
fixes #135572 There are two problems that are causing problems first register types are copied from older registers instead of evaluating the spirv types. Second the way OpSelect is defined in SPIRVInstrInfo.td we always default to integer for TernOpTyped. There seems to be a problem of multiple matches in the getMatchTable so when executeMatchTable runs we aren't getting the right opSelect. Correcting the tablegen wasn't very easy so instead created an emitter for Select that evaluated the register types. this passes the original llvm/test/CodeGen/SPIRV/instructions/select.ll tests and the new float ones I'm adding in issue-135572-emit-float-opselect.ll
1104 lines
44 KiB
C++
1104 lines
44 KiB
C++
//===-- SPIRVPreLegalizer.cpp - prepare IR for legalization -----*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// The pass prepares IR for legalization: it assigns SPIR-V types to registers
|
|
// and removes intrinsics which holded these types during IR translation.
|
|
// Also it processes constants and registers them in GR to avoid duplication.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "SPIRV.h"
|
|
#include "SPIRVSubtarget.h"
|
|
#include "SPIRVUtils.h"
|
|
#include "llvm/ADT/PostOrderIterator.h"
|
|
#include "llvm/CodeGen/GlobalISel/CSEInfo.h"
|
|
#include "llvm/CodeGen/GlobalISel/GISelValueTracking.h"
|
|
#include "llvm/IR/Attributes.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/IntrinsicsSPIRV.h"
|
|
|
|
#define DEBUG_TYPE "spirv-prelegalizer"
|
|
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
class SPIRVPreLegalizer : public MachineFunctionPass {
|
|
public:
|
|
static char ID;
|
|
SPIRVPreLegalizer() : MachineFunctionPass(ID) {}
|
|
bool runOnMachineFunction(MachineFunction &MF) override;
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override;
|
|
};
|
|
} // namespace
|
|
|
|
void SPIRVPreLegalizer::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.addPreserved<GISelValueTrackingAnalysisLegacy>();
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
static void
|
|
addConstantsToTrack(MachineFunction &MF, SPIRVGlobalRegistry *GR,
|
|
const SPIRVSubtarget &STI,
|
|
DenseMap<MachineInstr *, Type *> &TargetExtConstTypes) {
|
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
DenseMap<MachineInstr *, Register> RegsAlreadyAddedToDT;
|
|
SmallVector<MachineInstr *, 10> ToErase, ToEraseComposites;
|
|
for (MachineBasicBlock &MBB : MF) {
|
|
for (MachineInstr &MI : MBB) {
|
|
if (!isSpvIntrinsic(MI, Intrinsic::spv_track_constant))
|
|
continue;
|
|
ToErase.push_back(&MI);
|
|
Register SrcReg = MI.getOperand(2).getReg();
|
|
auto *Const =
|
|
cast<Constant>(cast<ConstantAsMetadata>(
|
|
MI.getOperand(3).getMetadata()->getOperand(0))
|
|
->getValue());
|
|
if (auto *GV = dyn_cast<GlobalValue>(Const)) {
|
|
Register Reg = GR->find(GV, &MF);
|
|
if (!Reg.isValid()) {
|
|
GR->add(GV, MRI.getVRegDef(SrcReg));
|
|
GR->addGlobalObject(GV, &MF, SrcReg);
|
|
} else
|
|
RegsAlreadyAddedToDT[&MI] = Reg;
|
|
} else {
|
|
Register Reg = GR->find(Const, &MF);
|
|
if (!Reg.isValid()) {
|
|
if (auto *ConstVec = dyn_cast<ConstantDataVector>(Const)) {
|
|
auto *BuildVec = MRI.getVRegDef(SrcReg);
|
|
assert(BuildVec &&
|
|
BuildVec->getOpcode() == TargetOpcode::G_BUILD_VECTOR);
|
|
GR->add(Const, BuildVec);
|
|
for (unsigned i = 0; i < ConstVec->getNumElements(); ++i) {
|
|
// Ensure that OpConstantComposite reuses a constant when it's
|
|
// already created and available in the same machine function.
|
|
Constant *ElemConst = ConstVec->getElementAsConstant(i);
|
|
Register ElemReg = GR->find(ElemConst, &MF);
|
|
if (!ElemReg.isValid())
|
|
GR->add(ElemConst,
|
|
MRI.getVRegDef(BuildVec->getOperand(1 + i).getReg()));
|
|
else
|
|
BuildVec->getOperand(1 + i).setReg(ElemReg);
|
|
}
|
|
}
|
|
if (Const->getType()->isTargetExtTy()) {
|
|
// remember association so that we can restore it when assign types
|
|
MachineInstr *SrcMI = MRI.getVRegDef(SrcReg);
|
|
if (SrcMI)
|
|
GR->add(Const, SrcMI);
|
|
if (SrcMI && (SrcMI->getOpcode() == TargetOpcode::G_CONSTANT ||
|
|
SrcMI->getOpcode() == TargetOpcode::G_IMPLICIT_DEF))
|
|
TargetExtConstTypes[SrcMI] = Const->getType();
|
|
if (Const->isNullValue()) {
|
|
MachineBasicBlock &DepMBB = MF.front();
|
|
MachineIRBuilder MIB(DepMBB, DepMBB.getFirstNonPHI());
|
|
SPIRVType *ExtType = GR->getOrCreateSPIRVType(
|
|
Const->getType(), MIB, SPIRV::AccessQualifier::ReadWrite,
|
|
true);
|
|
assert(SrcMI && "Expected source instruction to be valid");
|
|
SrcMI->setDesc(STI.getInstrInfo()->get(SPIRV::OpConstantNull));
|
|
SrcMI->addOperand(MachineOperand::CreateReg(
|
|
GR->getSPIRVTypeID(ExtType), false));
|
|
}
|
|
}
|
|
} else {
|
|
RegsAlreadyAddedToDT[&MI] = Reg;
|
|
// This MI is unused and will be removed. If the MI uses
|
|
// const_composite, it will be unused and should be removed too.
|
|
assert(MI.getOperand(2).isReg() && "Reg operand is expected");
|
|
MachineInstr *SrcMI = MRI.getVRegDef(MI.getOperand(2).getReg());
|
|
if (SrcMI && isSpvIntrinsic(*SrcMI, Intrinsic::spv_const_composite))
|
|
ToEraseComposites.push_back(SrcMI);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
for (MachineInstr *MI : ToErase) {
|
|
Register Reg = MI->getOperand(2).getReg();
|
|
auto It = RegsAlreadyAddedToDT.find(MI);
|
|
if (It != RegsAlreadyAddedToDT.end())
|
|
Reg = It->second;
|
|
auto *RC = MRI.getRegClassOrNull(MI->getOperand(0).getReg());
|
|
if (!MRI.getRegClassOrNull(Reg) && RC)
|
|
MRI.setRegClass(Reg, RC);
|
|
MRI.replaceRegWith(MI->getOperand(0).getReg(), Reg);
|
|
GR->invalidateMachineInstr(MI);
|
|
MI->eraseFromParent();
|
|
}
|
|
for (MachineInstr *MI : ToEraseComposites) {
|
|
GR->invalidateMachineInstr(MI);
|
|
MI->eraseFromParent();
|
|
}
|
|
}
|
|
|
|
static void foldConstantsIntoIntrinsics(MachineFunction &MF,
|
|
SPIRVGlobalRegistry *GR,
|
|
MachineIRBuilder MIB) {
|
|
SmallVector<MachineInstr *, 64> ToErase;
|
|
for (MachineBasicBlock &MBB : MF) {
|
|
for (MachineInstr &MI : MBB) {
|
|
if (!isSpvIntrinsic(MI, Intrinsic::spv_assign_name))
|
|
continue;
|
|
const MDNode *MD = MI.getOperand(2).getMetadata();
|
|
StringRef ValueName = cast<MDString>(MD->getOperand(0))->getString();
|
|
if (ValueName.size() > 0) {
|
|
MIB.setInsertPt(*MI.getParent(), MI);
|
|
buildOpName(MI.getOperand(1).getReg(), ValueName, MIB);
|
|
}
|
|
ToErase.push_back(&MI);
|
|
}
|
|
for (MachineInstr *MI : ToErase) {
|
|
GR->invalidateMachineInstr(MI);
|
|
MI->eraseFromParent();
|
|
}
|
|
ToErase.clear();
|
|
}
|
|
}
|
|
|
|
static MachineInstr *findAssignTypeInstr(Register Reg,
|
|
MachineRegisterInfo *MRI) {
|
|
for (MachineRegisterInfo::use_instr_iterator I = MRI->use_instr_begin(Reg),
|
|
IE = MRI->use_instr_end();
|
|
I != IE; ++I) {
|
|
MachineInstr *UseMI = &*I;
|
|
if ((isSpvIntrinsic(*UseMI, Intrinsic::spv_assign_ptr_type) ||
|
|
isSpvIntrinsic(*UseMI, Intrinsic::spv_assign_type)) &&
|
|
UseMI->getOperand(1).getReg() == Reg)
|
|
return UseMI;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
static void buildOpBitcast(SPIRVGlobalRegistry *GR, MachineIRBuilder &MIB,
|
|
Register ResVReg, Register OpReg) {
|
|
SPIRVType *ResType = GR->getSPIRVTypeForVReg(ResVReg);
|
|
SPIRVType *OpType = GR->getSPIRVTypeForVReg(OpReg);
|
|
assert(ResType && OpType && "Operand types are expected");
|
|
if (!GR->isBitcastCompatible(ResType, OpType))
|
|
report_fatal_error("incompatible result and operand types in a bitcast");
|
|
MachineRegisterInfo *MRI = MIB.getMRI();
|
|
if (!MRI->getRegClassOrNull(ResVReg))
|
|
MRI->setRegClass(ResVReg, GR->getRegClass(ResType));
|
|
if (ResType == OpType)
|
|
MIB.buildInstr(TargetOpcode::COPY).addDef(ResVReg).addUse(OpReg);
|
|
else
|
|
MIB.buildInstr(SPIRV::OpBitcast)
|
|
.addDef(ResVReg)
|
|
.addUse(GR->getSPIRVTypeID(ResType))
|
|
.addUse(OpReg);
|
|
}
|
|
|
|
// We do instruction selections early instead of calling MIB.buildBitcast()
|
|
// generating the general op code G_BITCAST. When MachineVerifier validates
|
|
// G_BITCAST we see a check of a kind: if Source Type is equal to Destination
|
|
// Type then report error "bitcast must change the type". This doesn't take into
|
|
// account the notion of a typed pointer that is important for SPIR-V where a
|
|
// user may and should use bitcast between pointers with different pointee types
|
|
// (https://registry.khronos.org/SPIR-V/specs/unified1/SPIRV.html#OpBitcast).
|
|
// It's important for correct lowering in SPIR-V, because interpretation of the
|
|
// data type is not left to instructions that utilize the pointer, but encoded
|
|
// by the pointer declaration, and the SPIRV target can and must handle the
|
|
// declaration and use of pointers that specify the type of data they point to.
|
|
// It's not feasible to improve validation of G_BITCAST using just information
|
|
// provided by low level types of source and destination. Therefore we don't
|
|
// produce G_BITCAST as the general op code with semantics different from
|
|
// OpBitcast, but rather lower to OpBitcast immediately. As for now, the only
|
|
// difference would be that CombinerHelper couldn't transform known patterns
|
|
// around G_BUILD_VECTOR. See discussion
|
|
// in https://github.com/llvm/llvm-project/pull/110270 for even more context.
|
|
static void selectOpBitcasts(MachineFunction &MF, SPIRVGlobalRegistry *GR,
|
|
MachineIRBuilder MIB) {
|
|
SmallVector<MachineInstr *, 16> ToErase;
|
|
for (MachineBasicBlock &MBB : MF) {
|
|
for (MachineInstr &MI : MBB) {
|
|
if (MI.getOpcode() != TargetOpcode::G_BITCAST)
|
|
continue;
|
|
MIB.setInsertPt(*MI.getParent(), MI);
|
|
buildOpBitcast(GR, MIB, MI.getOperand(0).getReg(),
|
|
MI.getOperand(1).getReg());
|
|
ToErase.push_back(&MI);
|
|
}
|
|
}
|
|
for (MachineInstr *MI : ToErase) {
|
|
GR->invalidateMachineInstr(MI);
|
|
MI->eraseFromParent();
|
|
}
|
|
}
|
|
|
|
static void insertBitcasts(MachineFunction &MF, SPIRVGlobalRegistry *GR,
|
|
MachineIRBuilder MIB) {
|
|
// Get access to information about available extensions
|
|
const SPIRVSubtarget *ST =
|
|
static_cast<const SPIRVSubtarget *>(&MIB.getMF().getSubtarget());
|
|
SmallVector<MachineInstr *, 10> ToErase;
|
|
for (MachineBasicBlock &MBB : MF) {
|
|
for (MachineInstr &MI : MBB) {
|
|
if (!isSpvIntrinsic(MI, Intrinsic::spv_bitcast) &&
|
|
!isSpvIntrinsic(MI, Intrinsic::spv_ptrcast))
|
|
continue;
|
|
assert(MI.getOperand(2).isReg());
|
|
MIB.setInsertPt(*MI.getParent(), MI);
|
|
ToErase.push_back(&MI);
|
|
if (isSpvIntrinsic(MI, Intrinsic::spv_bitcast)) {
|
|
MIB.buildBitcast(MI.getOperand(0).getReg(), MI.getOperand(2).getReg());
|
|
continue;
|
|
}
|
|
Register Def = MI.getOperand(0).getReg();
|
|
Register Source = MI.getOperand(2).getReg();
|
|
Type *ElemTy = getMDOperandAsType(MI.getOperand(3).getMetadata(), 0);
|
|
SPIRVType *AssignedPtrType = GR->getOrCreateSPIRVPointerType(
|
|
ElemTy, MI,
|
|
addressSpaceToStorageClass(MI.getOperand(4).getImm(), *ST));
|
|
|
|
// If the ptrcast would be redundant, replace all uses with the source
|
|
// register.
|
|
MachineRegisterInfo *MRI = MIB.getMRI();
|
|
if (GR->getSPIRVTypeForVReg(Source) == AssignedPtrType) {
|
|
// Erase Def's assign type instruction if we are going to replace Def.
|
|
if (MachineInstr *AssignMI = findAssignTypeInstr(Def, MRI))
|
|
ToErase.push_back(AssignMI);
|
|
MRI->replaceRegWith(Def, Source);
|
|
} else {
|
|
if (!GR->getSPIRVTypeForVReg(Def, &MF))
|
|
GR->assignSPIRVTypeToVReg(AssignedPtrType, Def, MF);
|
|
MIB.buildBitcast(Def, Source);
|
|
}
|
|
}
|
|
}
|
|
for (MachineInstr *MI : ToErase) {
|
|
GR->invalidateMachineInstr(MI);
|
|
MI->eraseFromParent();
|
|
}
|
|
}
|
|
|
|
// Translating GV, IRTranslator sometimes generates following IR:
|
|
// %1 = G_GLOBAL_VALUE
|
|
// %2 = COPY %1
|
|
// %3 = G_ADDRSPACE_CAST %2
|
|
//
|
|
// or
|
|
//
|
|
// %1 = G_ZEXT %2
|
|
// G_MEMCPY ... %2 ...
|
|
//
|
|
// New registers have no SPIRVType and no register class info.
|
|
//
|
|
// Set SPIRVType for GV, propagate it from GV to other instructions,
|
|
// also set register classes.
|
|
static SPIRVType *propagateSPIRVType(MachineInstr *MI, SPIRVGlobalRegistry *GR,
|
|
MachineRegisterInfo &MRI,
|
|
MachineIRBuilder &MIB) {
|
|
SPIRVType *SpvType = nullptr;
|
|
assert(MI && "Machine instr is expected");
|
|
if (MI->getOperand(0).isReg()) {
|
|
Register Reg = MI->getOperand(0).getReg();
|
|
SpvType = GR->getSPIRVTypeForVReg(Reg);
|
|
if (!SpvType) {
|
|
switch (MI->getOpcode()) {
|
|
case TargetOpcode::G_FCONSTANT:
|
|
case TargetOpcode::G_CONSTANT: {
|
|
MIB.setInsertPt(*MI->getParent(), MI);
|
|
Type *Ty = MI->getOperand(1).getCImm()->getType();
|
|
SpvType = GR->getOrCreateSPIRVType(
|
|
Ty, MIB, SPIRV::AccessQualifier::ReadWrite, true);
|
|
break;
|
|
}
|
|
case TargetOpcode::G_GLOBAL_VALUE: {
|
|
MIB.setInsertPt(*MI->getParent(), MI);
|
|
const GlobalValue *Global = MI->getOperand(1).getGlobal();
|
|
Type *ElementTy = toTypedPointer(GR->getDeducedGlobalValueType(Global));
|
|
auto *Ty = TypedPointerType::get(ElementTy,
|
|
Global->getType()->getAddressSpace());
|
|
SpvType = GR->getOrCreateSPIRVType(
|
|
Ty, MIB, SPIRV::AccessQualifier::ReadWrite, true);
|
|
break;
|
|
}
|
|
case TargetOpcode::G_ANYEXT:
|
|
case TargetOpcode::G_SEXT:
|
|
case TargetOpcode::G_ZEXT: {
|
|
if (MI->getOperand(1).isReg()) {
|
|
if (MachineInstr *DefInstr =
|
|
MRI.getVRegDef(MI->getOperand(1).getReg())) {
|
|
if (SPIRVType *Def = propagateSPIRVType(DefInstr, GR, MRI, MIB)) {
|
|
unsigned CurrentBW = GR->getScalarOrVectorBitWidth(Def);
|
|
unsigned ExpectedBW =
|
|
std::max(MRI.getType(Reg).getScalarSizeInBits(), CurrentBW);
|
|
unsigned NumElements = GR->getScalarOrVectorComponentCount(Def);
|
|
SpvType = GR->getOrCreateSPIRVIntegerType(ExpectedBW, MIB);
|
|
if (NumElements > 1)
|
|
SpvType = GR->getOrCreateSPIRVVectorType(SpvType, NumElements,
|
|
MIB, true);
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case TargetOpcode::G_PTRTOINT:
|
|
SpvType = GR->getOrCreateSPIRVIntegerType(
|
|
MRI.getType(Reg).getScalarSizeInBits(), MIB);
|
|
break;
|
|
case TargetOpcode::G_TRUNC:
|
|
case TargetOpcode::G_ADDRSPACE_CAST:
|
|
case TargetOpcode::G_PTR_ADD:
|
|
case TargetOpcode::COPY: {
|
|
MachineOperand &Op = MI->getOperand(1);
|
|
MachineInstr *Def = Op.isReg() ? MRI.getVRegDef(Op.getReg()) : nullptr;
|
|
if (Def)
|
|
SpvType = propagateSPIRVType(Def, GR, MRI, MIB);
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
if (SpvType) {
|
|
// check if the address space needs correction
|
|
LLT RegType = MRI.getType(Reg);
|
|
if (SpvType->getOpcode() == SPIRV::OpTypePointer &&
|
|
RegType.isPointer() &&
|
|
storageClassToAddressSpace(GR->getPointerStorageClass(SpvType)) !=
|
|
RegType.getAddressSpace()) {
|
|
const SPIRVSubtarget &ST =
|
|
MI->getParent()->getParent()->getSubtarget<SPIRVSubtarget>();
|
|
auto TSC = addressSpaceToStorageClass(RegType.getAddressSpace(), ST);
|
|
SpvType = GR->changePointerStorageClass(SpvType, TSC, *MI);
|
|
}
|
|
GR->assignSPIRVTypeToVReg(SpvType, Reg, MIB.getMF());
|
|
}
|
|
if (!MRI.getRegClassOrNull(Reg))
|
|
MRI.setRegClass(Reg, SpvType ? GR->getRegClass(SpvType)
|
|
: &SPIRV::iIDRegClass);
|
|
}
|
|
}
|
|
return SpvType;
|
|
}
|
|
|
|
// To support current approach and limitations wrt. bit width here we widen a
|
|
// scalar register with a bit width greater than 1 to valid sizes and cap it to
|
|
// 64 width.
|
|
static unsigned widenBitWidthToNextPow2(unsigned BitWidth) {
|
|
if (BitWidth == 1)
|
|
return 1; // No need to widen 1-bit values
|
|
return std::min(std::max(1u << Log2_32_Ceil(BitWidth), 8u), 64u);
|
|
}
|
|
|
|
static void widenScalarType(Register Reg, MachineRegisterInfo &MRI) {
|
|
LLT RegType = MRI.getType(Reg);
|
|
if (!RegType.isScalar())
|
|
return;
|
|
unsigned CurrentWidth = RegType.getScalarSizeInBits();
|
|
unsigned NewWidth = widenBitWidthToNextPow2(CurrentWidth);
|
|
if (NewWidth != CurrentWidth)
|
|
MRI.setType(Reg, LLT::scalar(NewWidth));
|
|
}
|
|
|
|
static void widenCImmType(MachineOperand &MOP) {
|
|
const ConstantInt *CImmVal = MOP.getCImm();
|
|
unsigned CurrentWidth = CImmVal->getBitWidth();
|
|
unsigned NewWidth = widenBitWidthToNextPow2(CurrentWidth);
|
|
if (NewWidth != CurrentWidth) {
|
|
// Replace the immediate value with the widened version
|
|
MOP.setCImm(ConstantInt::get(CImmVal->getType()->getContext(),
|
|
CImmVal->getValue().zextOrTrunc(NewWidth)));
|
|
}
|
|
}
|
|
|
|
static void setInsertPtAfterDef(MachineIRBuilder &MIB, MachineInstr *Def) {
|
|
MachineBasicBlock &MBB = *Def->getParent();
|
|
MachineBasicBlock::iterator DefIt =
|
|
Def->getNextNode() ? Def->getNextNode()->getIterator() : MBB.end();
|
|
// Skip all the PHI and debug instructions.
|
|
while (DefIt != MBB.end() &&
|
|
(DefIt->isPHI() || DefIt->isDebugOrPseudoInstr()))
|
|
DefIt = std::next(DefIt);
|
|
MIB.setInsertPt(MBB, DefIt);
|
|
}
|
|
|
|
namespace llvm {
|
|
void insertAssignInstr(Register Reg, Type *Ty, SPIRVType *SpvType,
|
|
SPIRVGlobalRegistry *GR, MachineIRBuilder &MIB,
|
|
MachineRegisterInfo &MRI) {
|
|
assert((Ty || SpvType) && "Either LLVM or SPIRV type is expected.");
|
|
MachineInstr *Def = MRI.getVRegDef(Reg);
|
|
setInsertPtAfterDef(MIB, Def);
|
|
if (!SpvType)
|
|
SpvType = GR->getOrCreateSPIRVType(Ty, MIB,
|
|
SPIRV::AccessQualifier::ReadWrite, true);
|
|
|
|
if (!isTypeFoldingSupported(Def->getOpcode())) {
|
|
// No need to generate SPIRV::ASSIGN_TYPE pseudo-instruction
|
|
if (!MRI.getRegClassOrNull(Reg))
|
|
MRI.setRegClass(Reg, GR->getRegClass(SpvType));
|
|
if (!MRI.getType(Reg).isValid())
|
|
MRI.setType(Reg, GR->getRegType(SpvType));
|
|
GR->assignSPIRVTypeToVReg(SpvType, Reg, MIB.getMF());
|
|
return;
|
|
}
|
|
|
|
// Tablegen definition assumes SPIRV::ASSIGN_TYPE pseudo-instruction is
|
|
// present after each auto-folded instruction to take a type reference from.
|
|
Register NewReg = MRI.createGenericVirtualRegister(MRI.getType(Reg));
|
|
const auto *RegClass = GR->getRegClass(SpvType);
|
|
MRI.setRegClass(NewReg, RegClass);
|
|
MRI.setRegClass(Reg, RegClass);
|
|
|
|
GR->assignSPIRVTypeToVReg(SpvType, Reg, MIB.getMF());
|
|
// This is to make it convenient for Legalizer to get the SPIRVType
|
|
// when processing the actual MI (i.e. not pseudo one).
|
|
GR->assignSPIRVTypeToVReg(SpvType, NewReg, MIB.getMF());
|
|
// Copy MIFlags from Def to ASSIGN_TYPE instruction. It's required to keep
|
|
// the flags after instruction selection.
|
|
const uint32_t Flags = Def->getFlags();
|
|
MIB.buildInstr(SPIRV::ASSIGN_TYPE)
|
|
.addDef(Reg)
|
|
.addUse(NewReg)
|
|
.addUse(GR->getSPIRVTypeID(SpvType))
|
|
.setMIFlags(Flags);
|
|
for (unsigned I = 0, E = Def->getNumDefs(); I != E; ++I) {
|
|
MachineOperand &MO = Def->getOperand(I);
|
|
if (MO.getReg() == Reg) {
|
|
MO.setReg(NewReg);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void processInstr(MachineInstr &MI, MachineIRBuilder &MIB,
|
|
MachineRegisterInfo &MRI, SPIRVGlobalRegistry *GR,
|
|
SPIRVType *KnownResType) {
|
|
MIB.setInsertPt(*MI.getParent(), MI.getIterator());
|
|
for (auto &Op : MI.operands()) {
|
|
if (!Op.isReg() || Op.isDef())
|
|
continue;
|
|
Register OpReg = Op.getReg();
|
|
SPIRVType *SpvType = GR->getSPIRVTypeForVReg(OpReg);
|
|
if (!SpvType && KnownResType) {
|
|
SpvType = KnownResType;
|
|
GR->assignSPIRVTypeToVReg(KnownResType, OpReg, *MI.getMF());
|
|
}
|
|
assert(SpvType);
|
|
if (!MRI.getRegClassOrNull(OpReg))
|
|
MRI.setRegClass(OpReg, GR->getRegClass(SpvType));
|
|
if (!MRI.getType(OpReg).isValid())
|
|
MRI.setType(OpReg, GR->getRegType(SpvType));
|
|
}
|
|
}
|
|
} // namespace llvm
|
|
|
|
static void
|
|
generateAssignInstrs(MachineFunction &MF, SPIRVGlobalRegistry *GR,
|
|
MachineIRBuilder MIB,
|
|
DenseMap<MachineInstr *, Type *> &TargetExtConstTypes) {
|
|
// Get access to information about available extensions
|
|
const SPIRVSubtarget *ST =
|
|
static_cast<const SPIRVSubtarget *>(&MIB.getMF().getSubtarget());
|
|
|
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
SmallVector<MachineInstr *, 10> ToErase;
|
|
DenseMap<MachineInstr *, Register> RegsAlreadyAddedToDT;
|
|
|
|
bool IsExtendedInts =
|
|
ST->canUseExtension(
|
|
SPIRV::Extension::SPV_INTEL_arbitrary_precision_integers) ||
|
|
ST->canUseExtension(SPIRV::Extension::SPV_KHR_bit_instructions) ||
|
|
ST->canUseExtension(SPIRV::Extension::SPV_INTEL_int4);
|
|
|
|
for (MachineBasicBlock *MBB : post_order(&MF)) {
|
|
if (MBB->empty())
|
|
continue;
|
|
|
|
bool ReachedBegin = false;
|
|
for (auto MII = std::prev(MBB->end()), Begin = MBB->begin();
|
|
!ReachedBegin;) {
|
|
MachineInstr &MI = *MII;
|
|
unsigned MIOp = MI.getOpcode();
|
|
|
|
if (!IsExtendedInts) {
|
|
// validate bit width of scalar registers and constant immediates
|
|
for (auto &MOP : MI.operands()) {
|
|
if (MOP.isReg())
|
|
widenScalarType(MOP.getReg(), MRI);
|
|
else if (MOP.isCImm())
|
|
widenCImmType(MOP);
|
|
}
|
|
}
|
|
|
|
if (isSpvIntrinsic(MI, Intrinsic::spv_assign_ptr_type)) {
|
|
Register Reg = MI.getOperand(1).getReg();
|
|
MIB.setInsertPt(*MI.getParent(), MI.getIterator());
|
|
Type *ElementTy = getMDOperandAsType(MI.getOperand(2).getMetadata(), 0);
|
|
SPIRVType *AssignedPtrType = GR->getOrCreateSPIRVPointerType(
|
|
ElementTy, MI,
|
|
addressSpaceToStorageClass(MI.getOperand(3).getImm(), *ST));
|
|
MachineInstr *Def = MRI.getVRegDef(Reg);
|
|
assert(Def && "Expecting an instruction that defines the register");
|
|
// G_GLOBAL_VALUE already has type info.
|
|
if (Def->getOpcode() != TargetOpcode::G_GLOBAL_VALUE &&
|
|
Def->getOpcode() != SPIRV::ASSIGN_TYPE)
|
|
insertAssignInstr(Reg, nullptr, AssignedPtrType, GR, MIB,
|
|
MF.getRegInfo());
|
|
ToErase.push_back(&MI);
|
|
} else if (isSpvIntrinsic(MI, Intrinsic::spv_assign_type)) {
|
|
Register Reg = MI.getOperand(1).getReg();
|
|
Type *Ty = getMDOperandAsType(MI.getOperand(2).getMetadata(), 0);
|
|
MachineInstr *Def = MRI.getVRegDef(Reg);
|
|
assert(Def && "Expecting an instruction that defines the register");
|
|
// G_GLOBAL_VALUE already has type info.
|
|
if (Def->getOpcode() != TargetOpcode::G_GLOBAL_VALUE &&
|
|
Def->getOpcode() != SPIRV::ASSIGN_TYPE)
|
|
insertAssignInstr(Reg, Ty, nullptr, GR, MIB, MF.getRegInfo());
|
|
ToErase.push_back(&MI);
|
|
} else if (MIOp == TargetOpcode::FAKE_USE && MI.getNumOperands() > 0) {
|
|
MachineInstr *MdMI = MI.getPrevNode();
|
|
if (MdMI && isSpvIntrinsic(*MdMI, Intrinsic::spv_value_md)) {
|
|
// It's an internal service info from before IRTranslator passes.
|
|
MachineInstr *Def = getVRegDef(MRI, MI.getOperand(0).getReg());
|
|
for (unsigned I = 1, E = MI.getNumOperands(); I != E && Def; ++I)
|
|
if (getVRegDef(MRI, MI.getOperand(I).getReg()) != Def)
|
|
Def = nullptr;
|
|
if (Def) {
|
|
const MDNode *MD = MdMI->getOperand(1).getMetadata();
|
|
StringRef ValueName =
|
|
cast<MDString>(MD->getOperand(1))->getString();
|
|
const MDNode *TypeMD = cast<MDNode>(MD->getOperand(0));
|
|
Type *ValueTy = getMDOperandAsType(TypeMD, 0);
|
|
GR->addValueAttrs(Def, std::make_pair(ValueTy, ValueName.str()));
|
|
}
|
|
ToErase.push_back(MdMI);
|
|
}
|
|
ToErase.push_back(&MI);
|
|
} else if (MIOp == TargetOpcode::G_CONSTANT ||
|
|
MIOp == TargetOpcode::G_FCONSTANT ||
|
|
MIOp == TargetOpcode::G_BUILD_VECTOR) {
|
|
// %rc = G_CONSTANT ty Val
|
|
// ===>
|
|
// %cty = OpType* ty
|
|
// %rctmp = G_CONSTANT ty Val
|
|
// %rc = ASSIGN_TYPE %rctmp, %cty
|
|
Register Reg = MI.getOperand(0).getReg();
|
|
bool NeedAssignType = true;
|
|
if (MRI.hasOneUse(Reg)) {
|
|
MachineInstr &UseMI = *MRI.use_instr_begin(Reg);
|
|
if (isSpvIntrinsic(UseMI, Intrinsic::spv_assign_type) ||
|
|
isSpvIntrinsic(UseMI, Intrinsic::spv_assign_name))
|
|
continue;
|
|
if (UseMI.getOpcode() == SPIRV::ASSIGN_TYPE)
|
|
NeedAssignType = false;
|
|
}
|
|
Type *Ty = nullptr;
|
|
if (MIOp == TargetOpcode::G_CONSTANT) {
|
|
auto TargetExtIt = TargetExtConstTypes.find(&MI);
|
|
Ty = TargetExtIt == TargetExtConstTypes.end()
|
|
? MI.getOperand(1).getCImm()->getType()
|
|
: TargetExtIt->second;
|
|
const ConstantInt *OpCI = MI.getOperand(1).getCImm();
|
|
// TODO: we may wish to analyze here if OpCI is zero and LLT RegType =
|
|
// MRI.getType(Reg); RegType.isPointer() is true, so that we observe
|
|
// at this point not i64/i32 constant but null pointer in the
|
|
// corresponding address space of RegType.getAddressSpace(). This may
|
|
// help to successfully validate the case when a OpConstantComposite's
|
|
// constituent has type that does not match Result Type of
|
|
// OpConstantComposite (see, for example,
|
|
// pointers/PtrCast-null-in-OpSpecConstantOp.ll).
|
|
Register PrimaryReg = GR->find(OpCI, &MF);
|
|
if (!PrimaryReg.isValid()) {
|
|
GR->add(OpCI, &MI);
|
|
} else if (PrimaryReg != Reg &&
|
|
MRI.getType(Reg) == MRI.getType(PrimaryReg)) {
|
|
auto *RCReg = MRI.getRegClassOrNull(Reg);
|
|
auto *RCPrimary = MRI.getRegClassOrNull(PrimaryReg);
|
|
if (!RCReg || RCPrimary == RCReg) {
|
|
RegsAlreadyAddedToDT[&MI] = PrimaryReg;
|
|
ToErase.push_back(&MI);
|
|
NeedAssignType = false;
|
|
}
|
|
}
|
|
} else if (MIOp == TargetOpcode::G_FCONSTANT) {
|
|
Ty = MI.getOperand(1).getFPImm()->getType();
|
|
} else {
|
|
assert(MIOp == TargetOpcode::G_BUILD_VECTOR);
|
|
Type *ElemTy = nullptr;
|
|
MachineInstr *ElemMI = MRI.getVRegDef(MI.getOperand(1).getReg());
|
|
assert(ElemMI);
|
|
|
|
if (ElemMI->getOpcode() == TargetOpcode::G_CONSTANT) {
|
|
ElemTy = ElemMI->getOperand(1).getCImm()->getType();
|
|
} else if (ElemMI->getOpcode() == TargetOpcode::G_FCONSTANT) {
|
|
ElemTy = ElemMI->getOperand(1).getFPImm()->getType();
|
|
} else {
|
|
if (const SPIRVType *ElemSpvType =
|
|
GR->getSPIRVTypeForVReg(MI.getOperand(1).getReg(), &MF))
|
|
ElemTy = const_cast<Type *>(GR->getTypeForSPIRVType(ElemSpvType));
|
|
if (!ElemTy) {
|
|
// There may be a case when we already know Reg's type.
|
|
MachineInstr *NextMI = MI.getNextNode();
|
|
if (!NextMI || NextMI->getOpcode() != SPIRV::ASSIGN_TYPE ||
|
|
NextMI->getOperand(1).getReg() != Reg)
|
|
llvm_unreachable("Unexpected opcode");
|
|
}
|
|
}
|
|
if (ElemTy)
|
|
Ty = VectorType::get(
|
|
ElemTy, MI.getNumExplicitOperands() - MI.getNumExplicitDefs(),
|
|
false);
|
|
else
|
|
NeedAssignType = false;
|
|
}
|
|
if (NeedAssignType)
|
|
insertAssignInstr(Reg, Ty, nullptr, GR, MIB, MRI);
|
|
} else if (MIOp == TargetOpcode::G_GLOBAL_VALUE) {
|
|
propagateSPIRVType(&MI, GR, MRI, MIB);
|
|
}
|
|
|
|
if (MII == Begin)
|
|
ReachedBegin = true;
|
|
else
|
|
--MII;
|
|
}
|
|
}
|
|
for (MachineInstr *MI : ToErase) {
|
|
auto It = RegsAlreadyAddedToDT.find(MI);
|
|
if (It != RegsAlreadyAddedToDT.end())
|
|
MRI.replaceRegWith(MI->getOperand(0).getReg(), It->second);
|
|
GR->invalidateMachineInstr(MI);
|
|
MI->eraseFromParent();
|
|
}
|
|
|
|
// Address the case when IRTranslator introduces instructions with new
|
|
// registers without SPIRVType associated.
|
|
for (MachineBasicBlock &MBB : MF) {
|
|
for (MachineInstr &MI : MBB) {
|
|
switch (MI.getOpcode()) {
|
|
case TargetOpcode::G_TRUNC:
|
|
case TargetOpcode::G_ANYEXT:
|
|
case TargetOpcode::G_SEXT:
|
|
case TargetOpcode::G_ZEXT:
|
|
case TargetOpcode::G_PTRTOINT:
|
|
case TargetOpcode::COPY:
|
|
case TargetOpcode::G_ADDRSPACE_CAST:
|
|
propagateSPIRVType(&MI, GR, MRI, MIB);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void processInstrsWithTypeFolding(MachineFunction &MF,
|
|
SPIRVGlobalRegistry *GR,
|
|
MachineIRBuilder MIB) {
|
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
for (MachineBasicBlock &MBB : MF)
|
|
for (MachineInstr &MI : MBB)
|
|
if (isTypeFoldingSupported(MI.getOpcode()))
|
|
processInstr(MI, MIB, MRI, GR, nullptr);
|
|
}
|
|
|
|
static Register
|
|
collectInlineAsmInstrOperands(MachineInstr *MI,
|
|
SmallVector<unsigned, 4> *Ops = nullptr) {
|
|
Register DefReg;
|
|
unsigned StartOp = InlineAsm::MIOp_FirstOperand,
|
|
AsmDescOp = InlineAsm::MIOp_FirstOperand;
|
|
for (unsigned Idx = StartOp, MISz = MI->getNumOperands(); Idx != MISz;
|
|
++Idx) {
|
|
const MachineOperand &MO = MI->getOperand(Idx);
|
|
if (MO.isMetadata())
|
|
continue;
|
|
if (Idx == AsmDescOp && MO.isImm()) {
|
|
// compute the index of the next operand descriptor
|
|
const InlineAsm::Flag F(MO.getImm());
|
|
AsmDescOp += 1 + F.getNumOperandRegisters();
|
|
continue;
|
|
}
|
|
if (MO.isReg() && MO.isDef()) {
|
|
if (!Ops)
|
|
return MO.getReg();
|
|
else
|
|
DefReg = MO.getReg();
|
|
} else if (Ops) {
|
|
Ops->push_back(Idx);
|
|
}
|
|
}
|
|
return DefReg;
|
|
}
|
|
|
|
static void
|
|
insertInlineAsmProcess(MachineFunction &MF, SPIRVGlobalRegistry *GR,
|
|
const SPIRVSubtarget &ST, MachineIRBuilder MIRBuilder,
|
|
const SmallVector<MachineInstr *> &ToProcess) {
|
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
Register AsmTargetReg;
|
|
for (unsigned i = 0, Sz = ToProcess.size(); i + 1 < Sz; i += 2) {
|
|
MachineInstr *I1 = ToProcess[i], *I2 = ToProcess[i + 1];
|
|
assert(isSpvIntrinsic(*I1, Intrinsic::spv_inline_asm) && I2->isInlineAsm());
|
|
MIRBuilder.setInsertPt(*I2->getParent(), *I2);
|
|
|
|
if (!AsmTargetReg.isValid()) {
|
|
// define vendor specific assembly target or dialect
|
|
AsmTargetReg = MRI.createGenericVirtualRegister(LLT::scalar(32));
|
|
MRI.setRegClass(AsmTargetReg, &SPIRV::iIDRegClass);
|
|
auto AsmTargetMIB =
|
|
MIRBuilder.buildInstr(SPIRV::OpAsmTargetINTEL).addDef(AsmTargetReg);
|
|
addStringImm(ST.getTargetTripleAsStr(), AsmTargetMIB);
|
|
GR->add(AsmTargetMIB.getInstr(), AsmTargetMIB);
|
|
}
|
|
|
|
// create types
|
|
const MDNode *IAMD = I1->getOperand(1).getMetadata();
|
|
FunctionType *FTy = cast<FunctionType>(getMDOperandAsType(IAMD, 0));
|
|
SmallVector<SPIRVType *, 4> ArgTypes;
|
|
for (const auto &ArgTy : FTy->params())
|
|
ArgTypes.push_back(GR->getOrCreateSPIRVType(
|
|
ArgTy, MIRBuilder, SPIRV::AccessQualifier::ReadWrite, true));
|
|
SPIRVType *RetType =
|
|
GR->getOrCreateSPIRVType(FTy->getReturnType(), MIRBuilder,
|
|
SPIRV::AccessQualifier::ReadWrite, true);
|
|
SPIRVType *FuncType = GR->getOrCreateOpTypeFunctionWithArgs(
|
|
FTy, RetType, ArgTypes, MIRBuilder);
|
|
|
|
// define vendor specific assembly instructions string
|
|
Register AsmReg = MRI.createGenericVirtualRegister(LLT::scalar(32));
|
|
MRI.setRegClass(AsmReg, &SPIRV::iIDRegClass);
|
|
auto AsmMIB = MIRBuilder.buildInstr(SPIRV::OpAsmINTEL)
|
|
.addDef(AsmReg)
|
|
.addUse(GR->getSPIRVTypeID(RetType))
|
|
.addUse(GR->getSPIRVTypeID(FuncType))
|
|
.addUse(AsmTargetReg);
|
|
// inline asm string:
|
|
addStringImm(I2->getOperand(InlineAsm::MIOp_AsmString).getSymbolName(),
|
|
AsmMIB);
|
|
// inline asm constraint string:
|
|
addStringImm(cast<MDString>(I1->getOperand(2).getMetadata()->getOperand(0))
|
|
->getString(),
|
|
AsmMIB);
|
|
GR->add(AsmMIB.getInstr(), AsmMIB);
|
|
|
|
// calls the inline assembly instruction
|
|
unsigned ExtraInfo = I2->getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
|
|
if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
|
|
MIRBuilder.buildInstr(SPIRV::OpDecorate)
|
|
.addUse(AsmReg)
|
|
.addImm(static_cast<uint32_t>(SPIRV::Decoration::SideEffectsINTEL));
|
|
|
|
Register DefReg = collectInlineAsmInstrOperands(I2);
|
|
if (!DefReg.isValid()) {
|
|
DefReg = MRI.createGenericVirtualRegister(LLT::scalar(32));
|
|
MRI.setRegClass(DefReg, &SPIRV::iIDRegClass);
|
|
SPIRVType *VoidType = GR->getOrCreateSPIRVType(
|
|
Type::getVoidTy(MF.getFunction().getContext()), MIRBuilder,
|
|
SPIRV::AccessQualifier::ReadWrite, true);
|
|
GR->assignSPIRVTypeToVReg(VoidType, DefReg, MF);
|
|
}
|
|
|
|
auto AsmCall = MIRBuilder.buildInstr(SPIRV::OpAsmCallINTEL)
|
|
.addDef(DefReg)
|
|
.addUse(GR->getSPIRVTypeID(RetType))
|
|
.addUse(AsmReg);
|
|
for (unsigned IntrIdx = 3; IntrIdx < I1->getNumOperands(); ++IntrIdx)
|
|
AsmCall.addUse(I1->getOperand(IntrIdx).getReg());
|
|
}
|
|
for (MachineInstr *MI : ToProcess) {
|
|
GR->invalidateMachineInstr(MI);
|
|
MI->eraseFromParent();
|
|
}
|
|
}
|
|
|
|
static void insertInlineAsm(MachineFunction &MF, SPIRVGlobalRegistry *GR,
|
|
const SPIRVSubtarget &ST,
|
|
MachineIRBuilder MIRBuilder) {
|
|
SmallVector<MachineInstr *> ToProcess;
|
|
for (MachineBasicBlock &MBB : MF) {
|
|
for (MachineInstr &MI : MBB) {
|
|
if (isSpvIntrinsic(MI, Intrinsic::spv_inline_asm) ||
|
|
MI.getOpcode() == TargetOpcode::INLINEASM)
|
|
ToProcess.push_back(&MI);
|
|
}
|
|
}
|
|
if (ToProcess.size() == 0)
|
|
return;
|
|
|
|
if (!ST.canUseExtension(SPIRV::Extension::SPV_INTEL_inline_assembly))
|
|
report_fatal_error("Inline assembly instructions require the "
|
|
"following SPIR-V extension: SPV_INTEL_inline_assembly",
|
|
false);
|
|
|
|
insertInlineAsmProcess(MF, GR, ST, MIRBuilder, ToProcess);
|
|
}
|
|
|
|
static uint32_t convertFloatToSPIRVWord(float F) {
|
|
union {
|
|
float F;
|
|
uint32_t Spir;
|
|
} FPMaxError;
|
|
FPMaxError.F = F;
|
|
return FPMaxError.Spir;
|
|
}
|
|
|
|
static void insertSpirvDecorations(MachineFunction &MF, SPIRVGlobalRegistry *GR,
|
|
MachineIRBuilder MIB) {
|
|
SmallVector<MachineInstr *, 10> ToErase;
|
|
for (MachineBasicBlock &MBB : MF) {
|
|
for (MachineInstr &MI : MBB) {
|
|
if (!isSpvIntrinsic(MI, Intrinsic::spv_assign_decoration) &&
|
|
!isSpvIntrinsic(MI, Intrinsic::spv_assign_aliasing_decoration) &&
|
|
!isSpvIntrinsic(MI, Intrinsic::spv_assign_fpmaxerror_decoration))
|
|
continue;
|
|
MIB.setInsertPt(*MI.getParent(), MI.getNextNode());
|
|
if (isSpvIntrinsic(MI, Intrinsic::spv_assign_decoration)) {
|
|
buildOpSpirvDecorations(MI.getOperand(1).getReg(), MIB,
|
|
MI.getOperand(2).getMetadata());
|
|
} else if (isSpvIntrinsic(MI,
|
|
Intrinsic::spv_assign_fpmaxerror_decoration)) {
|
|
ConstantFP *OpV = mdconst::dyn_extract<ConstantFP>(
|
|
MI.getOperand(2).getMetadata()->getOperand(0));
|
|
uint32_t OpValue =
|
|
convertFloatToSPIRVWord(OpV->getValueAPF().convertToFloat());
|
|
|
|
buildOpDecorate(MI.getOperand(1).getReg(), MIB,
|
|
SPIRV::Decoration::FPMaxErrorDecorationINTEL,
|
|
{OpValue});
|
|
} else {
|
|
GR->buildMemAliasingOpDecorate(MI.getOperand(1).getReg(), MIB,
|
|
MI.getOperand(2).getImm(),
|
|
MI.getOperand(3).getMetadata());
|
|
}
|
|
|
|
ToErase.push_back(&MI);
|
|
}
|
|
}
|
|
for (MachineInstr *MI : ToErase) {
|
|
GR->invalidateMachineInstr(MI);
|
|
MI->eraseFromParent();
|
|
}
|
|
}
|
|
|
|
// LLVM allows the switches to use registers as cases, while SPIR-V required
|
|
// those to be immediate values. This function replaces such operands with the
|
|
// equivalent immediate constant.
|
|
static void processSwitchesConstants(MachineFunction &MF,
|
|
SPIRVGlobalRegistry *GR,
|
|
MachineIRBuilder MIB) {
|
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
for (MachineBasicBlock &MBB : MF) {
|
|
for (MachineInstr &MI : MBB) {
|
|
if (!isSpvIntrinsic(MI, Intrinsic::spv_switch))
|
|
continue;
|
|
|
|
SmallVector<MachineOperand, 8> NewOperands;
|
|
NewOperands.push_back(MI.getOperand(0)); // Opcode
|
|
NewOperands.push_back(MI.getOperand(1)); // Condition
|
|
NewOperands.push_back(MI.getOperand(2)); // Default
|
|
for (unsigned i = 3; i < MI.getNumOperands(); i += 2) {
|
|
Register Reg = MI.getOperand(i).getReg();
|
|
MachineInstr *ConstInstr = getDefInstrMaybeConstant(Reg, &MRI);
|
|
NewOperands.push_back(
|
|
MachineOperand::CreateCImm(ConstInstr->getOperand(1).getCImm()));
|
|
|
|
NewOperands.push_back(MI.getOperand(i + 1));
|
|
}
|
|
|
|
assert(MI.getNumOperands() == NewOperands.size());
|
|
while (MI.getNumOperands() > 0)
|
|
MI.removeOperand(0);
|
|
for (auto &MO : NewOperands)
|
|
MI.addOperand(MO);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Some instructions are used during CodeGen but should never be emitted.
|
|
// Cleaning up those.
|
|
static void cleanupHelperInstructions(MachineFunction &MF,
|
|
SPIRVGlobalRegistry *GR) {
|
|
SmallVector<MachineInstr *, 8> ToEraseMI;
|
|
for (MachineBasicBlock &MBB : MF) {
|
|
for (MachineInstr &MI : MBB) {
|
|
if (isSpvIntrinsic(MI, Intrinsic::spv_track_constant) ||
|
|
MI.getOpcode() == TargetOpcode::G_BRINDIRECT)
|
|
ToEraseMI.push_back(&MI);
|
|
}
|
|
}
|
|
|
|
for (MachineInstr *MI : ToEraseMI) {
|
|
GR->invalidateMachineInstr(MI);
|
|
MI->eraseFromParent();
|
|
}
|
|
}
|
|
|
|
// Find all usages of G_BLOCK_ADDR in our intrinsics and replace those
|
|
// operands/registers by the actual MBB it references.
|
|
static void processBlockAddr(MachineFunction &MF, SPIRVGlobalRegistry *GR,
|
|
MachineIRBuilder MIB) {
|
|
// Gather the reverse-mapping BB -> MBB.
|
|
DenseMap<const BasicBlock *, MachineBasicBlock *> BB2MBB;
|
|
for (MachineBasicBlock &MBB : MF)
|
|
BB2MBB[MBB.getBasicBlock()] = &MBB;
|
|
|
|
// Gather instructions requiring patching. For now, only those can use
|
|
// G_BLOCK_ADDR.
|
|
SmallVector<MachineInstr *, 8> InstructionsToPatch;
|
|
for (MachineBasicBlock &MBB : MF) {
|
|
for (MachineInstr &MI : MBB) {
|
|
if (isSpvIntrinsic(MI, Intrinsic::spv_switch) ||
|
|
isSpvIntrinsic(MI, Intrinsic::spv_loop_merge) ||
|
|
isSpvIntrinsic(MI, Intrinsic::spv_selection_merge))
|
|
InstructionsToPatch.push_back(&MI);
|
|
}
|
|
}
|
|
|
|
// For each instruction to fix, we replace all the G_BLOCK_ADDR operands by
|
|
// the actual MBB it references. Once those references have been updated, we
|
|
// can cleanup remaining G_BLOCK_ADDR references.
|
|
SmallPtrSet<MachineBasicBlock *, 8> ClearAddressTaken;
|
|
SmallPtrSet<MachineInstr *, 8> ToEraseMI;
|
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
for (MachineInstr *MI : InstructionsToPatch) {
|
|
SmallVector<MachineOperand, 8> NewOps;
|
|
for (unsigned i = 0; i < MI->getNumOperands(); ++i) {
|
|
// The operand is not a register, keep as-is.
|
|
if (!MI->getOperand(i).isReg()) {
|
|
NewOps.push_back(MI->getOperand(i));
|
|
continue;
|
|
}
|
|
|
|
Register Reg = MI->getOperand(i).getReg();
|
|
MachineInstr *BuildMBB = MRI.getVRegDef(Reg);
|
|
// The register is not the result of G_BLOCK_ADDR, keep as-is.
|
|
if (!BuildMBB || BuildMBB->getOpcode() != TargetOpcode::G_BLOCK_ADDR) {
|
|
NewOps.push_back(MI->getOperand(i));
|
|
continue;
|
|
}
|
|
|
|
assert(BuildMBB && BuildMBB->getOpcode() == TargetOpcode::G_BLOCK_ADDR &&
|
|
BuildMBB->getOperand(1).isBlockAddress() &&
|
|
BuildMBB->getOperand(1).getBlockAddress());
|
|
BasicBlock *BB =
|
|
BuildMBB->getOperand(1).getBlockAddress()->getBasicBlock();
|
|
auto It = BB2MBB.find(BB);
|
|
if (It == BB2MBB.end())
|
|
report_fatal_error("cannot find a machine basic block by a basic block "
|
|
"in a switch statement");
|
|
MachineBasicBlock *ReferencedBlock = It->second;
|
|
NewOps.push_back(MachineOperand::CreateMBB(ReferencedBlock));
|
|
|
|
ClearAddressTaken.insert(ReferencedBlock);
|
|
ToEraseMI.insert(BuildMBB);
|
|
}
|
|
|
|
// Replace the operands.
|
|
assert(MI->getNumOperands() == NewOps.size());
|
|
while (MI->getNumOperands() > 0)
|
|
MI->removeOperand(0);
|
|
for (auto &MO : NewOps)
|
|
MI->addOperand(MO);
|
|
|
|
if (MachineInstr *Next = MI->getNextNode()) {
|
|
if (isSpvIntrinsic(*Next, Intrinsic::spv_track_constant)) {
|
|
ToEraseMI.insert(Next);
|
|
Next = MI->getNextNode();
|
|
}
|
|
if (Next && Next->getOpcode() == TargetOpcode::G_BRINDIRECT)
|
|
ToEraseMI.insert(Next);
|
|
}
|
|
}
|
|
|
|
// BlockAddress operands were used to keep information between passes,
|
|
// let's undo the "address taken" status to reflect that Succ doesn't
|
|
// actually correspond to an IR-level basic block.
|
|
for (MachineBasicBlock *Succ : ClearAddressTaken)
|
|
Succ->setAddressTakenIRBlock(nullptr);
|
|
|
|
// If we just delete G_BLOCK_ADDR instructions with BlockAddress operands,
|
|
// this leaves their BasicBlock counterparts in a "address taken" status. This
|
|
// would make AsmPrinter to generate a series of unneeded labels of a "Address
|
|
// of block that was removed by CodeGen" kind. Let's first ensure that we
|
|
// don't have a dangling BlockAddress constants by zapping the BlockAddress
|
|
// nodes, and only after that proceed with erasing G_BLOCK_ADDR instructions.
|
|
Constant *Replacement =
|
|
ConstantInt::get(Type::getInt32Ty(MF.getFunction().getContext()), 1);
|
|
for (MachineInstr *BlockAddrI : ToEraseMI) {
|
|
if (BlockAddrI->getOpcode() == TargetOpcode::G_BLOCK_ADDR) {
|
|
BlockAddress *BA = const_cast<BlockAddress *>(
|
|
BlockAddrI->getOperand(1).getBlockAddress());
|
|
BA->replaceAllUsesWith(
|
|
ConstantExpr::getIntToPtr(Replacement, BA->getType()));
|
|
BA->destroyConstant();
|
|
}
|
|
GR->invalidateMachineInstr(BlockAddrI);
|
|
BlockAddrI->eraseFromParent();
|
|
}
|
|
}
|
|
|
|
static bool isImplicitFallthrough(MachineBasicBlock &MBB) {
|
|
if (MBB.empty())
|
|
return true;
|
|
|
|
// Branching SPIR-V intrinsics are not detected by this generic method.
|
|
// Thus, we can only trust negative result.
|
|
if (!MBB.canFallThrough())
|
|
return false;
|
|
|
|
// Otherwise, we must manually check if we have a SPIR-V intrinsic which
|
|
// prevent an implicit fallthrough.
|
|
for (MachineBasicBlock::reverse_iterator It = MBB.rbegin(), E = MBB.rend();
|
|
It != E; ++It) {
|
|
if (isSpvIntrinsic(*It, Intrinsic::spv_switch))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static void removeImplicitFallthroughs(MachineFunction &MF,
|
|
MachineIRBuilder MIB) {
|
|
// It is valid for MachineBasicBlocks to not finish with a branch instruction.
|
|
// In such cases, they will simply fallthrough their immediate successor.
|
|
for (MachineBasicBlock &MBB : MF) {
|
|
if (!isImplicitFallthrough(MBB))
|
|
continue;
|
|
|
|
assert(std::distance(MBB.successors().begin(), MBB.successors().end()) ==
|
|
1);
|
|
MIB.setInsertPt(MBB, MBB.end());
|
|
MIB.buildBr(**MBB.successors().begin());
|
|
}
|
|
}
|
|
|
|
bool SPIRVPreLegalizer::runOnMachineFunction(MachineFunction &MF) {
|
|
// Initialize the type registry.
|
|
const SPIRVSubtarget &ST = MF.getSubtarget<SPIRVSubtarget>();
|
|
SPIRVGlobalRegistry *GR = ST.getSPIRVGlobalRegistry();
|
|
GR->setCurrentFunc(MF);
|
|
MachineIRBuilder MIB(MF);
|
|
// a registry of target extension constants
|
|
DenseMap<MachineInstr *, Type *> TargetExtConstTypes;
|
|
// to keep record of tracked constants
|
|
addConstantsToTrack(MF, GR, ST, TargetExtConstTypes);
|
|
foldConstantsIntoIntrinsics(MF, GR, MIB);
|
|
insertBitcasts(MF, GR, MIB);
|
|
generateAssignInstrs(MF, GR, MIB, TargetExtConstTypes);
|
|
|
|
processSwitchesConstants(MF, GR, MIB);
|
|
processBlockAddr(MF, GR, MIB);
|
|
cleanupHelperInstructions(MF, GR);
|
|
|
|
processInstrsWithTypeFolding(MF, GR, MIB);
|
|
removeImplicitFallthroughs(MF, MIB);
|
|
insertSpirvDecorations(MF, GR, MIB);
|
|
insertInlineAsm(MF, GR, ST, MIB);
|
|
selectOpBitcasts(MF, GR, MIB);
|
|
|
|
return true;
|
|
}
|
|
|
|
INITIALIZE_PASS(SPIRVPreLegalizer, DEBUG_TYPE, "SPIRV pre legalizer", false,
|
|
false)
|
|
|
|
char SPIRVPreLegalizer::ID = 0;
|
|
|
|
FunctionPass *llvm::createSPIRVPreLegalizerPass() {
|
|
return new SPIRVPreLegalizer();
|
|
}
|