX<riscv_smin_vl, "PseudoVMIN">;
defm : VPatBinaryVL_VV_VX<riscv_umax_vl, "PseudoVMAXU">;
defm : VPatBinaryVL_VV_VX<riscv_smax_vl, "PseudoVMAX">;
// 11.10. Vector Single-Width Integer Multiply Instructions
defm : VPatBinaryVL_VV_VX<riscv_mul_vl, "PseudoVMUL">;
defm : VPatBinaryVL_VV_VX<riscv_mulhs_vl, "PseudoVMULH", IntegerVectorsExceptI64>;
defm : VPatBinaryVL_VV_VX<riscv_mulhu_vl, "PseudoVMULHU", IntegerVectorsExceptI64>;
// vsmul.vv and vsmul.vx are not included in EEW=64 in Zve64*.
let Predicates = [HasVInstructionsFullMultiply] in {
defm : VPatBinaryVL_VV_VX<riscv_mulhs_vl, "PseudoVMULH", I64IntegerVectors>;
defm : VPatBinaryVL_VV_VX<riscv_mulhu_vl, "PseudoVMULHU", I64IntegerVectors>;
}
// 11.11. Vector Integer Divide Instructions
defm : VPatBinaryVL_VV_VX<riscv_udiv_vl, "PseudoVDIVU", isSEWAware=1>;
defm : VPatBinaryVL_VV_VX<riscv_sdiv_vl, "PseudoVDIV", isSEWAware=1>;
defm : VPatBinaryVL_VV_VX<riscv_urem_vl, "PseudoVREMU", isSEWAware=1>;
defm : VPatBinaryVL_VV_VX<riscv_srem_vl, "PseudoVREM", isSEWAware=1>;
// 11.12. Vector Widening Integer Multiply Instructions
defm : VPatBinaryWVL_VV_VX<riscv_vwmul_vl, "PseudoVWMUL">;
defm : VPatBinaryWVL_VV_VX<riscv_vwmulu_vl, "PseudoVWMULU">;
defm : VPatBinaryWVL_VV_VX<riscv_vwmulsu_vl, "PseudoVWMULSU">;
// 11.13 Vector Single-Width Integer Multiply-Add Instructions
defm : VPatMultiplyAddVL_VV_VX<riscv_add_vl, "PseudoVMADD">;
defm : VPatMultiplyAddVL_VV_VX<riscv_sub_vl, "PseudoVNMSUB">;
defm : VPatMultiplyAccVL_VV_VX<riscv_add_vl_oneuse, "PseudoVMACC">;
defm : VPatMultiplyAccVL_VV_VX<riscv_sub_vl_oneuse, "PseudoVNMSAC">;
// 11.14. Vector Widening Integer Multiply-Add Instructions
defm : VPatWidenMultiplyAddVL_VV_VX<riscv_vwmacc_vl, "PseudoVWMACC">;
defm : VPatWidenMultiplyAddVL_VV_VX<riscv_vwmaccu_vl, "PseudoVWMACCU">;
defm : VPatWidenMultiplyAddVL_VV_VX<riscv_vwmaccsu_vl, "PseudoVWMACCSU">;
foreach vtiTowti = AllWidenableIntVectors in {
defvar vti = vtiTowti.Vti;
defvar wti = vtiTowti.Wti;
let Predicates = !listconcat(GetVTypePredicates<vti>.Predicates,
GetVTypePredicates<wti>.Predicates) in
def : Pat<(riscv_vwmaccsu_vl (vti.Vector vti.RegClass:$rs1),
(SplatPat XLenVT:$rs2),
(wti.Vector wti.RegClass:$rd),
(vti.Mask VMV0:$vm), VLOpFrag),
(!cast<Instruction>("PseudoVWMACCUS_VX_"#vti.LMul.MX#"_MASK")
wti.RegClass:$rd, vti.ScalarRegClass:$rs2, vti.RegClass:$rs1,
(vti.Mask VMV0:$vm), GPR:$vl, vti.Log2SEW, TAIL_AGNOSTIC)>;
}
// 11.15. Vector Integer Merge Instructions
foreach vti = AllIntegerVectors in {
let Predicates = GetVTypePredicates<vti>.Predicates in {
def : Pat<(vti.Vector (riscv_vmerge_vl (vti.Mask VMV0:$vm),
vti.RegClass:$rs1,
vti.RegClass:$rs2,
vti.RegClass:$passthru,
VLOpFrag)),
(!cast<Instruction>("PseudoVMERGE_VVM_"#vti.LMul.MX)
vti.RegClass:$passthru, vti.RegClass:$rs2, vti.RegClass:$rs1,
(vti.Mask VMV0:$vm), GPR:$vl, vti.Log2SEW)>;
def : Pat<(vti.Vector (riscv_vmerge_vl (vti.Mask VMV0:$vm),
(SplatPat XLenVT:$rs1),
vti.RegClass:$rs2,
vti.RegClass:$passthru,
VLOpFrag)),
(!cast<Instruction>("PseudoVMERGE_VXM_"#vti.LMul.MX)
vti.RegClass:$passthru, vti.RegClass:$rs2, GPR:$rs1,
(vti.Mask VMV0:$vm), GPR:$vl, vti.Log2SEW)>;
def : Pat<(vti.Vector (riscv_vmerge_vl (vti.Mask VMV0:$vm),
(SplatPat_simm5 simm5:$rs1),
vti.RegClass:$rs2,
vti.RegClass:$passthru,
VLOpFrag)),
(!cast<Instruction>("PseudoVMERGE_VIM_"#vti.LMul.MX)
vti.RegClass:$passthru, vti.RegClass:$rs2, simm5:$rs1,
(vti.Mask VMV0:$vm), GPR:$vl, vti.Log2SEW)>;
}
}
// 11.16. Vector Integer Move Instructions
foreach vti = AllVectors in {
defvar ivti = GetIntVTypeInfo<vti>.Vti;
let Predicates = GetVTypePredicates<ivti>.Predicates in {
def : Pat<(vti.Vector (riscv_vmv_v_v_vl vti.RegClass:$passthru,
vti.RegClass:$rs2, VLOpFrag)),
(!cast<Instruction>("PseudoVMV_V_V_"#vti.LMul.MX)
vti.RegClass:$passthru, vti.RegClass:$rs2, GPR:$vl, vti.Log2SEW, TU_MU)>;
}
foreach vti = AllIntegerVectors in {
let Predicates = GetVTypePredicates<vti>.Predicates in {
def : Pat<(vti.Vector (riscv_vmv_v_x_vl vti.RegClass:$passthru, GPR:$rs2, VLOpFrag)),
(!cast<Instruction>("PseudoVMV_V_X_"#vti.LMul.MX)
vti.RegClass:$passthru, GPR:$rs2, GPR:$vl, vti.Log2SEW, TU_MU)>;
defvar ImmPat = !cast<ComplexPattern>("sew"#vti.SEW#"simm5");
def : Pat<(vti.Vector (riscv_vmv_v_x_vl vti.RegClass:$passthru, (ImmPat simm5:$imm5),
VLOpFrag)),
(!cast<Instruction>("PseudoVMV_V_I_"#vti.LMul.MX)
vti.RegClass:$passthru, simm5:$imm5, GPR:$vl, vti.Log2SEW, TU_MU)>;
}
}
}
// 12. Vector Fixed-Point Arithmetic Instructions
// 12.1. Vector Single-Width Saturating Add and Subtract
defm : VPatBinaryVL_VV_VX_VI<riscv_saddsat_vl, "PseudoVSADD">;
defm : VPatBinaryVL_VV_VX_VI<riscv_uaddsat_vl, "PseudoVSADDU">;
defm : VPatBinaryVL_VV_VX<riscv_ssubsat_vl, "PseudoVSSUB">;
defm : VPatBinaryVL_VV_VX<riscv_usubsat_vl, "PseudoVSSUBU">;
// 12.2. Vector Single-Width Averaging Add and Subtract
defm : VPatAVGADDVL_VV_VX_RM<riscv_avgfloors_vl, 0b10>;
defm : VPatAVGADDVL_VV_VX_RM<riscv_avgflooru_vl, 0b10, suffix="U">;
defm : VPatAVGADDVL_VV_VX_RM<riscv_avgceils_vl, 0b00>;
defm : VPatAVGADDVL_VV_VX_RM<riscv_avgceilu_vl, 0b00, suffix="U">;
// 12.5. Vector Narrowing Fixed-Point Clip Instructions
foreach vtiTowti = AllWidenableIntVectors in {
defvar vti = vtiTowti.Vti;
defvar wti = vtiTowti.Wti;
let Predicates = !listconcat(GetVTypePredicates<vti>.Predicates,
GetVTypePredicates<wti>.Predicates) in {
// Rounding mode here is arbitrary since we aren't shifting out any bits.
def : Pat<(vti.Vector (riscv_trunc_vector_vl_ssat (wti.Vector wti.RegClass:$rs1),
(vti.Mask VMV0:$vm),
VLOpFrag)),
(!cast<Instruction>("PseudoVNCLIP_WI_"#vti.LMul.MX#"_MASK")
(vti.Vector (IMPLICIT_DEF)), wti.RegClass:$rs1, 0,
(vti.Mask VMV0:$vm), /*RNU*/0, GPR:$vl, vti.Log2SEW, TA_MA)>;
def : Pat<(vti.Vector (riscv_trunc_vector_vl_usat (wti.Vector wti.RegClass:$rs1),
(vti.Mask VMV0:$vm),
VLOpFrag)),
(!cast<Instruction>("PseudoVNCLIPU_WI_"#vti.LMul.MX#"_MASK")
(vti.Vector (IMPLICIT_DEF)), wti.RegClass:$rs1, 0,
(vti.Mask VMV0:$vm), /*RNU*/0, GPR:$vl, vti.Log2SEW, TA_MA)>;
}
}
// 13. Vector Floating-Point Instructions
// 13.2. Vector Single-Width Floating-Point Add/Subtract Instructions
defm : VPatBinaryFPVL_VV_VF_RM<any_riscv_fadd_vl, "PseudoVFADD", isSEWAware=1>;
defm : VPatBinaryFPVL_VV_VF_RM<any_riscv_fsub_vl, "PseudoVFSUB", isSEWAware=1>;
defm : VPatBinaryFPVL_R_VF_RM<any_riscv_fsub_vl, "PseudoVFRSUB", isSEWAware=1>;
// 13.3. Vector Widening Floating-Point Add/Subtract Instructions
defm : VPatBinaryFPWVL_VV_VF_WV_WF_RM<riscv_vfwadd_vl, riscv_vfwadd_w_vl,
"PseudoVFWADD", isSEWAware=1>;
defm : VPatBinaryFPWVL_VV_VF_WV_WF_RM<riscv_vfwsub_vl, riscv_vfwsub_w_vl,
"PseudoVFWSUB", isSEWAware=1>;
// 13.4. Vector Single-Width Floating-Point Multiply/Divide Instructions
defm : VPatBinaryFPVL_VV_VF_RM<any_riscv_fmul_vl, "PseudoVFMUL", isSEWAware=1>;
defm : VPatBinaryFPVL_VV_VF_RM<any_riscv_fdiv_vl, "PseudoVFDIV", isSEWAware=1>;
defm : VPatBinaryFPVL_R_VF_RM<any_riscv_fdiv_vl, "PseudoVFRDIV", isSEWAware=1>;
// 13.5. Vector Widening Floating-Point Multiply Instructions
defm : VPatBinaryFPWVL_VV_VF_RM<riscv_vfwmul_vl, "PseudoVFWMUL", isSEWAware=1>;
// 13.6 Vector Single-Width Floating-Point Fused Multiply-Add Instructions.
defm : VPatFPMulAddVL_VV_VF_RM<any_riscv_vfmadd_vl, "PseudoVFMADD">;
defm : VPatFPMulAddVL_VV_VF_RM<any_riscv_vfmsub_vl, "PseudoVFMSUB">;
defm : VPatFPMulAddVL_VV_VF_RM<any_riscv_vfnmadd_vl, "PseudoVFNMADD">;
defm : VPatFPMulAddVL_VV_VF_RM<any_riscv_vfnmsub_vl, "PseudoVFNMSUB">;
defm : VPatFPMulAccVL_VV_VF_RM<riscv_vfmadd_vl_oneuse, "PseudoVFMACC">;
defm : VPatFPMulAccVL_VV_VF_RM<riscv_vfmsub_vl_oneuse, "PseudoVFMSAC">;
defm : VPatFPMulAccVL_VV_VF_RM<riscv_vfnmadd_vl_oneuse, "PseudoVFNMACC">;
defm : VPatFPMulAccVL_VV_VF_RM<riscv_vfnmsub_vl_oneuse, "PseudoVFNMSAC">;
// 13.7. Vector Widening Floating-Point Fused Multiply-Add Instructions
defm : VPatWidenFPMulAccVL_VV_VF_RM<riscv_vfwmadd_vl, "PseudoVFWMACC">;
defm : VPatWidenFPMulAccVL_VV_VF_RM<riscv_vfwmadd_vl, "PseudoVFWMACCBF16",
AllWidenableBFloatToFloatVectors>;
defm : VPatWidenFPMulAccVL_VV_VF_RM<riscv_vfwnmadd_vl, "PseudoVFWNMACC">;
defm : VPatWidenFPMulAccVL_VV_VF_RM<riscv_vfwmsub_vl, "PseudoVFWMSAC">;
defm : VPatWidenFPMulAccVL_VV_VF_RM<riscv_vfwnmsub_vl, "PseudoVFWNMSAC">;
// 13.11. Vector Floating-Point MIN/MAX Instructions
defm : VPatBinaryFPVL_VV_VF<riscv_vfmin_vl, "PseudoVFMIN", isSEWAware=1>;
defm : VPatBinaryFPVL_VV_VF<riscv_vfmax_vl, "PseudoVFMAX", isSEWAware=1>;
// 13.13. Vector Floating-Point Compare Instructions
defm : VPatFPSetCCVL_VV_VF_FV<any_riscv_fsetcc_vl, SETEQ,
"PseudoVMFEQ", "PseudoVMFEQ">;
defm : VPatFPSetCCVL_VV_VF_FV<any_riscv_fsetcc_vl, SETOEQ,
"PseudoVMFEQ", "PseudoVMFEQ">;
defm : VPatFPSetCCVL_VV_VF_FV<any_riscv_fsetcc_vl, SETNE,
"PseudoVMFNE", "PseudoVMFNE">;
defm : VPatFPSetCCVL_VV_VF_FV<any_riscv_fsetcc_vl, SETUNE,
"PseudoVMFNE", "PseudoVMFNE">;
defm : VPatFPSetCCVL_VV_VF_FV<any_riscv_fsetccs_vl, SETLT,
"PseudoVMFLT", "PseudoVMFGT">;
defm : VPatFPSetCCVL_VV_VF_FV<any_riscv_fsetccs_vl, SETOLT,
"PseudoVMFLT", "PseudoVMFGT">;
defm : VPatFPSetCCVL_VV_VF_FV<any_riscv_fsetccs_vl, SETLE,
"PseudoVMFLE", "PseudoVMFGE">;
defm : VPatFPSetCCVL_VV_VF_FV<any_riscv_fsetccs_vl, SETOLE,
"PseudoVMFLE", "PseudoVMFGE">;
foreach vti = AllFloatVectors in {
let Predicates = GetVTypePredicates<vti>.Predicates in {
// 13.8. Vector Floating-Point Square-Root Instruction
def : Pat<(any_riscv_fsqrt_vl (vti.Vector vti.RegClass:$rs2), (vti.Mask VMV0:$vm),
VLOpFrag),
(!cast<Instruction>("PseudoVFSQRT_V_"# vti.LMul.MX # "_E" # vti.SEW # "_MASK")
(vti.Vector (IMPLICIT_DEF)), vti.RegClass:$rs2,
(vti.Mask VMV0:$vm),
// Value to indicate no rounding mode change in
// RISCVInsertReadWriteCSR
FRM_DYN,
GPR:$vl, vti.Log2SEW, TA_MA)>;
// 13.12. Vector Floating-Point Sign-Injection Instructions
def : Pat<(riscv_fabs_vl (vti.Vector vti.RegClass:$rs), (vti.Mask VMV0:$vm),
VLOpFrag),
(!cast<Instruction>("PseudoVFSGNJX_VV_"# vti.LMul.MX #"_E"#vti.SEW#"_MASK")
(vti.Vector (IMPLICIT_DEF)), vti.RegClass:$rs,
vti.RegClass:$rs, (vti.Mask VMV0:$vm), GPR:$vl, vti.Log2SEW,
TA_MA)>;
// Handle fneg with VFSGNJN using the same input for both operands.
def : Pat<(riscv_fneg_vl (vti.Vector vti.RegClass:$rs), (vti.Mask VMV0:$vm),
VLOpFrag),
(!cast<Instruction>("PseudoVFSGNJN_VV_"# vti.LMul.MX#"_E"#vti.SEW #"_MASK")
(vti.Vector (IMPLICIT_DEF)), vti.RegClass:$rs,
vti.RegClass:$rs, (vti.Mask VMV0:$vm), GPR:$vl, vti.Log2SEW,
TA_MA)>;
def : Pat<(riscv_fcopysign_vl (vti.Vector vti.RegClass:$rs1),
(vti.Vector vti.RegClass:$rs2),
vti.RegClass:$passthru,
(vti.Mask VMV0:$vm),
VLOpFrag),
(!cast<Instruction>("PseudoVFSGNJ_VV_"# vti.LMul.MX#"_E"#vti.SEW#"_MASK")
vti.RegClass:$passthru, vti.RegClass:$rs1,
vti.RegClass:$rs2, (vti.Mask VMV0:$vm), GPR:$vl, vti.Log2SEW,
TAIL_AGNOSTIC)>;
def : Pat<(riscv_fcopysign_vl (vti.Vector vti.RegClass:$rs1),
(riscv_fneg_vl vti.RegClass:$rs2,
(vti.Mask true_mask),
VLOpFrag),
srcvalue,
(vti.Mask true_mask),
VLOpFrag),
(!cast<Instruction>("PseudoVFSGNJN_VV_"# vti.LMul.MX#"_E"#vti.SEW)
(vti.Vector (IMPLICIT_DEF)),
vti.RegClass:$rs1, vti.RegClass:$rs2, GPR:$vl, vti.Log2SEW, TA_MA)>;
def : Pat<(riscv_fcopysign_vl (vti.Vector vti.RegClass:$rs1),
(SplatFPOp vti.ScalarRegClass:$rs2),
vti.RegClass:$passthru,
(vti.Mask VMV0:$vm),
VLOpFrag),
(!cast<Instruction>("PseudoVFSGNJ_V"#vti.ScalarSuffix#"_"# vti.LMul.MX#"_E"#vti.SEW#"_MASK")
vti.RegClass:$passthru, vti.RegClass:$rs1,
vti.ScalarRegClass:$rs2, (vti.Mask VMV0:$vm), GPR:$vl, vti.Log2SEW,
TAIL_AGNOSTIC)>;
// Rounding without exception to implement nearbyint.
def : Pat<(any_riscv_vfround_noexcept_vl (vti.Vector vti.RegClass:$rs1),
(vti.Mask VMV0:$vm), VLOpFrag),
(!cast<Instruction>("PseudoVFROUND_NOEXCEPT_V_" # vti.LMul.MX #"_MASK")
(vti.Vector (IMPLICIT_DEF)), vti.RegClass:$rs1,
(vti.Mask VMV0:$vm), GPR:$vl, vti.Log2SEW, TA_MA)>;
// 14.14. Vector Floating-Point Classify Instruction
def : Pat<(riscv_fclass_vl (vti.Vector vti.RegClass:$rs2),
(vti.Mask VMV0:$vm), VLOpFrag),
(!cast<Instruction>("PseudoVFCLASS_V_"# vti.LMul.MX #"_MASK")
(vti.Vector (IMPLICIT_DEF)), vti.RegClass:$rs2,
(vti.Mask VMV0:$vm), GPR:$vl, vti.Log2SEW, TA_MA)>;
}
}
foreach fvti = AllFloatVectors in {
// Floating-point vselects:
// 11.15. Vector Integer Merge Instructions
// 13.15. Vector Floating-Point Merge Instruction
defvar ivti = GetIntVTypeInfo<fvti>.Vti;
let Predicates = GetVTypePredicates<ivti>.Predicates in {
def : Pat<(fvti.Vector (riscv_vmerge_vl (fvti.Mask VMV0:$vm),
fvti.RegClass:$rs1,
fvti.RegClass:$rs2,
fvti.RegClass:$passthru,
VLOpFrag)),
(!cast<Instruction>("PseudoVMERGE_VVM_"#fvti.LMul.MX)
fvti.RegClass:$passthru, fvti.RegClass:$rs2, fvti.RegClass:$rs1, (fvti.Mask VMV0:$vm),
GPR:$vl, fvti.Log2SEW)>;
def : Pat<(fvti.Vector (riscv_vmerge_vl (fvti.Mask VMV0:$vm),
(SplatFPOp (SelectScalarFPAsInt (XLenVT GPR:$imm))),
fvti.RegClass:$rs2,
fvti.RegClass:$passthru,
VLOpFrag)),
(!cast<Instruction>("PseudoVMERGE_VXM_"#fvti.LMul.MX)
fvti.RegClass:$passthru, fvti.RegClass:$rs2, GPR:$imm, (fvti.Mask VMV0:$vm),
GPR:$vl, fvti.Log2SEW)>;
def : Pat<(fvti.Vector (riscv_vmerge_vl (fvti.Mask VMV0:$vm),
(SplatFPOp (fvti.Scalar fpimm0)),
fvti.RegClass:$rs2,
fvti.RegClass:$passthru,
VLOpFrag)),
(!cast<Instruction>("PseudoVMERGE_VIM_"#fvti.LMul.MX)
fvti.RegClass:$passthru, fvti.RegClass:$rs2, 0, (fvti.Mask VMV0:$vm),
GPR:$vl, fvti.Log2SEW)>;
}
}
foreach fvti = AllFloatVectors in {
let Predicates = GetVTypePredicates<fvti>.Predicates in {
def : Pat<(fvti.Vector (riscv_vmerge_vl (fvti.Mask VMV0:$vm),
(SplatFPOp fvti.ScalarRegClass:$rs1),
fvti.RegClass:$rs2,
fvti.RegClass:$passthru,
VLOpFrag)),
(!cast<Instruction>("PseudoVFMERGE_V"#fvti.ScalarSuffix#"M_"#fvti.LMul.MX)
fvti.RegClass:$passthru, fvti.RegClass:$rs2,
(fvti.Scalar fvti.ScalarRegClass:$rs1),
(fvti.Mask VMV0:$vm), GPR:$vl, fvti.Log2SEW)>;
}
}
foreach fvti = AllFloatVectors in {
defvar ivti = GetIntVTypeInfo<fvti>.Vti;
let Predicates = GetVTypePredicates<ivti>.Predicates in {
// 13.16. Vector Floating-Point Move Instruction
// If we're splatting fpimm0, use vmv.v.x vd, x0.
def : Pat<(fvti.Vector (riscv_vfmv_v_f_vl
fvti.Vector:$passthru, (fvti.Scalar (fpimm0)), VLOpFrag)),
(!cast<Instruction>("PseudoVMV_V_I_"#fvti.LMul.MX)
$passthru, 0, GPR:$vl, fvti.Log2SEW, TU_MU)>;
def : Pat<(fvti.Vector (riscv_vfmv_v_f_vl
fvti.Vector:$passthru, (fvti.Scalar (SelectScalarFPAsInt (XLenVT GPR:$imm))), VLOpFrag)),
(!cast<Instruction>("PseudoVMV_V_X_"#fvti.LMul.MX)
$passthru, GPR:$imm, GPR:$vl, fvti.Log2SEW, TU_MU)>;
}
}
foreach fvti = AllFloatVectors in {
let Predicates = GetVTypePredicates<fvti>.Predicates in {
def : Pat<(fvti.Vector (riscv_vfmv_v_f_vl
fvti.Vector:$passthru, (fvti.Scalar fvti.ScalarRegClass:$rs2), VLOpFrag)),
(!cast<Instruction>("PseudoVFMV_V_" # fvti.ScalarSuffix # "_" #
fvti.LMul.MX)
$passthru, (fvti.Scalar fvti.ScalarRegClass:$rs2),
GPR:$vl, fvti.Log2SEW, TU_MU)>;
}
}
// 13.17. Vector Single-Width Floating-Point/Integer Type-Convert Instructions
defm : VPatConvertFP2I_RM_VL_V<riscv_vfcvt_rm_xu_f_vl, "PseudoVFCVT_XU_F_V">;
defm : VPatConvertFP2I_RM_VL_V<any_riscv_vfcvt_rm_x_f_vl, "PseudoVFCVT_X_F_V">;
defm : VPatConvertFP2IVL_V<any_riscv_vfcvt_rtz_xu_f_vl, "PseudoVFCVT_RTZ_XU_F_V">;
defm : VPatConvertFP2IVL_V<any_riscv_vfcvt_rtz_x_f_vl, "PseudoVFCVT_RTZ_X_F_V">;
defm : VPatConvertI2FPVL_V_RM<any_riscv_uint_to_fp_vl, "PseudoVFCVT_F_XU_V">;
defm : VPatConvertI2FPVL_V_RM<any_riscv_sint_to_fp_vl, "PseudoVFCVT_F_X_V">;
defm : VPatConvertI2FP_RM_VL_V<riscv_vfcvt_rm_f_xu_vl, "PseudoVFCVT_F_XU_V">;
defm : VPatConvertI2FP_RM_VL_V<riscv_vfcvt_rm_f_x_vl, "PseudoVFCVT_F_X_V">;
// 13.18. Widening Floating-Point/Integer Type-Convert Instructions
defm : VPatWConvertFP2I_RM_VL_V<riscv_vfcvt_rm_xu_f_vl, "PseudoVFWCVT_XU_F_V">;
defm : VPatWConvertFP2I_RM_VL_V<riscv_vfcvt_rm_x_f_vl, "PseudoVFWCVT_X_F_V">;
defm : VPatWConvertFP2IVL_V<any_riscv_vfcvt_rtz_xu_f_vl, "PseudoVFWCVT_RTZ_XU_F_V">;
defm : VPatWConvertFP2IVL_V<any_riscv_vfcvt_rtz_x_f_vl, "PseudoVFWCVT_RTZ_X_F_V">;
defm : VPatWConvertI2FPVL_V<any_riscv_uint_to_fp_vl, "PseudoVFWCVT_F_XU_V">;
defm : VPatWConvertI2FPVL_V<any_riscv_sint_to_fp_vl, "PseudoVFWCVT_F_X_V">;
foreach fvtiToFWti = AllWidenableFloatVectors in {
defvar fvti = fvtiToFWti.Vti;
defvar fwti = fvtiToFWti.Wti;
// Define vfwcvt.f.f.v for f16 when Zvfhmin is enable.
let Predicates = !listconcat(GetVTypeMinimalPredicates<fvti>.Predicates,
GetVTypeMinimalPredicates<fwti>.Predicates) in
def : Pat<(fwti.Vector (any_riscv_fpextend_vl
(fvti.Vector fvti.RegClass:$rs1),
(fvti.Mask VMV0:$vm),
VLOpFrag)),
(!cast<Instruction>("PseudoVFWCVT_F_F_V_"#fvti.LMul.MX#"_E"#fvti.SEW#"_MASK")
(fwti.Vector (IMPLICIT_DEF)), fvti.RegClass:$rs1,
(fvti.Mask VMV0:$vm),
GPR:$vl, fvti.Log2SEW, TA_MA)>;
}
foreach fvtiToFWti = AllWidenableBFloatToFloatVectors in {
defvar fvti = fvtiToFWti.Vti;
defvar fwti = fvtiToFWti.Wti;
let Predicates = [HasVInstructionsBF16Minimal] in
def : Pat<(fwti.Vector (any_riscv_fpextend_vl
(fvti.Vector fvti.RegClass:$rs1),
(fvti.Mask VMV0:$vm),
VLOpFrag)),
(!cast<Instruction>("PseudoVFWCVTBF16_F_F_V_"#fvti.LMul.MX#"_E"#fvti.SEW#"_MASK")
(fwti.Vector (IMPLICIT_DEF)), fvti.RegClass:$rs1,
(fvti.Mask VMV0:$vm),
GPR:$vl, fvti.Log2SEW, TA_MA)>;
}
// 13.19 Narrowing Floating-Point/Integer Type-Convert Instructions
defm : VPatNConvertFP2I_RM_VL_W<riscv_vfcvt_rm_xu_f_vl, "PseudoVFNCVT_XU_F_W">;
defm : VPatNConvertFP2I_RM_VL_W<riscv_vfcvt_rm_x_f_vl, "PseudoVFNCVT_X_F_W">;
defm : VPatNConvertFP2IVL_W<any_riscv_vfcvt_rtz_xu_f_vl, "PseudoVFNCVT_RTZ_XU_F_W">;
defm : VPatNConvertFP2IVL_W<any_riscv_vfcvt_rtz_x_f_vl, "PseudoVFNCVT_RTZ_X_F_W">;
defm : VPatNConvertI2FPVL_W_RM<any_riscv_uint_to_fp_vl, "PseudoVFNCVT_F_XU_W">;
defm : VPatNConvertI2FPVL_W_RM<any_riscv_sint_to_fp_vl, "PseudoVFNCVT_F_X_W">;
defm : VPatNConvertI2FP_RM_VL_W<riscv_vfcvt_rm_f_xu_vl, "PseudoVFNCVT_F_XU_W">;
defm : VPatNConvertI2FP_RM_VL_W<riscv_vfcvt_rm_f_x_vl, "PseudoVFNCVT_F_X_W">;
foreach fvtiToFWti = AllWidenableFloatVectors in {
defvar fvti = fvtiToFWti.Vti;
defvar fwti = fvtiToFWti.Wti;
// Define vfncvt.f.f.w for f16 when Zvfhmin is enable.
let Predicates = !listconcat(GetVTypeMinimalPredicates<fvti>.Predicates,
GetVTypeMinimalPredicates<fwti>.Predicates) in {
def : Pat<(fvti.Vector (any_riscv_fpround_vl
(fwti.Vector fwti.RegClass:$rs1),
(fwti.Mask VMV0:$vm), VLOpFrag)),
(!cast<Instruction>("PseudoVFNCVT_F_F_W_"#fvti.LMul.MX#"_E"#fvti.SEW#"_MASK")
(fvti.Vector (IMPLICIT_DEF)), fwti.RegClass:$rs1,
(fwti.Mask VMV0:$vm),
// Value to indicate no rounding mode change in
// RISCVInsertReadWriteCSR
FRM_DYN,
GPR:$vl, fvti.Log2SEW, TA_MA)>;
let Predicates = !listconcat(GetVTypePredicates<fvti>.Predicates,
GetVTypePredicates<fwti>.Predicates) in
def : Pat<(fvti.Vector (any_riscv_fncvt_rod_vl
(fwti.Vector fwti.RegClass:$rs1),
(fwti.Mask VMV0:$vm), VLOpFrag)),
(!cast<Instruction>("PseudoVFNCVT_ROD_F_F_W_"#fvti.LMul.MX#"_E"#fvti.SEW#"_MASK")
(fvti.Vector (IMPLICIT_DEF)), fwti.RegClass:$rs1,
(fwti.Mask VMV0:$vm), GPR:$vl, fvti.Log2SEW, TA_MA)>;
}
}
foreach fvtiToFWti = AllWidenableBFloatToFloatVectors in {
defvar fvti = fvtiToFWti.Vti;
defvar fwti = fvtiToFWti.Wti;
let Predicates = [HasVInstructionsBF16Minimal] in
def : Pat<(fvti.Vector (any_riscv_fpround_vl
(fwti.Vector fwti.RegClass:$rs1),
(fwti.Mask VMV0:$vm), VLOpFrag)),
(!cast<Instruction>("PseudoVFNCVTBF16_F_F_W_"#fvti.LMul.MX#"_E"#fvti.SEW#"_MASK")
(fvti.Vector (IMPLICIT_DEF)), fwti.RegClass:$rs1,
(fwti.Mask VMV0:$vm),
// Value to indicate no rounding mode change in
// RISCVInsertReadWriteCSR
FRM_DYN,
GPR:$vl, fvti.Log2SEW, TA_MA)>;
}
// 14. Vector Reduction Operations
// 14.1. Vector Single-Width Integer Reduction Instructions
defm : VPatReductionVL<rvv_vecreduce_ADD_vl, "PseudoVREDSUM", is_float=0>;
defm : VPatReductionVL<rvv_vecreduce_UMAX_vl, "PseudoVREDMAXU", is_float=0>;
defm : VPatReductionVL<rvv_vecreduce_SMAX_vl, "PseudoVREDMAX", is_float=0>;
defm : VPatReductionVL<rvv_vecreduce_UMIN_vl, "PseudoVREDMINU", is_float=0>;
defm : VPatReductionVL<rvv_vecreduce_SMIN_vl, "PseudoVREDMIN", is_float=0>;
defm : VPatReductionVL<rvv_vecreduce_AND_vl, "PseudoVREDAND", is_float=0>;
defm : VPatReductionVL<rvv_vecreduce_OR_vl, "PseudoVREDOR", is_float=0>;
defm : VPatReductionVL<rvv_vecreduce_XOR_vl, "PseudoVREDXOR", is_float=0>;
// 14.2. Vector Widening Integer Reduction Instructions
defm : VPatWidenReductionVL<rvv_vecreduce_ADD_vl, anyext_oneuse, "PseudoVWREDSUMU", is_float=0>;
defm : VPatWidenReductionVL<rvv_vecreduce_ADD_vl, zext_oneuse, "PseudoVWREDSUMU", is_float=0>;
defm : VPatWidenReductionVL_Ext_VL<rvv_vecreduce_ADD_vl, riscv_zext_vl_oneuse, "PseudoVWREDSUMU", is_float=0>;
defm : VPatWidenReductionVL<rvv_vecreduce_ADD_vl, sext_oneuse, "PseudoVWREDSUM", is_float=0>;
defm : VPatWidenReductionVL_Ext_VL<rvv_vecreduce_ADD_vl, riscv_sext_vl_oneuse, "PseudoVWREDSUM", is_float=0>;
// 14.3. Vector Single-Width Floating-Point Reduction Instructions
defm : VPatReductionVL_RM<rvv_vecreduce_SEQ_FADD_vl, "PseudoVFREDOSUM", is_float=1>;
defm : VPatReductionVL_RM<rvv_vecreduce_FADD_vl, "PseudoVFREDUSUM", is_float=1>;
defm : VPatReductionVL<rvv_vecreduce_FMIN_vl, "PseudoVFREDMIN", is_float=1>;
defm : VPatReductionVL<rvv_vecreduce_FMAX_vl, "PseudoVFREDMAX", is_float=1>;
// 14.4. Vector Widening Floating-Point Reduction Instructions
defm : VPatWidenReductionVL_Ext_VL_RM<rvv_vecreduce_SEQ_FADD_vl,
riscv_fpextend_vl_oneuse,
"PseudoVFWREDOSUM", is_float=1>;
defm : VPatWidenReductionVL_Ext_VL_RM<rvv_vecreduce_FADD_vl,
riscv_fpextend_vl_oneuse,
"PseudoVFWREDUSUM", is_float=1>;
// 15. Vector Mask Instructions
foreach mti = AllMasks in {
let Predicates = [HasVInstructions] in {
// 15.1 Vector Mask-Register Logical Instructions
def : Pat<(mti.Mask (riscv_vmset_vl VLOpFrag)),
(!cast<Instruction>("PseudoVMSET_M_" # mti.BX) GPR:$vl, mti.Log2SEW)>;
def : Pat<(mti.Mask (riscv_vmclr_vl VLOpFrag)),
(!cast<Instruction>("PseudoVMCLR_M_" # mti.BX) GPR:$vl, mti.Log2SEW)>;
def : Pat<(mti.Mask (riscv_vmand_vl VR:$rs1, VR:$rs2, VLOpFrag)),
(!cast<Instruction>("PseudoVMAND_MM_" # mti.BX)
VR:$rs1, VR:$rs2, GPR:$vl, mti.Log2SEW)>;
def : Pat<(mti.Mask (riscv_vmor_vl VR:$rs1, VR:$rs2, VLOpFrag)),
(!cast<Instruction>("PseudoVMOR_MM_" # mti.BX)
VR:$rs1, VR:$rs2, GPR:$vl, mti.Log2SEW)>;
def : Pat<(mti.Mask (riscv_vmxor_vl VR:$rs1, VR:$rs2, VLOpFrag)),
(!cast<Instruction>("PseudoVMXOR_MM_" # mti.BX)
VR:$rs1, VR:$rs2, GPR:$vl, mti.Log2SEW)>;
def : Pat<(mti.Mask (riscv_vmand_vl VR:$rs1,
(riscv_vmnot_vl VR:$rs2, VLOpFrag),
VLOpFrag)),
(!cast<Instruction>("PseudoVMANDN_MM_" # mti.BX)
VR:$rs1, VR:$rs2, GPR:$vl, mti.Log2SEW)>;
def : Pat<(mti.Mask (riscv_vmor_vl VR:$rs1,
(riscv_vmnot_vl VR:$rs2, VLOpFrag),
VLOpFrag)),
(!cast<Instruction>("PseudoVMORN_MM_" # mti.BX)
VR:$rs1, VR:$rs2, GPR:$vl, mti.Log2SEW)>;
// XOR is associative so we need 2 patterns for VMXNOR.
def : Pat<(mti.Mask (riscv_vmxor_vl (riscv_vmnot_vl VR:$rs1,
VLOpFrag),
VR:$rs2, VLOpFrag)),
(!cast<Instruction>("PseudoVMXNOR_MM_" # mti.BX)
VR:$rs1, VR:$rs2, GPR:$vl, mti.Log2SEW)>;
def : Pat<(mti.Mask (riscv_vmnot_vl (riscv_vmand_vl VR:$rs1, VR:$rs2,
VLOpFrag),
VLOpFrag)),
(!cast<Instruction>("PseudoVMNAND_MM_" # mti.BX)
VR:$rs1, VR:$rs2, GPR:$vl, mti.Log2SEW)>;
def : Pat<(mti.Mask (riscv_vmnot_vl (riscv_vmor_vl VR:$rs1, VR:$rs2,
VLOpFrag),
VLOpFrag)),
(!cast<Instruction>("PseudoVMNOR_MM_" # mti.BX)
VR:$rs1, VR:$rs2, GPR:$vl, mti.Log2SEW)>;
def : Pat<(mti.Mask (riscv_vmnot_vl (riscv_vmxor_vl VR:$rs1, VR:$rs2,
VLOpFrag),
VLOpFrag)),
(!cast<Instruction>("PseudoVMXNOR_MM_" # mti.BX)
VR:$rs1, VR:$rs2, GPR:$vl, mti.Log2SEW)>;
// Match the not idiom to the vmnot.m pseudo.
def : Pat<(mti.Mask (riscv_vmnot_vl VR:$rs, VLOpFrag)),
(!cast<Instruction>("PseudoVMNAND_MM_" # mti.BX)
VR:$rs, VR:$rs, GPR:$vl, mti.Log2SEW)>;
// 15.2 Vector count population in mask vcpop.m
def : Pat<(XLenVT (riscv_vcpop_vl (mti.Mask VR:$rs2), (mti.Mask VMV0:$vm),
VLOpFrag)),
(!cast<Instruction>("PseudoVCPOP_M_" # mti.BX # "_MASK")
VR:$rs2, (mti.Mask VMV0:$vm), GPR:$vl, mti.Log2SEW)>;
// 15.3 vfirst find-first-set mask bit
def : Pat<(XLenVT (riscv_vfirst_vl (mti.Mask VR:$rs2), (mti.Mask VMV0:$vm),
VLOpFrag)),
(!cast<Instruction>("PseudoVFIRST_M_" # mti.BX # "_MASK")
VR:$rs2, (mti.Mask VMV0:$vm), GPR:$vl, mti.Log2SEW)>;
}
}
// 16. Vector Permutation Instructions
// 16.1. Integer Scalar Move Instructions
foreach vti = NoGroupIntegerVectors in {
let Predicates = GetVTypePredicates<vti>.Predicates in {
def : Pat<(vti.Vector (riscv_vmv_s_x_vl (vti.Vector vti.RegClass:$passthru),
vti.ScalarRegClass:$rs1,
VLOpFrag)),
(PseudoVMV_S_X $passthru, vti.ScalarRegClass:$rs1, GPR:$vl,
vti.Log2SEW)>;
}
}
// 16.4. Vector Register Gather Instruction
foreach vti = AllIntegerVectors in {
let Predicates = GetVTypePredicates<vti>.Predicates in {
def : Pat<(vti.Vector (riscv_vrgather_vv_vl vti.RegClass:$rs2,
vti.RegClass:$rs1,
vti.RegClass:$passthru,
(vti.Mask VMV0:$vm),
VLOpFrag)),
(!cast<Instruction>("PseudoVRGATHER_VV_"# vti.LMul.MX#"_E"# vti.SEW#"_MASK")
vti.RegClass:$passthru, vti.RegClass:$rs2, vti.RegClass:$rs1,
(vti.Mask VMV0:$vm), GPR:$vl, vti.Log2SEW, TAIL_AGNOSTIC)>;
def : Pat<(vti.Vector (riscv_vrgather_vx_vl vti.RegClass:$rs2, GPR:$rs1,
vti.RegClass:$passthru,
(vti.Mask VMV0:$vm),
VLOpFrag)),
(!cast<Instruction>("PseudoVRGATHER_VX_"# vti.LMul.MX#"_MASK")
vti.RegClass:$passthru, vti.RegClass:$rs2, GPR:$rs1,
(vti.Mask VMV0:$vm), GPR:$vl, vti.Log2SEW, TAIL_AGNOSTIC)>;
def : Pat<(vti.Vector (riscv_vrgather_vx_vl vti.RegClass:$rs2,
uimm5:$imm,
vti.RegClass:$passthru,
(vti.Mask VMV0:$vm),
VLOpFrag)),
(!cast<Instruction>("PseudoVRGATHER_VI_"# vti.LMul.MX#"_MASK")
vti.RegClass:$passthru, vti.RegClass:$rs2, uimm5:$imm,
(vti.Mask VMV0:$vm), GPR:$vl, vti.Log2SEW, TAIL_AGNOSTIC)>;
}
// emul = lmul * 16 / sew
defvar vlmul = vti.LMul;
defvar octuple_lmul = vlmul.octuple;
defvar octuple_emul = !srl(!mul(octuple_lmul, 16), vti.Log2SEW);
if !and(!ge(octuple_emul, 1), !le(octuple_emul, 64)) then {
defvar emul_str = octuple_to_str<octuple_emul>.ret;
defvar ivti = !cast<VTypeInfo>("VI16" # emul_str);
defvar inst = "PseudoVRGATHEREI16_VV_" # vti.LMul.MX # "_E" # vti.SEW # "_" # emul_str;
let Predicates = GetVTypePredicates<vti>.Predicates in
def : Pat<(vti.Vector
(riscv_vrgatherei16_vv_vl vti.RegClass:$rs2,
(ivti.Vector ivti.RegClass:$rs1),
vti.RegClass:$passthru,
(vti.Mask VMV0:$vm),
VLOpFrag)),
(!cast<Instruction>(inst#"_MASK")
vti.RegClass:$passthru, vti.RegClass:$rs2, ivti.RegClass:$rs1,
(vti.Mask VMV0:$vm), GPR:$vl, vti.Log2SEW, TAIL_AGNOSTIC)>;
}
}
// 16.2. Floating-Point Scalar Move Instructions
foreach vti = NoGroupFloatVectors in {
let Predicates = GetVTypePredicates<vti>.Predicates in {
def : Pat<(vti.Vector (riscv_vfmv_s_f_vl (vti.Vector vti.RegClass:$passthru),
(vti.Scalar (fpimm0)),
VLOpFrag)),
(PseudoVMV_S_X $passthru, (XLenVT X0), GPR:$vl, vti.Log2SEW)>;
def : Pat<(vti.Vector (riscv_vfmv_s_f_vl (vti.Vector vti.RegClass:$passthru),
(vti.Scalar (SelectScalarFPAsInt (XLenVT GPR:$imm))),
VLOpFrag)),
(PseudoVMV_S_X $passthru, GPR:$imm, GPR:$vl, vti.Log2SEW)>;
def : Pat<(vti.Vector (riscv_vfmv_s_f_vl (vti.Vector vti.RegClass:$passthru),
vti.ScalarRegClass:$rs1,
VLOpFrag)),
(!cast<Instruction>("PseudoVFMV_S_"#vti.ScalarSuffix)
vti.RegClass:$passthru,
(vti.Scalar vti.ScalarRegClass:$rs1), GPR:$vl, vti.Log2SEW)>;
}
}
foreach vti = AllFloatVectors in {
defvar ivti = GetIntVTypeInfo<vti>.Vti;
let Predicates = GetVTypePredicates<ivti>.Predicates in {
def : Pat<(vti.Vector
(riscv_vrgather_vv_vl vti.RegClass:$rs2,
(ivti.Vector vti.RegClass:$rs1),
vti.RegClass:$passthru,
(vti.Mask VMV0:$vm),
VLOpFrag)),
(!cast<Instruction>("PseudoVRGATHER_VV_"# vti.LMul.MX#"_E"# vti.SEW#"_MASK")
vti.RegClass:$passthru, vti.RegClass:$rs2, vti.RegClass:$rs1,
(vti.Mask VMV0:$vm), GPR:$vl, vti.Log2SEW, TAIL_AGNOSTIC)>;
def : Pat<(vti.Vector (riscv_vrgather_vx_vl vti.RegClass:$rs2, GPR:$rs1,
vti.RegClass:$passthru,
(vti.Mask VMV0:$vm),
VLOpFrag)),
(!cast<Instruction>("PseudoVRGATHER_VX_"# vti.LMul.MX#"_MASK")
vti.RegClass:$passthru, vti.RegClass:$rs2, GPR:$rs1,
(vti.Mask VMV0:$vm), GPR:$vl, vti.Log2SEW, TAIL_AGNOSTIC)>;
def : Pat<(vti.Vector
(riscv_vrgather_vx_vl vti.RegClass:$rs2,
uimm5:$imm,
vti.RegClass:$passthru,
(vti.Mask VMV0:$vm),
VLOpFrag)),
(!cast<Instruction>("PseudoVRGATHER_VI_"# vti.LMul.MX#"_MASK")
vti.RegClass:$passthru, vti.RegClass:$rs2, uimm5:$imm,
(vti.Mask VMV0:$vm), GPR:$vl, vti.Log2SEW, TAIL_AGNOSTIC)>;
}
defvar vlmul = vti.LMul;
defvar octuple_lmul = vlmul.octuple;
defvar octuple_emul = !srl(!mul(octuple_lmul, 16), vti.Log2SEW);
if !and(!ge(octuple_emul, 1), !le(octuple_emul, 64)) then {
defvar emul_str = octuple_to_str<octuple_emul>.ret;
defvar ivti = !cast<VTypeInfo>("VI16" # emul_str);
defvar inst = "PseudoVRGATHEREI16_VV_" # vti.LMul.MX # "_E" # vti.SEW # "_" # emul_str;
let Predicates = !listconcat(GetVTypePredicates<vti>.Predicates,
GetVTypePredicates<ivti>.Predicates) in
def : Pat<(vti.Vector
(riscv_vrgatherei16_vv_vl vti.RegClass:$rs2,
(ivti.Vector ivti.RegClass:$rs1),
vti.RegClass:$passthru,
(vti.Mask VMV0:$vm),
VLOpFrag)),
(!cast<Instruction>(inst#"_MASK")
vti.RegClass:$passthru, vti.RegClass:$rs2, ivti.RegClass:$rs1,
(vti.Mask VMV0:$vm), GPR:$vl, vti.Log2SEW, TAIL_AGNOSTIC)>;
}
}
//===----------------------------------------------------------------------===//
// Miscellaneous RISCVISD SDNodes
//===----------------------------------------------------------------------===//
// Matches the semantics of the vid.v instruction, with a mask and VL
// operand.
let HasMaskOp = true in
def riscv_vid_vl : RVSDNode<"VID_VL", SDTypeProfile<1, 2, [SDTCisVec<0>,
SDTCVecEltisVT<1, i1>,
SDTCisSameNumEltsAs<0, 1>,
SDTCisVT<2, XLenVT>]>>;
def SDTRVVSlide : SDTypeProfile<1, 6, [
SDTCisVec<0>, SDTCisSameAs<1, 0>, SDTCisSameAs<2, 0>, SDTCisVT<3, XLenVT>,
SDTCVecEltisVT<4, i1>, SDTCisSameNumEltsAs<0, 4>, SDTCisVT<5, XLenVT>,
SDTCisVT<6, XLenVT>
]>;
def SDTRVVSlide1 : SDTypeProfile<1, 5, [
SDTCisVec<0>, SDTCisSameAs<1, 0>, SDTCisSameAs<2, 0>, SDTCisInt<0>,
SDTCisVT<3, XLenVT>, SDTCVecEltisVT<4, i1>, SDTCisSameNumEltsAs<0, 4>,
SDTCisVT<5, XLenVT>
]>;
def SDTRVVFSlide1 : SDTypeProfile<1, 5, [
SDTCisVec<0>, SDTCisSameAs<1, 0>, SDTCisSameAs<2, 0>, SDTCisFP<0>,
SDTCisEltOfVec<3, 0>, SDTCVecEltisVT<4, i1>, SDTCisSameNumEltsAs<0, 4>,
SDTCisVT<5, XLenVT>
]>;
let HasMaskOp = true in {
// Matches the semantics of vslideup/vslidedown. The first operand is the
// pass-thru operand, the second is the source vector, the third is the XLenVT
// index (either constant or non-constant), the fourth is the mask, the fifth
// is the VL and the sixth is the policy.
def riscv_slideup_vl : RVSDNode<"VSLIDEUP_VL", SDTRVVSlide, []>;
def riscv_slidedown_vl : RVSDNode<"VSLIDEDOWN_VL", SDTRVVSlide, []>;
// Matches the semantics of vslide1up/slide1down. The first operand is
// passthru operand, the second is source vector, third is the XLenVT scalar
// value. The fourth and fifth operands are the mask and VL operands.
def riscv_slide1up_vl : RVSDNode<"VSLIDE1UP_VL", SDTRVVSlide1, []>;
def riscv_slide1down_vl : RVSDNode<"VSLIDE1DOWN_VL", SDTRVVSlide1, []>;
// Matches the semantics of vfslide1up/vfslide1down. The first operand is
// passthru operand, the second is source vector, third is a scalar value
// whose type matches the element type of the vectors. The fourth and fifth
// operands are the mask and VL operands.
def riscv_fslide1up_vl : RVSDNode<"VFSLIDE1UP_VL", SDTRVVFSlide1, []>;
def riscv_fslide1down_vl : RVSDNode<"VFSLIDE1DOWN_VL", SDTRVVFSlide1, []>;
} // let HasMaskOp = true
foreach vti = AllIntegerVectors in {
let Predicates = GetVTypePredicates<vti>.Predicates in {
def : Pat<(vti.Vector (riscv_vid_vl (vti.Mask VMV0:$vm),
VLOpFrag)),
(!cast<Instruction>("PseudoVID_V_"#vti.LMul.MX#"_MASK")
(vti.Vector (IMPLICIT_DEF)), (vti.Mask VMV0:$vm), GPR:$vl, vti.Log2SEW,
TAIL_AGNOSTIC)>;
}
}
defm : VPatSlideVL_VX_VI<riscv_slideup_vl, "PseudoVSLIDEUP">;
defm : VPatSlideVL_VX_VI<riscv_slidedown_vl, "PseudoVSLIDEDOWN">;
defm : VPatSlide1VL_VX<riscv_slide1up_vl, "PseudoVSLIDE1UP">;
defm : VPatSlide1VL_VF<riscv_fslide1up_vl, "PseudoVFSLIDE1UP">;
defm : VPatSlide1VL_VX<riscv_slide1down_vl, "PseudoVSLIDE1DOWN">;
defm : VPatSlide1VL_VF<riscv_fslide1down_vl, "PseudoVFSLIDE1DOWN">;