llvm-project/llvm/lib/Target/WebAssembly/WebAssemblyTargetTransformInfo.cpp
Jasmine Tang d7a29e5d56
[WebAssembly] Reapply #149461 with correct CondCode in combine of SETCC (#153703)
This PR reapplies https://github.com/llvm/llvm-project/pull/149461

In the original `combineVectorSizedSetCCEquality`, the result of setcc
is being negated by returning setcc with the same cond code, leading to
wrong logic.

For example, with
```llvm
 %cmp_16 = call i32 @memcmp(ptr %a, ptr %b, i32 16)
  %res = icmp eq i32 %cmp_16, 0
```

the original PR producese all_true and then also compares the result
equal to 0 (using the same SETEQ in the returning setcc), meaning that
semantically, it effectively is calling icmp ne.

Instead, the PR should have use SETNE in the returning setcc, this way,
all true return 1, then it is compared again ne 0, which is equivalent
to icmp eq.
2025-08-15 12:06:47 -07:00

330 lines
10 KiB
C++

//===-- WebAssemblyTargetTransformInfo.cpp - WebAssembly-specific TTI -----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file defines the WebAssembly-specific TargetTransformInfo
/// implementation.
///
//===----------------------------------------------------------------------===//
#include "WebAssemblyTargetTransformInfo.h"
#include "llvm/CodeGen/CostTable.h"
using namespace llvm;
#define DEBUG_TYPE "wasmtti"
TargetTransformInfo::PopcntSupportKind
WebAssemblyTTIImpl::getPopcntSupport(unsigned TyWidth) const {
assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
return TargetTransformInfo::PSK_FastHardware;
}
unsigned WebAssemblyTTIImpl::getNumberOfRegisters(unsigned ClassID) const {
unsigned Result = BaseT::getNumberOfRegisters(ClassID);
// For SIMD, use at least 16 registers, as a rough guess.
bool Vector = (ClassID == 1);
if (Vector)
Result = std::max(Result, 16u);
return Result;
}
TypeSize WebAssemblyTTIImpl::getRegisterBitWidth(
TargetTransformInfo::RegisterKind K) const {
switch (K) {
case TargetTransformInfo::RGK_Scalar:
return TypeSize::getFixed(64);
case TargetTransformInfo::RGK_FixedWidthVector:
return TypeSize::getFixed(getST()->hasSIMD128() ? 128 : 64);
case TargetTransformInfo::RGK_ScalableVector:
return TypeSize::getScalable(0);
}
llvm_unreachable("Unsupported register kind");
}
InstructionCost WebAssemblyTTIImpl::getArithmeticInstrCost(
unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
TTI::OperandValueInfo Op1Info, TTI::OperandValueInfo Op2Info,
ArrayRef<const Value *> Args, const Instruction *CxtI) const {
InstructionCost Cost =
BasicTTIImplBase<WebAssemblyTTIImpl>::getArithmeticInstrCost(
Opcode, Ty, CostKind, Op1Info, Op2Info);
if (auto *VTy = dyn_cast<VectorType>(Ty)) {
switch (Opcode) {
case Instruction::LShr:
case Instruction::AShr:
case Instruction::Shl:
// SIMD128's shifts currently only accept a scalar shift count. For each
// element, we'll need to extract, op, insert. The following is a rough
// approximation.
if (!Op2Info.isUniform())
Cost =
cast<FixedVectorType>(VTy)->getNumElements() *
(TargetTransformInfo::TCC_Basic +
getArithmeticInstrCost(Opcode, VTy->getElementType(), CostKind) +
TargetTransformInfo::TCC_Basic);
break;
}
}
return Cost;
}
InstructionCost WebAssemblyTTIImpl::getCastInstrCost(
unsigned Opcode, Type *Dst, Type *Src, TTI::CastContextHint CCH,
TTI::TargetCostKind CostKind, const Instruction *I) const {
int ISD = TLI->InstructionOpcodeToISD(Opcode);
auto SrcTy = TLI->getValueType(DL, Src);
auto DstTy = TLI->getValueType(DL, Dst);
if (!SrcTy.isSimple() || !DstTy.isSimple()) {
return BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
}
if (!ST->hasSIMD128()) {
return BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
}
auto DstVT = DstTy.getSimpleVT();
auto SrcVT = SrcTy.getSimpleVT();
if (I && I->hasOneUser()) {
auto *SingleUser = cast<Instruction>(*I->user_begin());
int UserISD = TLI->InstructionOpcodeToISD(SingleUser->getOpcode());
// extmul_low support
if (UserISD == ISD::MUL &&
(ISD == ISD::ZERO_EXTEND || ISD == ISD::SIGN_EXTEND)) {
// Free low extensions.
if ((SrcVT == MVT::v8i8 && DstVT == MVT::v8i16) ||
(SrcVT == MVT::v4i16 && DstVT == MVT::v4i32) ||
(SrcVT == MVT::v2i32 && DstVT == MVT::v2i64)) {
return 0;
}
// Will require an additional extlow operation for the intermediate
// i16/i32 value.
if ((SrcVT == MVT::v4i8 && DstVT == MVT::v4i32) ||
(SrcVT == MVT::v2i16 && DstVT == MVT::v2i64)) {
return 1;
}
}
}
// extend_low
static constexpr TypeConversionCostTblEntry ConversionTbl[] = {
{ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 1},
{ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 1},
{ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 1},
{ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1},
{ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 1},
{ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1},
{ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i16, 2},
{ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i16, 2},
{ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 2},
{ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 2},
};
if (const auto *Entry =
ConvertCostTableLookup(ConversionTbl, ISD, DstVT, SrcVT)) {
return Entry->Cost;
}
return BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
}
WebAssemblyTTIImpl::TTI::MemCmpExpansionOptions
WebAssemblyTTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
TTI::MemCmpExpansionOptions Options;
Options.AllowOverlappingLoads = true;
if (ST->hasSIMD128())
Options.LoadSizes.push_back(16);
Options.LoadSizes.append({8, 4, 2, 1});
Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize);
Options.NumLoadsPerBlock = Options.MaxNumLoads;
return Options;
}
InstructionCost WebAssemblyTTIImpl::getMemoryOpCost(
unsigned Opcode, Type *Ty, Align Alignment, unsigned AddressSpace,
TTI::TargetCostKind CostKind, TTI::OperandValueInfo OpInfo,
const Instruction *I) const {
if (!ST->hasSIMD128() || !isa<FixedVectorType>(Ty)) {
return BaseT::getMemoryOpCost(Opcode, Ty, Alignment, AddressSpace,
CostKind);
}
int ISD = TLI->InstructionOpcodeToISD(Opcode);
if (ISD != ISD::LOAD) {
return BaseT::getMemoryOpCost(Opcode, Ty, Alignment, AddressSpace,
CostKind);
}
EVT VT = TLI->getValueType(DL, Ty, true);
// Type legalization can't handle structs
if (VT == MVT::Other)
return BaseT::getMemoryOpCost(Opcode, Ty, Alignment, AddressSpace,
CostKind);
auto LT = getTypeLegalizationCost(Ty);
if (!LT.first.isValid())
return InstructionCost::getInvalid();
// 128-bit loads are a single instruction. 32-bit and 64-bit vector loads can
// be lowered to load32_zero and load64_zero respectively. Assume SIMD loads
// are twice as expensive as scalar.
unsigned width = VT.getSizeInBits();
switch (width) {
default:
break;
case 32:
case 64:
case 128:
return 2;
}
return BaseT::getMemoryOpCost(Opcode, Ty, Alignment, AddressSpace, CostKind);
}
InstructionCost WebAssemblyTTIImpl::getVectorInstrCost(
unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind, unsigned Index,
const Value *Op0, const Value *Op1) const {
InstructionCost Cost = BasicTTIImplBase::getVectorInstrCost(
Opcode, Val, CostKind, Index, Op0, Op1);
// SIMD128's insert/extract currently only take constant indices.
if (Index == -1u)
return Cost + 25 * TargetTransformInfo::TCC_Expensive;
return Cost;
}
InstructionCost WebAssemblyTTIImpl::getPartialReductionCost(
unsigned Opcode, Type *InputTypeA, Type *InputTypeB, Type *AccumType,
ElementCount VF, TTI::PartialReductionExtendKind OpAExtend,
TTI::PartialReductionExtendKind OpBExtend, std::optional<unsigned> BinOp,
TTI::TargetCostKind CostKind) const {
InstructionCost Invalid = InstructionCost::getInvalid();
if (!VF.isFixed() || !ST->hasSIMD128())
return Invalid;
if (CostKind != TTI::TCK_RecipThroughput)
return Invalid;
InstructionCost Cost(TTI::TCC_Basic);
// Possible options:
// - i16x8.extadd_pairwise_i8x16_sx
// - i32x4.extadd_pairwise_i16x8_sx
// - i32x4.dot_i16x8_s
// Only try to support dot, for now.
if (Opcode != Instruction::Add)
return Invalid;
if (!BinOp || *BinOp != Instruction::Mul)
return Invalid;
if (InputTypeA != InputTypeB)
return Invalid;
if (OpAExtend != OpBExtend)
return Invalid;
EVT InputEVT = EVT::getEVT(InputTypeA);
EVT AccumEVT = EVT::getEVT(AccumType);
// TODO: Add i64 accumulator.
if (AccumEVT != MVT::i32)
return Invalid;
// Signed inputs can lower to dot
if (InputEVT == MVT::i16 && VF.getFixedValue() == 8)
return OpAExtend == TTI::PR_SignExtend ? Cost : Cost * 2;
// Double the size of the lowered sequence.
if (InputEVT == MVT::i8 && VF.getFixedValue() == 16)
return OpAExtend == TTI::PR_SignExtend ? Cost * 2 : Cost * 4;
return Invalid;
}
TTI::ReductionShuffle WebAssemblyTTIImpl::getPreferredExpandedReductionShuffle(
const IntrinsicInst *II) const {
switch (II->getIntrinsicID()) {
default:
break;
case Intrinsic::vector_reduce_fadd:
return TTI::ReductionShuffle::Pairwise;
}
return TTI::ReductionShuffle::SplitHalf;
}
void WebAssemblyTTIImpl::getUnrollingPreferences(
Loop *L, ScalarEvolution &SE, TTI::UnrollingPreferences &UP,
OptimizationRemarkEmitter *ORE) const {
// Scan the loop: don't unroll loops with calls. This is a standard approach
// for most (all?) targets.
for (BasicBlock *BB : L->blocks())
for (Instruction &I : *BB)
if (isa<CallInst>(I) || isa<InvokeInst>(I))
if (const Function *F = cast<CallBase>(I).getCalledFunction())
if (isLoweredToCall(F))
return;
// The chosen threshold is within the range of 'LoopMicroOpBufferSize' of
// the various microarchitectures that use the BasicTTI implementation and
// has been selected through heuristics across multiple cores and runtimes.
UP.Partial = UP.Runtime = UP.UpperBound = true;
UP.PartialThreshold = 30;
// Avoid unrolling when optimizing for size.
UP.OptSizeThreshold = 0;
UP.PartialOptSizeThreshold = 0;
// Set number of instructions optimized when "back edge"
// becomes "fall through" to default value of 2.
UP.BEInsns = 2;
}
bool WebAssemblyTTIImpl::supportsTailCalls() const {
return getST()->hasTailCall();
}
bool WebAssemblyTTIImpl::isProfitableToSinkOperands(
Instruction *I, SmallVectorImpl<Use *> &Ops) const {
using namespace llvm::PatternMatch;
if (!I->getType()->isVectorTy() || !I->isShift())
return false;
Value *V = I->getOperand(1);
// We dont need to sink constant splat.
if (isa<Constant>(V))
return false;
if (match(V, m_Shuffle(m_InsertElt(m_Value(), m_Value(), m_ZeroInt()),
m_Value(), m_ZeroMask()))) {
// Sink insert
Ops.push_back(&cast<Instruction>(V)->getOperandUse(0));
// Sink shuffle
Ops.push_back(&I->getOperandUse(1));
return true;
}
return false;
}